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Equation in Unbounded Domains; and Chapter IX, Scattering 
Problems Depending on a Parameter. Elastic Structure-Fluid In­
teraction in Unbounded Domains. 

All in all, it is a lovely book and long overdue. 
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Spectral methods form a relatively young and vigorously ex­
panding field of numerical analysis. In the last 10 to 15 years, 
they have been applied to a wide variety of problems of mathe­
matics and engineering. Concomitantly, the theoretical analysis of 
these calculations has grown and diversified, although, as usual in 
practical applications, we still compute much more than we can 
prove. The interested reader can do no better than consult [1], 
which surveys the state-of-the-art situation in the late 80s, giving 
ample coverage to both theory and applications. 

The basic ingredient of spectral methods is the expansion of the 
unknown quantities in the series of orthogonal functions; these 
functions, in turn, result from the solution of a Sturm—Liouville 
problem. In practice, one considers either Fourier expansions— 
usually for periodic problems—or expansions in terms of orthog­
onal polynomials. Among the latter, the Chebyshev polynomials 
play a distinguished role, as they are amenable to the fast Fourier 
transform, but also admit more general boundary values than those 
allowed in Fourier series. 

Consider now a typical differential problem Lu = ƒ , for the 
unknown u. After u is replaced by an TV-term expansion in the 
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eigenfunctions </>. 

N 

1 

the operator L is approximated in one of the three following ways: 
Galerkin method: the residual must be orthogonal to the 
subspace spanned by the TV eigenfunctions 

(LuN-f,4>j) = 0, l<j<N. 

Lanczos x-method: the residual must be orthogonal to the 
subspace spanned by N -p eigenfunctions, while satisfy­
ing p additional constraints, e.g. boundary conditions. 
Collocation: the residual must vanish at N points xt, 
1 < / < N, in the interval of interest. 

In general, the Galerkin and r-methods employ the expansion co­
efficients Cj in calculations, while collocation uses the value of 
the function itself. It is certainly more convenient than the other 
methods: to use the Galerkin method for a term a(x)u{x) one 
must find the coefficients of au from the coefficients of u and the 
multiplier a, while collocation merely requires the values a(xt), 
u(xt). For nonlinear problems collocation is also more advanta­
geous. Obviously, the points x( must be properly chosen—they 
are nodes of the quadratures associated with the Sturm-Liouville 
eigensystem, and as such make it possible to exploit special math­
ematical properties, e.g. orthogonality under summation. 

The main reason for using spectral methods is the basic fact 
that if a C°° function is expanded in Sturm-Liouville eigenfunc-
tion series, the coefficients—and therefore the error—will decay 
rapidly. In general, EN, the error committed by summing only 
TV terms in the infinite series, will satisfy, for all TV, an estimate 
of the form EN < C(M)N~M for arbitrarily large M. Contrast 
this with the much larger asymptotic error for finite differences 
or finite elements, say EN < CN for a second-order method. 
From the practical point of view, it is seen that fewer variables are 
needed to discretize spectrally a problem within a given tolerance, 
and thus the spectral method should produce precise results while 
saving computer memory and possibly computer work. 

The "spectral accuracy" described above is indeed spectacular 
as long as only smooth functions are considered. Of course, one 
cannot expect all problems to have smooth solutions, and large 
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classes of nonlinear equations—e.g. the Euler equations of inviscid 
gas dynamics—will produce discontinuous solutions out of smooth 
initial data. Thus, spectral accuracy has to be taken with a grain 
of salt—actually, the treatment of nonsmooth problems is one of 
the main topics of current research in spectral methods. Consider, 
for example, the extreme case of discontinuous functions. As is 
well known, discontinuities will produce the Gibbs phenomenon, 
and the resulting oscillations may globally destroy the accuracy 
of the approximation; however, one may actually use the Gibbs 
phenomenon to pinpoint the location of jumps. A recent paper [2] 
used this type of discontinuity treatment to perform very accurate, 
nonoscillatory gas dynamic calculations for flows with shocks. 

A different situation occurs when the function to be expanded 
possesses a few continuous derivatives but is not in C°°—a natu­
ral setting for such functions is Sobolev space. This case is exten­
sively studied in the book under review. In fact, the author was 
the first to point out that estimates may be obtained in Sobolev 
norms of negative order for periodic solutions of linear hyperbolic 
equations. The proofs are presented in detail for both Galerkin 
and collocation methods, and form the bulk of the first part of 
the book. These results show that even nonsmooth numerical so­
lutions will converge rapidly in the mean; from the practical point 
of view, this means that by smoothing the data and filtering the 
wiggly numerical solution, one may recover accurate values in any 
region where the exact solution is smooth. 

The second part of the book presents several problems with or­
thogonal polynomial discretization. The numerical quadratures 
of Gauss, Lobatto, and Radau are presented in detail, as they are 
needed for boundary value treatment and the definition of polyno­
mial norms. These norms (which are defined only for polynomials 
of degree < N ) are then used to prove stability of the numer­
ical solution of advection and diffusion equations. The results 
are weaker than those obtained for Fourier approximations, but 
this is to be expected: polynomial spectral methods seem to be 
an order of magnitude harder—when proofs are required—than 
the periodic spectral methods. To mention a recent example, [3] 
presents a full convergence proof for a nonlinear equation with 
Fourier expansion; nothing of the kind is as yet available for other 
expansions. Since many important problems are not periodic, it is 
clear that the analysis of polynomial spectral methods is, and will 
remain for some time, a very active field. 
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Some other topics discussed are time discretization (i.e. after the 
spatial operators have been replaced by spectral formulas), and the 
use of the fast Fourier transform for efficiency. 

One must bear in mind some of the limitations of the book un­
der review. As it originates from a course of lectures presented 
in 1981, it is aimed at students rather than researchers and, per­
force, cannot contain many important results, obtained later. The 
presentation mixes sometimes elementary and advanced topics: 
one early section defines a Hilbert base and exhibits the family 
{sinnx} while the very next section uses (without proof) the fact 
that the eigenvectors of a hermitian compact operator in separable 
Hilbert space form a Hilbert base, and the fact that the solution 
of 

u = ƒ , u(0) = u(n) = 0, 

is such an operator. But this uneven level may serve as a challenge 
for the student, bringing new subjects to his or her attention. 

In conclusion, Mercier's lectures form a useful textbook, self-
contained in the treatment of spectral methods and thorough in 
the analysis of simple differential equations and numerical meth­
ods. This book will serve as a rigorous introduction to the Hilbert 
space and Sobolev space techniques for linear problems, leaving 
the student well prepared for current numerical analysis of spectral 
methods. Its best use may be as an introduction and theoretical 
supplement to the survey [1]. 
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