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1. Caustics and lagrangians. Originally, caustics were envelopes of fam­
ilies of light rays. If the light propagates in R" from a hypersurface (the 
source) SQ along the half lines yq normal to So, we can consider the set of 
these light rays as a submanifold L of the tangent bundle TRn, 

L = {(yq(t),p)\t >0,qe S0,llpll = \,p e (T^}. 

The envelope of the rays is obtained very simply from L. It is just the 
image of the singular points of the projection from L onto R" 

FIGURE 1. 

In addition to having the same dimension as R", the submanifold L 
has, by definition, another property: The 1-form k — p • dq is exact when 
restricted to L. (The optic length t is a primitive of it.) It is one of 
the principles of geometric optics that traversing an optical system (lenses, 
clouds, mirrors, cups of coffee,...) induces a canonical transformation: The 
new manifold of light rays, if it is no longer the manifold of rays orthogonal 
to a hypersurface, retains these two properties. (See, for example, [8].) 

In order to generalize these two properties, we replace Rn by a manifold 
X and we dispense with the metric, replacing the tangent bundle by the 
cotangent bundle T*X ^X, the form k becoming the celebrated Liouville 
form k = pdq: If (q\,... ,qn) are local coordinates on X and (p\,... ,pn) 
are the dual coordinates, then k - £"=1 Pi dqi. 

We consider immersions ƒ : L —• T*X of manifolds of the same di­
mension as X such that f*k is a closed 1-form. We say then that ƒ is 
lagrangian: at each point, the tangent space to L injects as a subspace 
of the tangent space to T*X that is maximally totally isotropic for the 
nondegenerate (symplectic) 2-form œ = dk, 

d(f*k) = 0<=> f*co = 0. 
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By virtue of n, we also have a definition of caustics: the caustic C(ƒ) 
is the set of singular points of the projection no f. 

2. Wave fronts and legendre manifolds. A related notion is that of wave 
front: In the example of the luninous source So, each of the hypersurfaces 
St = {yq(t)\q G So} is a wave front (the surface to which the light wave has 
arrived at time t). 

FIGURE 2. 

They can have singularities, but they are the projections of smooth sub-
manifolds of the sphere bundle S(TRn), 

Lt = {(yg(t),p)\p±TqS0}. 
The Lt are smooth, and one sees clearly that the singularities that can 
appear on the St are not too complicated: At each point of St, there is a 
tangent hyperplane, the orthogonal complement of the vector p. 

More generally, on the total spaces of fiber bundles such that P(T*X) -> 
X or S(T*X) —• X (bundles of tangent hyperplanes or of oriented tangent 
hyperplanes), there is a contact structure and the manifolds under consid­
eration are legendre manifolds, maximal integrals of the contact structure. 
A wave front is a hypersurface of X that is the projection of an (immersed) 
legendre manifold. 

3. Cobordisms. Rather than regard each of the wave fronts St sepa­
rately, we can consider their union as a big front in X x R where the 
second factor is that of the variable t (Figure 2). Arnold [2] had the idea 
of considering this big front as a cobordism between the fronts So and St. 
To do this, he defined cobordism groups for legendre immersions in cer­
tain contact manifolds. For lagrangian immersions in a cotangent bundle, 
he has also defined a relation of cobordism: Two lagrangian immersions 
in T*X are cobordant if they constitute the "boundary" of a lagrangian 
immersion in T*(X x R). (There is a small technical problem to define 
this notion because of the jump of two dimensions, but this is not very 
serious.) Knowing enough pieces of lagrangian surfaces, Arnold was able 
to "calculate" the groups thus defined in the case of curves. 

In the case of oriented (lagrangian) curves in R2 = T*R, he showed that 
the group is isomorphic to Z©R. One of the steps in the proof is to verify 
that the curve shown in Figure 3 is not a lagrangian boundary. 



BOOK REVIEWS 377 

FIGURE 3. 

4. The Maslov class; return to caustics. There is an invariant of la-
grangian cobordism for curves: their Maslov index. Arnold had known 
for a long time [1] how to describe this in terms of the singularities of the 
projection onto X. The Maslov class is a cohomology class of degree 1. In 
the case of curves it defines an integer (the index), which is the number of 
singular points of the projection no f computed with appropriate signs, 
when this projection is sufficiently general. For example, the index of the 
curve in Figure 3 is ±2, and so this curve cannot be cobordant to zero. 

The work of Vassilyev which is the object of the book under review 
finds its source there: In all dimensions, the Maslov class is related to 
folds of the projection. It is a question of defining invariants (numbers) 
of lagrangian cobordism in higher dimensions using certain types of more 
complicated singularities of the projection, which therefore correspond to 
singularities of the caustic itself. 

5. The generating functions of Hörmander [9]1. It happens that the study 
of lagrangian singularities comes down to that of... singularities of func­
tions. 

The simplest example of a generating function is the following. We 
consider a 1-form a on X as a section a : X —> T*X; its image is a copy of 
X embedded in T*X. As the Liouville form has the magic property that 
a*À = a, the image of a is lagrangian if and only if the 1-form a is closed, 
that is to say, locally exact. Thus, the lagrangian that we are considering 
will be described locally by a function S(tfi,... ,qn) and the equations 

Pi = 
OS 
dq{ 

. . ,Pn = 
OS 
dqn' 

Of course, there is no question of describing, even locally, every lagrangian 
by such a function: The projection on X would never have singularities, 
but it can almost be done. For that, it suffices to replace enough of the 
variables q by the variables p. For example, we can describe a. fold of the 

1 It is unfortunate that this paper of Hörmander and the paper [5] of Duistermaat do not 
figure in the bibliography of Vassilyev's book. 
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projection by the function 

S(/?i,#>,... ,qn)=PÎ 
and the equations 

dS 
dpi 

and a gather (for n > 2) by 

S(p\,q2, 
and the same equations. 

These two functions appear to be essentially the universal unfoldings of 
singularities of types A2(p\) and A$(±p\). In a more general way, the clas­
sification of functions (R^, 0) —> (R, 0) with isolated singularity furnishes 
a classification of the singularities of lagrangian projections. Of course, 
all this can work only in small codimension: Here it is all the strata of 
codimension < 7 of the space of jets that will be useful. 

Thus, Vassilyev finds himself with a list of generic singularities of caus­
tics, which are the only ones to appear in low dimensions (< 7). With the 
help of the incidence relations of the strata that contain these singularities 
in the space of jets of functions, he defines an2 abstract cochain complex 
(C*,S). For every lagrangian immersion ƒ : L -> T*X, the considera­
tion of the germ of the singularities yields a map H(C*,S) —• H*(L) (for 
* < 6) and therefore yields certain characteristic classes and characteristic 
numbers for lagrange manifolds of small dimension. 

By calculating the coboundary of the complex (these are calculations 
of the type "adjancey of singularities"), he obtains some results on the 
"enumerative theory" of lagrangian singularités: For example, there are 
"as many" points of type A4 as of type D4 on a closed lagrange manifold of 
dimension three. The calculation of the groups of lagrangian or legendrian 
cobordisms [3] also furnishs (indirectly) rather precise results of this kind. 

6. Lagrangian characteristic classes. Every lagrangian immersion ƒ : 
L —• T*X has characteristic classes in a classical sense: One verifies rather 
easily that ƒ trivializes the complexification of the (stable) normal bundle 
Nnof of the projection. There exists an almost complex structure / on 
T*X that pemits the identification of T(T*X) and n*TX <g> C. When 
ƒ is lagrangian, the subspaces Txf(TxL) and JTxf{TxL) are transverse 
for every x, and we have, therefore, an isomorphism of complex vector 
bundles 

{nof)*TX®C~TL®C. 
In particular, ƒ defines a map 

yf : L -> U/O. 

(U/O is the classifying space for vector bundles with trivial complexifica-
tions.) The cohomology of U/O provides in return, classes in L which are 
called the characteristic classes of the lagrangian immersion ƒ. 

2In fact, several: There is one for each kind of contact manifold considered on X, without 
considering the distinction oriented/nonoriented. 

» - £ ('a2» 
,qn) = ±pî + q2P\ 
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The cohomology of U/O is well known: It is one of the explicit exam­
ples in BorePs thesis [4], and a nice geometric description of the generators 
has been given by Fuks [7]. For example, the Maslov class is the generator 
of Hl(U/O) ~ Z. Among these classes, those of degree equal to the di­
mension allow us to construct characteristic numbers, which are invariants 
of lagrange cobordism. By using the A-principle of Gromov, Eliashberg 
[6] has remarked that modulo torsion (and some nondiscrete invariants 
of which, for lack of space, we cannot consider here), all the cobordism 
invariants are of this form. 

The arrow H(C*S) -> H*(L) that defines the characteristic classes of 
Vassilyev factorizes by way of the map yy. Its classes therefore deserve 
to be called characteristic classes in the most classic sense that I have just 
explained. 

7. Self-intersections of wave fronts. The use of generating functions to 
describe locally the legendre immersions gives analogous results in particu­
lar in the enumerative theory of the singularities of wave fronts. However, 
the most obvious enumerative result is obtained by none of these methods. 
Consider the big wave front of Figure 2 where we recognized a swallow tail 
(^3). It suffices to consider the double points on this figure for an instant 
to be convinced that, if the legendre manifold is closed, it will necessarily 
have an even number of points of type A$. 

In order to obtain this result and others of the same kind, Vassilyev con­
structs in Chapter 3 some new complexes, this time taking into account 
several strata (not necessarily distinct) at a time to consider the intersec­
tions (such as the line of double points that we have just considered) of 
the points corresponding to these strata in the wave front. Here, the self-
intersection of Ai has 2 -As as boundary. These complexes are naturally 
filtered (essentially by the number of strata considered), which permits us 
to calculate their cohomology thanks to a spectral sequence, and to deduce 
from it some results of the stated kind. 

8. The book. The book is rather agreeable to read; I am thinking of the 
way the book has been made as well as its contents. It contains an intro­
duction to lagrange manifolds and concludes with a list of open problems. 

Its appearance is perhaps a bit late (undoubtedly because of the de­
lays connected with the translation of the original text): Its results were 
obtained and published in two articles in the (Soviet) journal Functional 
Analysis in 1982. At this time, the calculation of lagrange and legendre 
cobordism groups was still in its infancy [2], and the goal was to construct 
new invariants. After the homotopic description of Eliashberg [6] via the 
^-principle of Gromov, it was known how to compute these groups [3] by 
methods considered to be effective (algebraic topology). In my opinion, it 
is these results of "enumerative" type contained in the book that give this 
method its interest rather than the construction of new invariants, which 
are necessarily very limited because of the restriction on dimension that 
results from the method. These are obtained, to be sure at the price of in­
cidence calculations, which are not always easy, by a direct method, while 
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the derivation of the same results in [3] is given by more powerful but less 
direct methods. 

However this may be, the style and the methods have the advantange 
of showing very concretely, and in an authentically muscovite ambience, 
the relations between the theory of singularities and a part of "symplectic 
topology," two specialities of the Arnold school. 
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Group representations are the building blocks of harmonic analysis, a 
subject that dates historically from Fourier's use of superposition of sines 
and cosines in separating variables to study solutions of the heat equation. 
Fourier's theory generalizes in many directions; one of them is analysis of 
a space of complex-valued functions on a set on which a group acts. 

A group representation is a homomorphism of the given group into in-
vertible linear transformations on a complex vector space, usually topol-
ogized and usually with some continuity property in the group variable. 
If R is a group representation on the vector space V, we obtain some 


