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a text for a seminar or a reading text for graduate students with 
some background in analytic number theory. 
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INTRODUCTION 

Like a newspaper's headline, a Conference Proceeding can cap­
ture a moment in the history of science and thought. As if read­
ing old newsprint, you will enter that moment as a time traveler. 
But, you travel in time without the context or ties to the newspa­
per's moment, though the context gives meaning to the newspaper's 
words—turns two dimensional pictures to three dimensional lives. 

Geometrical methods in theoretical physics presents us with pro­
ceedings from a conference in Como, the country was Italy, the 
time was late summer, two years ago. Read it as newsprint; it 
reports of events in mathematical physics, excitement that dates 
from those summers ago. But, for most of you readers, the context 
is missing, so I will provide a taste in the space that's allotted, for 
with no context, these proceedings can be dusty and dry. 

Geometrical physics can be traced back to Einstein and ideas 
that were born seven decades ago. He taught us to think of space-
time together, one geometrical object—not abstract points. Space-
time is a manifold, locally Euclidean, but curved in the large and in 
the four directions of space and time. This curvature we humans 
interpret as gravity—that most mundane of forces that holds us 
to Earth. Einstein taught that not only do we feel the curving, 
but the curvature feels us too. Einstein's Equation equates a part 
of that curving to the energy of the matter that sits in the space. 
Mathematically put: 

Ricci Curvature - 1 / 2 - Scalar curvature = Stress Energy. 

Tests have been done which confirm Einstein's equations. 
While Einstein pursued his theory of space-time, physics ex­

perienced an unprecedented upheaval, the birth of the quantum 
mechanical view. According to the laws of quantum mechanics, 
an isolated physical system (an atom, for example, or the whole 
universe for another) is (loosely) described in the following way: A 
complex vector space V must first be proposed, and V must have 
an inner product: ( , ) . This inner product must be hermitian 
and positive too. (Hermitian requires that (c • y/, (/>) = c* • (y/, <j>) 
and {y/, c • <j)) = c • (y/, (f>) for all complex numbers c and vectors 
y/ and (/> in V. Positivity requires that (</>, <f>) is positive unless 
0 = 0.) 

The possible states of the (isolated) system should each be as­
signed a complex line in V. And, each performable measurement 
of the system should be assigned a selfadjoint operator on V. (An 
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operator O on F is selfadjoint if (y/, 04) = (Oi//, 0) for all vec­
tors ^ and (j) in F.) Once all of these assignments are made, 
quantum mechanics makes the following additional postulate: The 
evolution of the states as a function of the parameter that we call 
time is to be effected by the action on F of a 1-parameter (time) 
group of unitary operators. Futhermore, this group has a genera­
tor which is to be a multiple of that specific selfadjoint operator 
which corresponds to the total energy of the system. 

Quantum mechanics has been tested by experiment again and 
again, now for almost 70 years. All tests have been passed with 
flying colors. Quantum mechanics is as good a theory as one could 
hope to find. 

Make your peace with these last two historical points; for the 
greatest conceptual problem in physics which yet stands unsolved 
is: Formulate a version of quantum mechanics which is consistent 
with Einstein's theory of gravity. Or, modify Einstein's gravity to 
be consistent with quantum mechanics. 

The unification of gravity with quantum mechanics defies, to 
date, even a formally consistent solution. By comparison, the unifi­
cation of quantum mechanics with Einstein's special relativity has 
had a formal solution (quantum field theory) now for forty years. 
Indeed, the formulation is easy: Unification with special relativity 
requires that our unitary representation on V of the linear group 
of time translations should be naturally embedded as a subgroup 
in a unitary representation on the space V of the Poincaré group 
(the semidirect product of the Lorentz group S0(3, 1) and the 
Euclidean group of translations R4). 

This unification of quantum mechanics with special relativity is, 
in practice, remarkably difficult to achieve for systems with inter-
particle interactions. In fact, for realistic physical systems, quan­
tum field theories exist only in a formal sense: There is but an 
algorithm for calculating the probabilities of the various outcomes 
of experiments and observations. The algorithm is reasonably suc­
cessful though it does not (as yet) have any rigorous mathematical 
justification. All physicists of repute believe the calculations from 
these formal quantum field theories. (Much difficult mathematical 
work (see, e.g. [G-J]) justifies an optimistic outlook for eventual 
construction of the mathematical foundations.) 

With the preceding broad remarks understood, let me turn to the 
specific issues which faced the mathematical physicists at Como. 
At Como, most of the papers discuss aspects and spin-offs of 
two recent, popular (and not unrelated) approaches to the afore­
mentioned reconciliation problem. These being String theory and 
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Supersymmetry. I will describe both, but let me first end any 
suspense: Neither has yet successfully unified gravity with quan­
tum mechanics, not even in the formal manner that constitutes a 
"proof for my physicist friends. 

SUPERSYMMETRY 

In supersymmetric quantum mechanics (as I have learned from 
the writings of E. Witten, [W] for one), the vector space V is 
posited to decompose as a direct sum of V0®Vl9 called the "even" 
and "odd" elements of V. Furthermore, the self adjoint operator 
which represents the total energy of the system in question must 
be the square of a selfadjoint operator which changes even to odd 
and vice versa. Call this new operator Q, then with respect to the 
aforementioned direct sum decomposition of V, 

Marrying supersymmetry with special relativity introduces an 
exceptionally rich structure. One is led fairly rapidly to interesting 
mathematical investigations of extensions of the lie algebra of the 
Poincaré group. This is a consequence of the fact that the total 
energy of a system is not an invariant notion; two observers, both 
moving at constant, but different velocities will disagree about the 
total energy. 

A simple experiment with a thrown baseball and a plate glass 
window will convince you that a ball in motion has more energy 
than a ball at rest. So, the fact that the energy of a system is a 
function of the observer's velocity is easy to establish (though the 
correct functional dependence is not as accessible to the arm chair 
physicist.) 

The fact is that energy in special relativity is one component in 
a vector representation of the Lorentz group, 5 0 ( 3 , 1). Thus, our 
operator on V which represents the total energy must be one of 
the four components of a 4-vector of operators on V, where the 
other three components generate an action on V of the Euclidean 
group of spatial translations. These other three operators are called 
the momentum operators. 

With this last fact understood, we see that a relativistic theory 
which asserts a square root operator for the energy operator must 
assert the existence of a square root operator for each of the three 
momentum operators. And, each of these new square root oper­
ators must change even to odd and vice-versa. Call our original 
energy operator P0 and each of the three momentum operators 
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Pj 2 3 . Then each has a square root Q0 { 2 3 . The invariant way 
of saying this: 

QkQj + QjQk = Pj ôjk. 

Here, it is explicit that the representation on V of the Lie alge­
bra of the Poincaré group has been augmented by operators whose 
anticommutators (rather than commutators) has been prescribed. 
Such an augmentation is called a "super Lie algebra," and a quan­
tum field theory with such a super Lie algebra represented on its 
vector space V of states is called a "supersymmetric" quantum 
field theory. 

The dream among the supersymmetry afficianados is that a su­
persymmetric quantum field theory might be found which contains 
Einstein's gravity as a natural classical limit. There is some math­
ematical evidence that certain pathologies which arise when quan­
tizing gravity are incompatible with the existence of an underlying 
supersymmetry. So there is some evidence that a supersymmetric 
theory should be easier to quantize than Einstein's. 

I will refer you for further details and references to §V of Dif­
ferential geometric methods in theoretical physics. But first, a com­
ment of a personal nature: I will begin with the apology that I am a 
complete novice with supersymmetry and the related fields. With 
this last remark understood, I can say that I found, with two ex­
ceptions, the contributions to §V to require significant effort by the 
reader. That is, the writing is terse and full of specialized jargon. 
But, in any event, the collection of references seems to be timely; 
and such a collection is one of the prime benefits to owning such 
a book as this. 

My two exceptions are: First, the article by U. Bruzzo titled Su-
permanifolds, supermanifold cohomology and super vector bundles 
which has an imposing name, but gave me a nice taste of what a 
supermanifold is. My second exception is the article by Manfred 
Scheunert which is an introduction (sans proofs) to the represen­
tation theory of super Lie algebras. 

STRING THEORY 

String theory and its kin, the conformai field theories, have had 
a remarkable impact on mathematics in the past five years. Notice 
that I said mathematics. Their impact on actual physics has been 
minimal, except for the nonminimal effect of turning a whole gen­
eration of young theoretical physicists into mathematicians. I will 
explain. 

The basic novelty in string theory is the replacement of the point 
as the idealized particle with an extended object, the string. To 
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describe a point, one needs only state its position as a function 
of time. But, the string requires a position (a center of mass) as 
a function of time, and also the specification of the vibrational 
modes of the string about this center of mass. 

These facts enter physics in the following way: There are on the 
order of twenty or so elementary particles in nature—all other par­
ticles (and forces) can be described as composites of these basic 
elementary ones. Each particle has a mass plus some other ba­
sic properties which must be a priori specified as the values of the 
various parameters which enter in the standard theories of elemen­
tary particles. So, there are on the order of twenty or thirty free 
parameters which must be specified by the theoretical physicist be­
fore calculations can be done. Providentially, there are more than 
thirty independent experiments which can be done, for if you have 
only twenty-nine experiments, and thirty free parameters, then you 
don't have a theory. 

A point describes each of the twenty or so elementary particles— 
in quantum field theory, one uses quantized points. 

A "better" theory of elementary particles would have equal (or 
better) predictive power and fewer free parameters to be specified. 
With this goal in mind, imagine a quantum theory where there is 
only one basic object, a string. The one string is to replace the 
twenty or so elementary points. Furthermore, hypothesize that 
each vibrational mode of this elementary string is interpreted by 
humans as a different elementary particle. For example, A above 
middle C is an electron, and A below middle C is a photon...etc. 
If such a theory of propagating strings can be constructed, then it 
would only have one parameter, a sort of string tension which sets 
the basic vibrational frequency. With a consistent mathematical 
formulation, and a consistent physical interpretation, such a theory 
would be a marvelous improvement over the "standard model." 

And, just maybe, maybe, one of the octaves of the string can 
be given a consistent physical interpretation as the carrier of the 
gravitational force. Wouldn't it be wonderful? Gravity and all 
of the other forces and particles in nature would have a unified, 
accurate description. Physics as we know it would be finished, the 
book closed and only Chemists would remain! 

I am being facetious here. I have slightly exaggerated the eu­
phoric remarks that string people spoke as their models were seen, 
after some hand waving, to come close to predicting elementary 
particle behavior. 

But, hand waving is not, ultimately, credible physics, and "close" 
only counts in horse shoes. To date, string theory has made no flat 
out prediction which is testable by any experiment in the forseeable 
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future, even a future with the Super Conducting Super Collider— 
this being a proposed particle accelerator with a forty mile cir­
cumference. (Your tax dollars at work.) As an aside, this collider 
might be able to confirm some predictions of certain supersym-
metric theories. 

So much for real physics from string theories. However, the 
mathematical outwash from string theories and conformai field 
theories has been truly prodigious with applications from algebraic 
geometry through algebraic topology to quantum groups and knot 
theory. 

After reading the writings of Graeme Segal (a nice abridged 
version appears in Differential geometric methods in theoretical 
physics), I have enough courage to give a brief outline of how 
all of this comes about. To begin, it is rather crucial to consider 
parameterized strings (a string with a coordinate on it). Deal with 
parameterized strings first and then regain strings by forgetting the 
extra knowledge of the parameter. This strategy exploits the basic 
fact that the set of all parameterized strings is simpler to describe 
than the set of all unparameterized strings. Indeed, the set of all 
parameterized strings is the space of all maps from the circle into 
space (if the strings are closed); this is the configuration space 
for the classical theory of moving, parameterized strings. When 
space is a Euclidean space, this configuration space is itself a vector 
space. 

The task of forgetting the parameterization is simplified if one 
remembers the following facts: First, two different parameteriza-
tions of the same string differ by a diffeomorphism of the circle. 
Second, the set of all diffeomorphisms of the circle forms a group, 
in that two can be composed to form a third, and each has an 
inverse. This group is called DiffS1. It has a Lie algebra which 
is the lie algebra of vector fields on the circle (the Virasoro alge­
bra). Finally, the group Diff S * acts on the space of parameterized 
strings, and the space of orbits is just the space of unparameterized 
strings. 

Pick a vector subspace of the vector space of all complex valued 
functions on the space of parameterized strings. This vector space, 
or some generalization of it will be the V for the quantum theory. 
But, make sure that V is sufficiently large so that the group Diff Sx 

acts on it; if Diff S1 does not act on V, there will be no hope of 
separating Diff Sl invariant products at the end. Indeed, because 
parameterizations are ultimately forgotten, all constructions must 
preserve the action of Diff S *—how else can DiffS1 invariant 
data be sorted from the surrounding chaff? (To accomplish this 
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preservation, one is lead to study the representation theory for the 
group Diff Sl ; both V and the space of operators on V are, by 
definition such representations.) 

Our vector space V, above, is the vector space for the quantized 
theory of a single string. According to Segal, the vector space for 
a quantized theory of interacting strings should be a many-fold 
tensor product of V. 

To understand the operators in string theory, first digress to pic­
ture a string propagating in time: It sweeps out a two dimensional 
surface. This surface has the a priori topology of a cylinder. Next, 
imagine the propagation of many strings at once (a physical ne­
cessity because the world contains more than one particle). This 
propagation sweeps out a set of disjoint cylinders. 

Imagine these many strings interacting via collisions (a physical 
necessity because real particles do interact). There is a natural 
way for two closed strings to interact; they can collide and merge 
into one. Conversely, one string can pinch off into a figure eight, 
and then split into two closed strings. This kind of interacting 
propagation of many strings sweeps out a surface with (possibly) 
many connected components, where each component can have the 
topology of a many holed torus with cylindrical ends. One end for 
each incoming string, and one for each outgoing string. 

This is a crucial point: There is a natural interaction between 
strings which causes their propagation to sweep out surfaces with 
complicated topologies. 

The point above is encapsuled by the quantum field theory 
by postulating that a quantum theory of many interacting strings 
should contain, for each topological surface (with parameterized 
boundary components), an operator on the big tensor product, 
®K. For each such surface, the associated operator corresponds 
to a propagation which sweeps out the topological surface in ques­
tion. In addition, this assignment of surface to operator should 
be Diff S1 equivariant—so the Diff S1 invariant structure can be 
identified. One final demand, the assignment should be natural 
with respect to the action of sewing surfaces together along iden­
tified boundary components. This corresponds to the fact that the 
propagation from time A to time B and then to time C should 
be the same as the propagation from time A to time C. 

CONFORMAL FIELD THEORIES 

The preceeding paragraph summarizes most of Graeme Segal's 
axioms for string theory. It is not easy to find nontrivial examples 
of these axioms, and few are known. The hard part is to build a 
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natural assignment from topological surfaces to operators. Some­
what easier (but still not generally complete) is the task of building 
an assignment from a Riemann surface (a smooth surface with a 
metric on its tangent bundle) to an operator. Midway in difficulty 
is to build an assignment from Riemann surface to an operator 
which depends only on the conformai class of the metric. Such 
field theories are called conformai. 

The space of conformai structure on a topological surface is 
the same as the moduli space of complex structures on the sur­
face. As explained in Segal's article, these moduli spaces, taken 
together, form a sort of algebra under the operation of sewing to­
gether identified boundary components. Then, a conformai field 
theory is naught but a representation of this algebra by operators 
in a vector space. Here, of course, one is already deep into clas­
sical algebraic geometry, for the study of natural structures on the 
moduli spaces of algebraic curves is at the heart of a great deal 
of 20th-century mathematics. And this conformai field theory cer­
tainly looks natural. 

Profound relationships between conformai field theories, statis­
tical mechanics, quantum groups and knot theory have recently 
been discovered. The relationships between field theories and 
knots is currently being explored by Ed Witten [W'], while a par­
allel development is being carried out by Soviet mathematicians 
(Turaev and Reshitikin are prominent [R-T]) who are uncover­
ing marvelous relationships between quantum groups and knots. 
These relationships are also being studied by Japanese researchers 
(Sato, Jimbo and their colleagues), Vaughn Jones here in the United 
States, and M. F. Atiyah and N. Hitchin at Oxford. 

The biggest breakthroughs in the subject (by Witten and the So­
viets) occurred since summer, after the closing of the conference 
at Como, though they are presaged by J. Frolich's contribution in 
Differential geometric methods in theoretical physics, and likewise 
M. F. Atiyah's. Frolich discusses a mechanism whereby represen­
tations of Artin's braid group can be obtained from conformai field 
theories, while Atiyah speculates about a possible relationship be­
tween Vaughn Jones' knot invariants and the work of Donaldson 
and Floer on gauge theories. Also, H. J. de Vega contributes to 
Differential geometric methods in theoretical physics with an arti­
cle which describes the relationships between quantum groups and 
statistical mechanics. On the subject of quantum groups I profess 
a granitic ignorance and will refer the reader directly to de Vega's 
article, or to the recent book by Fadeev and Takhtajan [F-T]. The 
relationship between conformai field theories and statistical me­
chanics is discussed in the contribution of M. Karowski, but those 
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who are interested might look also at a recent Bourbaki contribu­
tion by K. Gawedski [G]. 

CONCLUSION 

As conference proceedings go, Differential geometric methods 
in theoretical physics is probably worth having; if nothing else, for 
the timely set of references. For myself, I found these proceedings 
giving an interesting snapshot of mathematical physics in the mid 
1980s. 

For those who buy the book, I recommend the following strat­
egy: Start with George Mackey's contribution, "WeyPs program 
and modern physics," a thought provoking piece which talks about 
quantum mechanics, both relativistic and not. Mackey's article 
gives a nice historical perspective to the conference. Then, read 
Graeme Segal's contribution, The definition of conformai field the­
ory, his formulation is already influential. Next, read the article 
by Y. Ne'eman and D. Sijacki; Towards a renormalizable theory 
of quantum gravity to see where quantum gravity is. Then, read 
the article by U. Bruzzo and that by M. Scheunert to learn about 
supersymmetry. Look at J. Frolich's article, because you will be 
hearing a lot about knots and quantum field theory. Scan de Vega's 
article because you will also be hearing a lot about quantum groups. 
Finally, read Atiyah's introduction, The impact of physics on ge­
ometry, as anything by Atiyah is thought provoking. 

There are contributions of which I have said nothing. These 
are what look like research articles, for example, there is one by 
V. Kac, R. V. Moody and M. Wakimoto; one by F. Hirzebruch, 
one by B. Kostant, one by S. Sternberg, one by A. Lichenrowicz, 
and other contributions by other authors. Certainly a distinguished 
cast of characters. 
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The dynamical systems encountered in physical or biological 
sciences can be grouped roughly into two classes: the conserva­
tive ones (including the Hamiltonian systems) and those exhibit­
ing some type of dissipation. These dynamical systems are often 
generated by partial differential equations and thus the underlying 
state space is infinite dimensional. 

I. It is natural to expect that the flow defined by a dissipative 
system shall be simpler than the one of a conservative system. It is 
perhaps even possible to isolate an interesting class of systems for 
which one can adapt several ideas coming from the ordinary differ­
ential equations (O.D.E's) to the analysis of the flow. If this can be 
done, then one must overcome the difficulties that arise due to the 
nonlocal compactness of the state space. This will require some 
type of "smoothing" property of the dynamical system. There are 
also problems that can arise at infinity due to the unboundedness 
of the space. This problem is avoided by imposing specific dissipa­
tive conditions. To make the discussion more meaningful and to 
motivate the class of systems considered in the book under review, 
it is instructive to recall the situation for the ordinary differential 
equations. 

In his study of the forced van der Pol equation, Levinson [13] 
introduced the concept "point dissipative." To keep the techni­
cality at a minimum, let us discuss at first discrete dynamical 
systems; that is, those defined by a map T : Rn -» Rn . The 


