A GENERALIZATION OF SELBERG'S BETA INTEGRAL

ROBERT A. GUSTAFSON

Abstract

We evaluate several infinite families of multidimensional integrals which are generalizations or analogs of Euler's classical beta integral. We first evaluate a q-analog of Selberg's beta integral. This integral is then used to prove the Macdonald-Morris conjectures for the affine root systems of types $S\left(C_{l}\right)$ and $S\left(C_{l}\right)^{\vee}$ and to give a new proof of these conjectures for $S\left(B C_{l}\right), S\left(B_{l}\right), S\left(B_{l}\right)^{\vee}$ and $S\left(D_{l}\right)$.

1. Introduction

In 1944, A. Selberg [23] evaluated the following integral (see also Aomoto [1]):

$$
\begin{align*}
\int_{0}^{1} & \cdots \int_{0}^{1} \prod_{1 \leq i<j \leq n}\left|t_{i}-t_{j}\right|^{2 z} \prod_{j=1}^{n} t_{j}^{x-1}\left(1-t_{j}\right)^{y-1} d t_{j} \tag{1}\\
& =\prod_{j=1}^{n} \frac{\Gamma(x+(j-1) z) \Gamma(y+(j-1) z) \Gamma(j z+1)}{\Gamma(x+y+(n+j-2) z) \Gamma(z+1)}
\end{align*}
$$

where n is a positive integer, $x, y, z \in \mathbf{C}$ and $\operatorname{Re}(x), \operatorname{Re}(y)>0$ and $\operatorname{Re}(z)>-\max \left\{\frac{1}{n}, \operatorname{Re}(x) /(n-1), \operatorname{Re}(y) /(n-1)\right\}$. For $n=1$, the integral (1) reduces to Euler's classical beta integral.

Now let $n \geq 1$ and $a_{1}, a_{2}, a_{3}, a_{4}, b, q \in \mathbf{C}$ with

$$
\max \left\{\left|a_{1}\right|, \ldots,\left|a_{4}\right|,|b|,|q|\right\}<1
$$

For $c \in \mathbf{C}$ define

$$
[c ; q]_{\infty}=[c]_{\infty}=\prod_{k=0}^{\infty}\left(1-c q^{k}\right)
$$

[^0]If T^{n} is the n-fold direct product of the unit circle $\{t \in \mathbf{C}||t|=1\}$ traversed in the positive direction, then we can evaluate the integral

$$
\begin{align*}
& \frac{1}{(2 \pi i)^{n}} \int_{T^{n}} \prod_{1 \leq j<k \leq n} \frac{\left[t_{j} t_{k}^{-1}\right]_{\infty}\left[t_{j}^{-1} t_{k}\right]_{\infty}\left[t_{j} t_{k}\right]_{\infty}\left[t_{j}^{-1} t_{k}^{-1}\right]_{\infty}}{\left[t_{k}^{-1}\right]_{\infty}\left[b t_{j}^{-1} t_{k}\right]_{\infty}\left[b t_{j} t_{k}\right]_{\infty}\left[b t_{j}^{-1} t_{k}^{-1}\right]_{\infty}} \tag{2}\\
& \cdot \prod_{j=1}^{n} \frac{\left[t_{j}^{2}\right]_{\infty}\left[t_{j}^{-2}\right]_{\infty} d t_{j}}{\prod_{k=1}^{4}\left\{\left[a_{k} t_{j}\right]_{\infty}\left[a_{k} t_{j}^{-1}\right]_{\infty}\right\} t_{j}} \\
& \quad=2^{n} n!\prod_{j=1}^{n} \frac{[b]_{\infty}\left[b^{n+j-2}\right]_{\infty}[q]_{\infty}}{\left.\prod_{1 \leq k<1}^{4} a_{k}\right]_{\infty}\left[a_{k} a_{l} b^{j-1}\right]_{\infty}}
\end{align*}
$$

Then $n=1$ case of integral (2) is due to Askey and Wilson [4]. The integral (2) is a q-analog of (1) in the sense that after a change of variables and an appropriate specialization of (2) and limit as $q \rightarrow 1$, then (1) can be deduced from (2).

Selberg's integral (1) has had diverse applications in fields ranging from number theory, physics, statistics, combinatorics, algebra and analysis. Two particular applications were a use by Bombieri to prove Mehta's conjecture [18] and by Macdonald [17] to prove some of his conjectures ($q=1$ case) for the affine root systems (for definition and properties see [15]) of types $S\left(B C_{l}\right), S\left(B_{l}\right)$, $S\left(B_{l}\right)^{\vee}, S\left(C_{l}\right), S\left(C_{l}\right)^{\vee}$ and $S\left(D_{l}\right)$ for all $l \geq 1$ (when defined). Just as Macdonald used integral (1) to prove some of his ($q=1$) conjectures, we will use integral (2) to prove for the same set of affine root systems the corresponding Macdonald-Morris conjectures with arbitrary parameter q.

Macdonald's root system conjectures in [17] were motivated partly by a conjecture of Dyson [7] related to the root system A_{n}, a q-analog of Dyson's conjecture made by Andrews [2] and some conjectures of Morris [19] for the root system of type G_{2}. Dyson's conjecture was proved by Gunson [10] and Wilson [25]. The Andrews-Dyson conjecture was proved by Zeilberger and Bressoud [28].

Morris' Conjecture A in [19] for arbitrary parameter q and any reduced irreducible affine root system S extends Macdonald's Conjectures 2.3 and 3.1 in [17]. In the simplest case of these Macdonald-Morris conjectures, let R be a reduced finite (not affine) root system of rank l with basis $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$. For each $\alpha \in R$, let e^{α} be the formal exponential, which is an element of the group ring of the lattice generated by R. Let d_{1}, \ldots, d_{l}
be the degrees of the fundamental invariants of the Weyl group $W(R)$.

Conjecture (Macdonald [17, Conjecture 3.1]). With the above notation, the constant term (i.e. involving q but no exponential e^{α}) in

$$
\prod_{\alpha>0} \prod_{i=1}^{k}\left(1-q^{i-1} e^{-\alpha}\right)\left(1-q^{i} e^{\alpha}\right)
$$

where k is a positive integer or $+\infty$ is

$$
\prod_{i=1}^{l}\left[\begin{array}{c}
k d_{i} \\
k
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]
$$

is the " q-binomial coefficient"

$$
\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-r+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{r}\right)}
$$

We will actually prove the more general Morris' Conjecture A [19] for the affine root systems S of types $S\left(B C_{l}\right), S\left(B_{l}\right)$, $S\left(B_{l}\right)^{\vee}, S\left(C_{l}\right), S\left(C_{l}\right)^{\vee}$ and $S\left(D_{l}\right)$ for all $l \geq 1$ (when defined) and for arbitrary parameter q. Macdonald's Conjecture 3.1 stated above, where R is a finite root system of type B_{l}, C_{l} or D_{l}, then follows as a special case of Morris' Conjecture A for $S\left(B_{l}\right), S\left(C_{l}\right)$ and $S\left(D_{l}\right)$. Kadell [14] has previously proved these conjectures for all affine root systems of type $S\left(B C_{l}\right)$ and hence $S\left(B_{l}\right), S\left(B_{l}\right)^{\vee}$ and $S\left(D_{l}\right)$. The Macdonald-Morris conjectures for $R=G_{2}$ have been proved by Habsieger [13] and Zeilberger [26]. See Garvan [8] for F_{4}, Garvan and Gonnet [9] for $S\left(F_{4}\right)^{\vee}$, Zeilberger [27] for $S\left(G_{2}\right)^{\vee}$ and Opdam [20] for the $q=1$ conjectures. There is also the conjecture of Rahman [21] which seems related to the special case of integral (2) where $a_{2}=q^{1 / 2} a_{1}$ and $a_{4}=q^{1 / 2} a_{3}$.

2. Proof of integral (2)

Since the $n=1$ case of (2) is proved in [4], we may assume that $n \geq 2$. Denote the integral on the left-hand side of (2) by $I_{n}\left(a_{1}, a_{2}, a_{3}, a_{4} ; b ; q\right)$. Let $c_{j} \in \mathbf{C},\left|c_{j}\right|<1$, for $1 \leq j \leq 2 n+2$
with q and T as above. In [11] we have evaluated the integral

$$
\begin{gather*}
\frac{1}{(2 \pi i)^{n}} \int_{T^{n}} \frac{\prod_{j \leq j<k \leq n}\left\{\left[t_{j} t_{k}^{-1}\right]_{\infty}\left[t_{j}^{-1} t_{k}\right]_{\infty}\left[t_{j} t_{k}\right]_{\infty}\left[t_{j}^{-1} t_{k}^{-1}\right]_{\infty}\right\}}{\prod_{j=1}^{2 n+2} \prod_{k=1}^{n}\left[c_{j} t_{k}\right]_{\infty}\left[c_{j} t_{k}^{-1}\right]_{\infty}} \tag{3}\\
\cdot \prod_{j=1}^{n} \frac{\left[t_{j}^{2}\right]_{\infty}\left[t_{j}^{-2}\right]_{\infty} d t_{j}}{t_{j}} \\
=\frac{2^{n} n!\left[\prod_{j=1}^{2 n+2} c_{j}\right]_{\infty}}{[q]_{\infty}^{n} \prod_{1 \leq j<k \leq 2 n+2}\left[c_{j} c_{k}\right]_{\infty}} .
\end{gather*}
$$

With notation as above, consider the integral
(4)

$$
\begin{aligned}
\frac{1}{(2 \pi i)^{2 n-1}} & \int_{T^{n}} \int_{T^{n-1}} \frac{\prod_{1 \leq j<k \leq n}\left\{\left[t_{j} t_{k}^{-1}\right]_{\infty}\left[t_{j}^{-1} t_{k}\right]_{\infty}\left[t_{j} t_{k}\right]_{\infty}\left[t_{j}^{-1} t_{k}^{-1}\right]_{\infty}\right\}}{\prod_{j=1}^{n} \prod_{k=1}^{4}\left[a_{k} t_{j}\right]_{\infty}\left[a_{k} t_{j}^{-1}\right]_{\infty}} \\
& \cdot \frac{\prod_{j=1}^{n}\left[t_{j}^{2}\right]_{\infty}\left[t_{j}^{-2}\right]_{\infty}}{1 \leq j<k \leq n-1} \prod_{j=1}^{n}\left\{\left[s_{j} s_{k}^{-1}\right]_{\infty}\left[s_{j}^{-1} s_{k}\right]_{\infty}\left[s_{j} s_{k}\right]_{\infty}\left[s_{j}^{-1} s_{k}^{-1}\right]_{\infty}\right\} \\
& \cdot \prod_{k=1}^{n-1 / 2} \frac{\left.\left.\left.\left[s_{k}^{2}\right]_{\infty} t_{j}\right]_{\infty}\left[s_{k}^{-2}\right]_{\infty} d s_{k}{ }^{1 / 2} s_{k}^{-1} t_{j}\right]_{\infty}\left[b^{1 / 2} s_{k} t_{j}^{-1}\right]_{\infty}\left[b^{1 / 2} s_{k}^{-1} t_{j}^{-1}\right]_{\infty}\right\}}{s_{k}} \frac{d t_{j}}{t_{j}},
\end{aligned}
$$

where $b^{1 / 2}$ is any fixed square root of b. In the integral (4) we may use identity (3) to evaluate the interior integral either with respect to the set of variables $\left\{s_{1}, \ldots, s_{n-1}\right\}$ or, by changing the order of integration, with respect to the set of variables $\left\{t_{1}, \ldots, t_{n}\right\}$. Equating the resulting integrals we obtain

$$
\begin{align*}
& \frac{2^{n-1}(n-1)!\left[b^{n}\right]_{\infty}}{[q]_{\infty}^{n-1}[b]_{\infty}^{n}} I_{n}\left(a_{1}, a_{2}, a_{3}, a_{4} ; b ; q\right) \tag{5}\\
& \quad \frac{2^{n} n!\left[b^{n-1} \prod_{j=1}^{4} a_{j}\right]_{\infty}}{[q]_{\infty}^{n}[b]_{\infty}^{n-1} \prod_{1 \leq j<k \leq 4}\left[a_{j} a_{k}\right]_{\infty}} I_{n-1}\left(a_{1} b^{1 / 2}, \ldots, a_{4} b^{1 / 2} ; b ; q\right)
\end{align*}
$$

We finish the proof of identity (2) by doing induction on n, using identity (5) and the Askey-Wilson integral for the case $n=1$.

3. Morris' Conjecture A

We sketch a proof of Morris' Conjecture A [19] for the affine root systems S of types $S\left(B C_{l}\right), S\left(B_{l}\right), S\left(B_{l}\right)^{\vee}, S\left(C_{l}\right), S\left(C_{l}\right)^{\vee}$ and $S\left(D_{l}\right)$ where $l \geq 1$ (when defined) and for arbitrary parameter q. The proof consists of specializing the parameters in identity (2) and making use of the identity found in Theorem 2.8 of [16]. As an illustration of this method of proof of Morris' Conjecture A, consider the case $S=S\left(C_{l}\right)$ where $l \geq 2$. Consider the integral $I_{l}\left(a^{1 / 2},-a^{1 / 2}, q^{1 / 2} a^{1 / 2},-q^{1 / 2} a^{1 / 2} ; b ; q\right)$ where $|a|,|b|<1$. Multiply the integrand in this integral by

$$
\prod_{1 \leq j<k \leq l} \frac{\left(1-b w\left(t_{j}^{-1} t_{k}\right)\right)\left(1-b w\left(t_{j}^{-1} t_{k}^{-1}\right)\right)}{\left(1-w\left(t_{j}^{-1} t_{k}\right)\right)\left(1-w\left(t_{j}^{-1} t_{k}^{-1}\right)\right)} \prod_{j=1}^{l} \frac{\left(1-a w\left(t_{j}^{-2}\right)\right)}{\left(1-w\left(t_{j}^{-2}\right)\right)}
$$

where w is an element of the Weyl group W of C_{l}, i.e. a permutation of the variables $t_{1}, \ldots t_{l}$ together with inversions $t_{j} \rightarrow t_{j}^{-1}$ and the corresponding action on $t_{1}^{-1}, \ldots, t_{l}^{-1}$. The resulting integral is independent of $w \in W$. Now summing over $w \in W$ and using the identity [16, Theorem 2.8] for C_{l} we obtain

$$
\begin{align*}
& \frac{1}{(2 \pi i)^{l}} \int_{T^{\prime}} \prod_{1 \leq j<k \leq l} \frac{\left[t_{j} t_{k}^{-1}\right]_{\infty}\left[q t_{j}^{-1} t_{k}\right]_{\infty}\left[t_{j} t_{k}\right]_{\infty}\left[q t_{j}^{-1} t_{k}^{-1}\right]_{\infty}}{\left[q b t_{j}^{-1} t_{k}\right]_{\infty}\left[b t_{j} t_{k}\right]_{\infty}\left[q b t_{j}^{-1} t_{k}^{-1}\right]_{\infty}} \tag{6}\\
& \quad \cdot \prod_{j=1}^{l} \frac{\left[t_{j}^{2}\right]_{\infty}\left[q t_{j}^{-2}\right]_{\infty} d t_{j}}{\left[a t_{j}^{2}\right]_{\infty}\left[q a t_{j}^{-2}\right]_{\infty} t_{j}} \\
& \quad=\prod_{j=1}^{l} \frac{[q b]_{\infty}\left[q a^{2} b^{l+j-2}\right]_{\infty}\left[q a b^{j-1}\right]_{\infty}^{2}}{[q]_{\infty}\left[q b^{j}\right]_{\infty}\left[q a^{2} b^{2(j-1)}\right]_{\infty}^{2}}
\end{align*}
$$

which is equivalent to Morris' Conjecture A for $S\left(C_{l}\right)$ [19, p. 131]. Setting $a=b$ in (6), this also proves Macdonald's Conjecture 3.1 for $R=C_{l}$ as stated above.

4. Some integral evaluations

We state some integral identities whose proofs are similar to that of (2), making use of integral identities from [11 and 12].

Details of the proofs of these and realted integral identities should be given elsewhere.

Let $n \geq 1$ and $z_{1}, \ldots, z_{n}, \alpha_{1}, \ldots, \alpha_{4}, a_{1}, \ldots, a_{4}, \beta_{1}, \beta_{2}$, $b, \delta \in \mathbf{C}$ and $m_{1}, \ldots, m_{n} \in \mathbf{Z}$. Choose z_{1}, \ldots, z_{n} so that the integrands in the integrals (9) and (10) below have no poles. Then
(7) $\frac{1}{(2 \pi i)^{n}} \int_{-i \infty}^{i \infty} \cdots \int_{-i \infty}^{i \infty} \prod_{1 \leq j<k \leq n}\left\{\frac{\Gamma\left(\delta+t_{j}-t_{k}\right) \Gamma\left(\delta+t_{k}-t_{j}\right)}{\Gamma\left(t_{j}-t_{k}\right) \Gamma\left(t_{k}-t_{j}\right)}\right.$

$$
\begin{aligned}
& \left.\frac{\Gamma\left(\delta+t_{j}+t_{k}\right) \Gamma\left(\delta-t_{j}-t_{k}\right)}{\Gamma\left(t_{j}+t_{k}\right) \Gamma\left(-t_{j}-t_{k}\right)}\right\} \prod_{j=1}^{n} \frac{\prod_{k=1}^{4}\left\{\Gamma\left(\alpha_{k}+t_{j}\right) \Gamma\left(\alpha_{k}-t_{j}\right)\right\} d t_{j}}{\Gamma\left(2 t_{j}\right) \Gamma\left(-2 t_{j}\right)} \\
& =2^{n} n!\prod_{j=1}^{n} \frac{\Gamma(j \delta) \prod_{1 \leq k<l \leq 4} \Gamma\left(\alpha_{k}+\alpha_{l}+(j-1) \delta\right)}{\Gamma(\delta) \Gamma\left((n+j-2) \delta+\sum_{k=1}^{4} \alpha_{k}\right)},
\end{aligned}
$$

where the contours of integration are the imaginary axis and

$$
\min \left\{\operatorname{Re}(\delta), \operatorname{Re}\left(\alpha_{1}\right), \ldots, \operatorname{Re}\left(\alpha_{4}\right)\right\}>0
$$

$$
\begin{align*}
& \frac{1}{(2 \pi i)^{n}} \int_{-i \infty}^{i \infty} \cdots \int_{-i \infty}^{i \infty} \prod_{\substack{1 \leq j, k \leq n \\
j \neq k}} \frac{\Gamma\left(\delta+t_{j}-t_{k}\right)}{\Gamma\left(t_{j}-t_{k}\right)} \tag{8}\\
& \cdot \prod_{j=1}^{n}\left\{\prod_{k=1}^{2}\left[\left(\Gamma\left(\alpha_{k}+t_{j}\right) \Gamma\left(\beta_{k}-t_{j}\right)\right] d t_{j}\right\}\right. \\
&=n!\prod_{j=1}^{n} \frac{\Gamma(j \delta) \prod_{k, l=1}^{2} \Gamma\left(\alpha_{k}+\beta_{l}+(j-1) \delta\right)}{\Gamma(\delta) \Gamma\left((n+j-2) \delta+\sum_{k=1}^{2}\left(\alpha_{k}+\beta_{k}\right)\right)}
\end{align*}
$$

where the contours of integration are the imaginary axis and

$$
\min \left\{\operatorname{Re}(\delta), \operatorname{Re}\left(\alpha_{1}\right), \operatorname{Re}\left(\alpha_{2}\right), \operatorname{Re}\left(\beta_{1}\right), \operatorname{Re}\left(\beta_{2}\right)\right\}>0 ;
$$

(9)

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{\substack{\leq j, k \leq n \\
j \neq k}} \frac{\Gamma\left(1+z_{j}+t_{j}-z_{k}-t_{k}\right)}{\Gamma\left(1+\delta+z_{j}+t_{j}-z_{k}-t_{k}\right)} \\
& \quad \cdot \prod_{j=1}^{n} \frac{e^{2 \pi i m_{j} t_{j}} d t_{j}}{\prod_{k=1}^{2} \Gamma\left(1+\alpha_{k}+z_{j}+t_{j}\right) \Gamma\left(1+\beta_{k}-z_{j}-t_{j}\right)} \\
& \quad=\left\{\begin{array}{l}
\prod_{j=1}^{n} \frac{\Gamma(1+\delta) \Gamma\left(1+(n+j-2) \delta+\sum_{k=1}^{2}\left(\alpha_{k}+\beta_{k}\right)\right)}{\Gamma(1+j \delta) \prod_{k, l=1}^{2} \Gamma\left(1+\alpha_{k}+\beta_{l}+(j-1) \delta\right)} \\
0, \\
\text { otherwise } \quad \text { if } m_{1}=\cdots=m_{n}=0
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{align*}
& \min \left\{\operatorname{Re}\left((n-1) \delta+\sum_{k=1}^{2}\left(\alpha_{k}+\beta_{k}\right)\right),\right. \\
& \left.\operatorname{Re}\left(2(n-1) \delta+\sum_{k=1}^{2}\left(\alpha_{k}+\beta_{k}\right)\right)\right\}>-1 ; \\
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{1 \leq j<k \leq n}\left\{\frac{\left[b q^{1+z_{j}+t_{j}-z_{k}}\right]_{\infty}\left[b q^{1-z_{j}-t_{j}+z_{k}+t_{k}}\right]_{\infty}}{\left[q^{1+z_{j}+t_{j}-z_{k}}\right]_{\infty}\left[q^{1-z_{j}-t_{j}+z_{k}+t_{k}}\right]_{\infty}}\right. \\
& \left.\cdot \frac{\left[b q^{1+z_{j}+t_{j}+z_{k}+t_{k}}\right]_{\infty}\left[b q^{1-z_{j}-t_{j}-z_{k}-t_{k}}\right]_{\infty}}{\left[q^{1+z_{j}+t_{j}+z_{j}+t_{k}}\right]_{\infty}\left[q^{1-z_{j}-t_{j}-z_{k}-t_{k}}\right]_{\infty}}\right\} \\
& \cdot \prod_{j=1}^{n} \frac{\left.\prod_{k=1}^{4}\left\{a_{k} q^{1+z_{j}+t_{j}}\right]_{\infty}\left[a_{k} q^{1-z_{j}-t_{j}}\right]_{\infty}\right\} \cdot e^{2 \pi i m_{j} t_{j}} d t_{j}}{\left[q^{1+2 z_{j}+2 t_{j}}\right]_{\infty}\left[q^{1-2 z_{j}-2 t_{j}}\right]_{\infty}} \\
& =\left\{\begin{array}{l}
\prod_{j=1}^{n} \frac{{ }^{[q]_{\infty}}\left[q b^{j}\right]_{\infty} \prod_{1 \leq k<l \leq 4}\left[q a_{k} a_{l} b^{j-1}\right]_{\infty}}{[q b]_{\infty}\left[q b^{n+j-2} \prod_{k=1}^{4} a_{k}\right]_{\infty}} \\
\text { if } m_{1}=\cdots=m_{n}=0
\end{array}\right. \tag{10}
\end{align*}
$$

where

$$
\max \left\{\left|q b^{n-1} \prod_{k=1}^{4} a_{k}\right|,\left|q b^{2(n-1)} \prod_{k=1}^{4} a_{k}\right|\right\}<1
$$

and for simplicity we assume that $q \in \mathbf{R}, 0<q<1$. The $n=1$ case of (7) is due to de Branges [6] and Wilson [24], of (8) to Barnes [5], of (9) to Ramanujan [22] and (10) essentially to Askey [3].
Remarks. The integrals (9) and (10) are equivalent to multiple series summation theorems which generalize classical bilateral hypergeometric series summation theorems: Dougall's ${ }_{2} \mathrm{H}_{2}$ sum and Bailey's ${ }_{6} \psi_{6}$ sum. A similar connection between some related integral evaluations and the corresponding multiple series identities is explained in [12]. As we plan to describe elsewhere, we are led to conjecture a family of multiple series summation identities which are equivalent to the Macdonald-Morris conjectures and contain the Macdonald identities [15] as special cases.

References

1. K. Aomoto, Jacobi polynomials associated with Selberg integrals, SIAM J. Math. Anal. 18 (1987), 545-549.
2. G. Andrews, Problems and prospects for basic hypergeometric functions, The Theory and Applications of Special Functions, (R. Askey, ed.), Academic Press, New York, 1975, pp. 191-224.
3. R. Askey, Beta integrals and q-extensions, Annamalai Univ. lecture, preprint.
4. R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319 (1985).
5. E. W. Barnes, A new development of the theory of hypergeometric functions, Proc. London, Math. Soc. (2) 6 (1908), 141-177.
6. L. de Branges, Tensor products spaces, J. Math. Anal. Appl. 38 (1972), 109148.
7. F. J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962), 140-156.
8. F. Garvan, A proof of the Macdonald-Morris root system conjecture for F_{4}, preprint.
9. F. Garvan and G. H. Gonnet, A proof of the two parameter q-case of the Macdonald-Morris root system conjecture for $S\left(F_{4}\right)$ and $S\left(F_{4}\right)$ via Zeilberger's method, preprint.
10. J. Gunson, Proof of a conjecture of Dyson in the statistical theory of energy levels, J. Math. Phys. 3 (1962), 752-753.
11. R. Gustafson, Some q-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras, preprint.
12. __, Some multidimensional beta type integrals, preprint.
13. L. Habsieger La q-Macdonald-Morris pour G_{2}, C. R. Acad. Sci (Paris) 303 (1986), 211-213.
14. K. Kadell, A proof of the q-Macdonald-Morris conjecture for $B C_{n}$, preprint.
15. I. G. Macdonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143.
16. The Poincaré series of a Coxeter group, Math. Ann. 199 (1972), 161174.
17. __, Some conjectures for root systems, SIAM J. Math. Anal. 13 (1982), 988-1007.
18. M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York, 1967.
19. W. G. Morris, Constant term identities for finite and affine root systems: conjectures and theorems, Ph. D. thesis, Univ. of Wisconsin-Madison, 1982.
20. E. Opdam, Some applications of hypergeometric shift operators, preprint.
21. M. Rahman, Another conjectured q-Selberg integral, SIAM J. Math. Anal. 17 (1986), 1267-1279.
22. S. Ramanujan, A class of definite integrals, Quart. J. Math. 48 (1920), 294310.
23. A. Selberg, Bemerkinger om et multipelt integral, Norsk Mat. Tidsskr. 26 (1944), 71-78.
24. J. A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11 (1980), 690-701.
25. K. Wilson, Proof of a conjecture of Dyson, J. Math. Phys. 3 (1962), 1040-1043.
26. D. Zeilberger, A proof of the G_{2} case of Macdonald's root system-Dyson conjecture, SIAM J. Math. Anal. 18 (1987), 880-883.
27. ___ A unified approach to Macdonald's root-system conjectures, SIAM J. Math. Anal 19 (1988), 987-1013.
28. D. Zeilberger and D. M. Bressoud, A proof of Andrews' q-Dyson conjecture, Discrete Math. 54 (1985), 201-224.

Department of Mathematics, Texas A\&M University, College Station, Texas 77843

[^0]: Received by the editors April 19, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 33A15, 33A75, 05A19.

 This research is partially supported by NSF Grant INT-8713472.

