RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 24, Number 1, January 1991

THREE RIGIDITY CRITERIA FOR $\operatorname{PSL}(2, \mathbf{R})$

CHRISTOPHER BISHOP AND TIM STEGER

Statement of results

Let G be $\operatorname{PSL}(2, \mathbf{R})$, the quotient of the group of 2×2 real matrices with determinant one by its two element center, $\{ \pm I\}$. By a lattice subgroup of G we mean a discrete subgroup such that the space of cosets G / Γ has finite volume. A familiar example of a lattice subgroup is $\operatorname{PSL}(2, \mathbf{Z})$, the subgroup of matrices in $\operatorname{PSL}(2, \mathbf{R})$ with integer entries. Let Γ be an abstract group and let l_{1} and l_{2} be two inclusions of Γ in G, each having a lattice subgroup as its image. We say l_{1} and l_{2} are equivalent if there is some (continuous) automorphism α of G so that $l_{2}=\alpha \circ l_{1}$. This paper describes three closely related criteria for the equivalence of l_{1} and l_{2} : one analytic, one representation theoretic, and one geometric.

If G were $\operatorname{PSL}(n, \mathbf{R})$ for some $n>2$, or indeed if it were any connected simple Lie group with trivial center except for $\operatorname{PSL}(2, \mathbf{R})$, then the Mostow rigidity theorem (see [M1, M2, Ma, P]) would assert that l_{1} and l_{2}, as described above, are necessarily equivalent: a given abstract group Γ could be embedded in G as a lattice subgroup in at most one way (up to automorphisms of G). This remarkable theorem is false for $\operatorname{PSL}(2, \mathbf{R})$. Indeed, the

[^0]study of the set of equivalence classes of embeddings of a given Γ as a lattice subgroup of $\operatorname{PSL}(2, \mathbf{R})$ is the main focus of the highly developed Teichmüller theory (see, [Ah, Ga, L, N]). The following results are rigidity theorems for $\operatorname{PSL}(2, \mathbf{R})$, although they have additional hypotheses, as they must.

We say l_{1} and l_{2} are topologically conjugate if there is some (orientation-preserving) homeomorphism β of \mathbf{H} such that $l_{2}(\gamma)$ $=\beta \circ l_{1}(\gamma) \circ \beta^{-1}$. Such a β will extend uniquely to a homeomorphism of $\mathbf{R} \cup \infty$, the boundary of \mathbf{H}. Moreover, the boundary homeomorphism is completely determined by l_{1} and l_{2}, even though the interior homeomorphism is not. If Γ is the fundamental group of a surface, the equivalence classes of embeddings topologically conjugate to a given one, l, can be identified with points of the Teichmüller space of the surface $R=\mathbf{H} / l(\Gamma)$. If R is a Riemann surface of genus g with k punctures, then the associated Teichmüller space can be given the structure of a $3 g-3+k$ dimensional complex manifold; in particular, it is uncountable.
$\operatorname{PSL}(2, \mathbf{R})$ acts on the upper half-space, \mathbf{H}, by the well-known recipe

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=(a z+b) /(c z+d) .
$$

The action preserves the hyperbolic metric $d s^{2}=\left(d x^{2}+d y^{2}\right) / y^{2}$, and in fact G is the full group of orientation-preserving isometries of H_{+}. The analytic criterion uses the function $h: G \rightarrow \mathbf{R}^{+}$given by $h(g)=\exp (-d(g \cdot i, i))$, where $d(\cdot, \cdot)$ is hyperbolic distance on \mathbf{H}. This function belongs to $L^{1+\epsilon}(G)$ for any $\epsilon>0$ but not to $L^{1}(G)$. Similarly, if $h_{j}: \Gamma \rightarrow \mathbf{R}^{+}$is the composition of h with l_{j}, then h_{j} belongs to $l^{1+\epsilon}(\Gamma)$ for any $\epsilon>0$ but not to $l^{1}(\Gamma)$.

Theorem 1. Fix $s, 0<s<1$. The inclusions l_{1} and l_{2} are equivalent if and only if

$$
\sum_{\gamma \in \Gamma} h_{1}^{s}(\gamma) h_{2}^{1-s}(\gamma)=+\infty .
$$

For the representation theoretic criterion, we let π_{1} and π_{2} be nontrivial irreducible unitary representations of G (see $[\mathrm{K}]$) which don't belong to the discrete series. (That is π_{1} and π_{2} belong to the principal or complementary spherical series.) According to [C-S], $\pi_{j} \circ l_{j}$ is an irreducible representation of Γ for $j=1$ or 2. As usual, two irreducible unitary representations of a group are
called equivalent if there is a unitary equivalence between the two representation spaces which intertwines the two group actions.

Theorem 2. The representations $\pi_{1} \circ l_{1}$ and $\pi_{2} \circ l_{2}$ of Γ are equivalent if and only if the representations π_{1} and π_{2} of G are equivalent and the inclusions l_{1} and l_{2} are equivalent.

This is not stated as a criterion for the equivalence of l_{1} and l_{2}, but we obtain one by setting $\pi_{1}=\pi_{2}$. Theorem 2 fails for discrete series representations. If π_{1} and π_{2} are in the discrete series, then $\pi_{1} \circ l_{1}$ and $\pi_{2} \circ l_{2}$ are square integrable representations of Γ, hence continuously reducible. Any square integrable representation of Γ is characterized up to unitary equivalence by a single real number, its continuous dimension, and the continuous dimension of $\pi_{j} \circ l_{j}$ is the product of the formal dimension of π_{j} and the volume of $G / l_{j}(\Gamma)$ (see [G-H-J, Theorem 3.3.2].) If Γ is torsion free, then it determines the Euler characteristic and thus the volume of $G / l_{j}(\Gamma)$. One can always find a finite index, torsion free subgroup of Γ, so $G / l_{1}(\Gamma)$ and $G / l_{2}(\Gamma)$ have equal volumes. The two representations $\pi_{1} \circ l_{1}$ and $\pi_{2} \circ l_{2}$ are equivalent if and only if π_{1} and π_{2} have the same formal dimension.

For the final criterion we assume l_{1} and l_{2} are topologically conjugate and that β is the conjugating homeomorphism. It is known that β is either Möbius or singular depending on whether or not l_{1} and l_{2} are equivalent (e.g., [M1]). See $[\mathrm{Ag}]$ for a survey of related results. Let $\operatorname{dim}(E)$ denote the Hausdorff dimension of E.

Theorem 3. Suppose that l_{1} and l_{2} are topologically conjugate. Then l_{1} and l_{2} are inequivalent if and only if there exists $\delta>0$ and $E \subset \mathbf{R}$ such that $\operatorname{dim}(E) \leq 1-\delta$ and $\operatorname{dim}(\beta(\mathbf{R} \backslash E)) \leq 1-\delta$.

The complete proofs of these results are contained in [B-S]. We thank the referees for their comments and suggestions.

Outline of the proofs

Theorems 1 and 3 are easy to verify under the hypothesis that l_{1} and l_{2} are equivalent, as is Theorem 2 if we assume also that π_{1} and π_{2} are equivalent. The case of equivalent l_{j} and inequivalent π_{j} is contained in [C-S]. Thus, in the following discussion we assume that l_{1} and l_{2} are inequivalent. Given that, Theorem 2 is a consequence of Theorem 1 and Theorem 3 is a rather direct consequence of the following sharper version of Theorem 1.

Theorem 1^{\prime}. If l_{1} and l_{2} are inequivalent and $0<s<1$, then there is some $\delta>0$ so that

$$
\sum_{\gamma \in \Gamma}\left(h_{1}(\gamma)^{s} h_{2}(\gamma)^{1-s}\right)^{1-\delta}<+\infty .
$$

In sketching the proof of Theorem 2, we treat only the case when π_{1} and π_{2} are in the principal series but not at its endpoint. Let \mathscr{H}_{j} be the Hilbert space on which π_{j} acts, and let $U: \mathscr{H}_{2} \rightarrow \mathscr{H}_{1}$ be a presumed unitary equivalence between $\pi_{2} \circ l_{2}$ and $\pi_{1} \circ l_{1}$. From [C-S] we use the fact that there is a $t_{1}>0$, characteristic of π_{1}, so that

$$
\underset{\epsilon \rightarrow 0+}{\text { weak- } \lim }\left(\pi_{1} \circ l_{1}\right)\left(\epsilon h_{1}^{1 / 2+i t_{1}+\epsilon}\right)=Q
$$

where Q is a nonzero operator on \mathscr{H}_{1}. (In fact Q is some multiple of orthogonal projection onto the one-dimensional subspace of \mathscr{H}_{1} fixed by $S O(2, \mathbf{R})$.) On the other hand, for ψ and ψ^{\prime} chosen from a dense class of vectors in \mathscr{H}_{2}

$$
\left|\left\langle\pi_{2}(g) \psi, \psi^{\prime}\right\rangle\right| \leq C h(g)^{1 / 2}
$$

For such vectors

$$
\begin{aligned}
\left|\left\langle Q U \psi, U \psi^{\prime}\right\rangle\right| & =\left|\lim _{\epsilon \rightarrow 0+}\left\langle\left(\pi_{1} \circ l_{1}\right)\left(\epsilon h_{1}^{1 / 2+i t_{1}+\epsilon}\right) U \psi, U \psi^{\prime}\right\rangle\right| \\
& =\left|\lim _{\epsilon \rightarrow 0+}\left\langle\left(\pi_{2} \circ l_{2}\right)\left(\epsilon h_{1}^{1 / 2+i t_{1}+\epsilon}\right) \psi, \psi^{\prime}\right\rangle\right| \\
& \leq \lim _{\epsilon \rightarrow 0+} C \epsilon \sum_{\gamma \in \Gamma}\left|h_{1}(\gamma)^{1 / 2+i t_{1}+\epsilon} h_{2}(\gamma)^{1 / 2}\right| \\
& \leq \lim _{\epsilon \rightarrow 0+} C \epsilon \sum_{\gamma \in \Gamma} h_{1}(\gamma)^{1 / 2} h_{2}(\gamma)^{1 / 2}
\end{aligned}
$$

According to Theorem 1, this limit is zero, so Q is zero, contradicting the original hypothesis that l_{1} and l_{2} were inequivalent.

To demonstrate Theorem 1 we must again suppose that l_{1} and l_{2} are inequivalent and prove that

$$
\sum_{\gamma \in \Gamma} h_{1}(\gamma)^{s} h_{2}(\gamma)^{1-s}<+\infty
$$

Let \mathscr{T} be the vertex of a combinatorial tree and fix a root vertex $v_{0} \in \mathscr{T}$. For any $v \in \mathscr{T}$, let $D(v)$, the daughters of v, consist of vertices adjacent to v but further away from the root vertex than v is. A function $f: \mathscr{T} \rightarrow \mathbf{R}^{+}$is additive if

$$
\sum_{w \in D(v)} f(w)=f(v) \quad \text { for each } v \in \mathscr{T}
$$

Lemma 1. Let f_{1} and f_{2} be additive functions on \mathscr{T}. If for some $\rho<1$,

$$
\sum_{w \in D(v)} f_{1}(w)^{s} f_{2}(w)^{1-s} \leq \rho\left(\sum_{w \in \dot{D}(v)} f_{1}(w)\right)^{s}\left(\sum_{w \in D(v)} f_{2}(w)\right)^{1-s}
$$

for each $v \in \mathscr{T}$, then

$$
\sum_{v \in \mathscr{F}} f_{1}(v)^{s} f_{2}(v)^{1-s}<+\infty
$$

Indeed, the sum over the nth generation, that is the sum over the vertices at distance n from v_{0}, is less than or equal to

$$
\rho^{n} f_{1}\left(v_{0}\right)^{s} f_{2}\left(v_{0}\right)^{1-s} .
$$

The hypothesis of Lemma 1 is (in a certain quantitative sense) that the vectors $\left(f_{1}(w)\right)_{w \in D(v)}$ and $\left(f_{2}(w)\right)_{w \in D(v)}$ are uniformly nonproportional as v varies.

One may, it turns out, replace Γ with any subgroup of finite index. Therefore $[\mathrm{S}]$ we may assume Γ is either a free group (case of noncompact G / Γ) or the fundamental group of a closed Riemann surface (case of compact G / Γ). Assume for this discussion that Γ is a free group and fix a (necessarily finite) set of generators $\left(a_{l}\right)_{l=1}^{L}$. Give Γ the usual tree structure, saying that γ and γ^{\prime} are adjacent if and only if $\gamma^{\prime}=\gamma a_{l}^{ \pm 1}$ for some l.

To first approximation this is the tree to which Lemma 1 applies. What are the additive functions? For any $\gamma \in \Gamma$, let $D_{+}(\gamma)$ be the set containing the daughters of γ, the daughters of the daughters of γ, and so on. Let the segments of γ be

$$
S_{j}(\gamma)=\overline{\left\{l_{j}\left(\gamma^{\prime}\right) \cdot i ; \gamma^{\prime} \in D_{+}(\gamma)\right\}} \cap(\mathbf{R} \cup\{\infty\}) \quad \text { for } j=1 \text { or } 2 .
$$

Each segment $S_{j}(\gamma)$ is a finite union of intervals on $\mathbf{R} \cup\{\infty\}$. By choosing the basis of Γ correctly, we may assume that each $S_{1}(\gamma)$ is a single interval; if l_{1} and l_{2} are topologically conjugate, then we may assume as well that each $S_{2}(\gamma)$ is a single interval. Except for endpoints $S_{j}(\gamma)$ is the disjoint union of $\left(S_{j}\left(\gamma^{\prime}\right)\right)_{\gamma^{\prime} \in D(\gamma)}$. Define the additive function $L_{j}(\gamma)$ as the total length of $S_{j}(\gamma)$. Then $L_{j}(\gamma) \geq C H_{j}(\gamma)$ and it suffices to prove

$$
\sum_{\gamma \in \Gamma} L_{1}(\gamma)^{s} L_{2}(\gamma)^{1-s}<+\infty .
$$

The first modification to the tree is necessary because $S_{j}(\gamma)$ sometimes contains infinite intervals and so $L_{j}(\gamma)$ is sometimes
infinite. We divide the tree up into finitely many subtrees. Then for each subtree we conjugate l_{1} and l_{2} by elements of G so as to relocate the points at infinity and make all the $L_{j}(\gamma)$ finite. Next we eliminate certain of the vertices γ of the tree in order to avoid the situation where one of the entries of the vector $\left(L_{1}\left(\gamma^{\prime}\right)\right)_{\gamma^{\prime} \in D(\gamma)}$ is much greater than the others. This situation occurs near parabolic fixed points. Finally, for a certain N (dependent only on the topological situation) we include the vertices in every N th generation but exclude the rest. Given any two of the remaining vertices we put an edge between them if the path in the original tree from the one to the other passes only through excluded vertices.

Let Γ_{N} be the set of words of length less than $N / 2$ in Γ. Now suppose the series above diverges. Then by Lemma 1 we can find elements $\gamma \in \Gamma$ such that

$$
\begin{equation*}
\sum_{\gamma^{\prime} \in D(\gamma)} L_{1}\left(\gamma^{\prime}\right)^{s} L_{2}\left(\gamma^{\prime}\right)^{1-s} \text { and }\left(\sum_{\gamma^{\prime} \in D(\gamma)} L_{1}\left(\gamma^{\prime}\right)\right)^{s}\left(\sum_{\gamma^{\prime} \in D(\gamma)} L_{2}\left(\gamma^{\prime}\right)\right)^{1-s} \tag{1}
\end{equation*}
$$

are as close are desired. Near equality in Hölder's inequality implies near proportionality of the two vectors involved, which implies in this case that the tuples $\left(L_{1}\left(\gamma \gamma^{\prime}\right)\right)_{\gamma^{\prime} \in \Gamma_{N}}$ and $\left(L_{2}\left(\gamma \gamma^{\prime}\right)\right)_{\gamma^{\prime} \in \Gamma_{N}}$ are nearly proportional. From each such γ we construct an isometry (orientation-preserving or orientation-reversing) of \mathbf{H} which nearly conjugates l_{1} to l_{2}. Indeed this isometry is the composition of $l_{2}\left(\gamma^{-1}\right)$ with an affine transformation and with $l_{1}(\gamma)$. Now consider a sequence of γ, which gives better and better agreement in (1). The corresponding sequence of isometries has a limit and this limit conjugates l_{1} to l_{2}. Thus, the two inclusions are equivalent.
If Γ is the fundamental group of a closed Riemann surface, then the proof is not very different. The one added difficulty is that of finding a useful tree structure on the group. This done, several other technical difficulties disappear, firstly because there are no parabolic elements in Γ and secondly because by the DehnNielsen lemma the two inclusions are topologically conjugate a priori. We use our own (possibly original) solution to the word problem to establish the tree structure. However, any reasonable solution to the word problem might be equally effective.

References

[Ag] S. Agard, Mostow rigidity on the line: a survey, in Holomorphic functions and moduli II, Mathematical Sciences Research Institute publications, no. 11, Springer-Verlag, New York, pp. 1-12.
[Ah] L. V. Ahors, Lectures on quasiconformal mappings, Wadsworth and Brooks/Cole, Monterey, Cal., 1987.
[B-S] C. J. Bishop and T. Steger, Representation theoretic rigidity in $\operatorname{PSL}(2, \mathbf{R})$, preprint.
[C-S] M. Cowling and T. Steger, Irreducibility of restrictions of unitary representations to lattices, in preparation.
[Ga] F. P. Gardiner, Teichmüller theory and quadratic differentials, Wiley-Interscience, John Wiley and Sons, New York, 1987.
[G-H-J] F. Goodman, P. de la Harpe, and V. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute publications, no. 14, Springer-Verlag, New York, 1989.
[K] A. W. Knapp, Representation theory of semisimple groups, Princeton University Press, Princeton, N.J., 1986.
[L] O. Lehto, Univalent functions and Teichmüller space, GTM 109, SpringerVerlag, New York, 1987.
[Ma] G. A. Margulis, Discrete groups of motions of manifolds of non-positive curvature, Trans. Amer. Math. Soc. 109 (1977), 33-45.
[M1] G. D. Mostow, Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, IHES Publ. 34 (1968), 53-104.
[M2] , Strong rigidity of locally symmetric spaces, Ann. Math. Stud., vol. 78, Princeton University Press, Princeton, N. J., 1973.
[N] S. Nag, Complex analytic theory of Teichmüller space, Wiley-Interscience, John Wiley and Sons, New York, 1988.
[P] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255-286.
[S] A. Selberg, On discontinuous groups in higher-dimensional spaces, in Contributions to Function Theory, Tata Institute, Bombay, 1960.

Department of Mathematics, UCLA, Los Angeles, California 90024
E-mail address: cjbishop@math.ucla.edu
Department of Mathematics, University of Chicago, Chicago, Illinois 60637

E-mail address: steger\%zaphod@gargoyle.uchicago.edu

[^0]: Received by the editors January 16, 1990 and, in revised form, August 1, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 22E40, 22E45.

 Key words and phrases. Fuchsian groups, lattices, Poincaré series, representations, rigidity, Teichmüller space.

 Both authors are partially supported by the NSF.

