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Do people ever ask you, "What is the largest known prime?" or "For 
how many zeros of the zeta function is the Riemann Hypothesis known to 
hold?" Now at last there is a book which answers many questions of this 
type. 

Guinness published the Book of World Records to settle arguments. 
Ribenboim has written a similar book to settle arguments about prime 
numbers. The world would be very civilized indeed if a brawl in a pub 
began with a dispute about how many twin primes are known. Some of 
the records which are reported are the results of computer searches and 
some of them are statements of theorems which approach best possible 
results. 

Euclid's proof that there are infinitely many primes is well known to 
most mathematicians: If there were only finitely many primes, list all of 
them, multiply them together and add 1. The resulting number is not 
divisible by any prime on the list. However, either it is prime or it has a 
prime factor not on the list. In either case, there exists a prime not on the 
list which was supposed to contain all primes. 

Some students misunderstand this proof and believe that it says that 
if you multiply together all the primes up to some point, and add 1, the 
result must be prime. Write p# for the product of all primes < p. Then 
p#+1 is indeed prime for/7 = 2, 3, 5, 7 and 11, which fosters the students' 
misconception. However, 13#+1 is not prime. Is p#+ 1 ever prime again? 
Yes, it is prime also for p = 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 
11549 and 13649. The last five examples were discovered by Dubner [4] in 
1987. The record largest known p for which p# + 1 is prime is p = 13649. 

Write n{x) for the number of primes up to x. A simple approximation 
for n{x) is n{x) « x/logx. A closer approximation is n(x) « Li(x) — 
fo dt/\o%t. What is the largest x for which n{x) has been computed 
exactly? The record is TZ(4 X 1016) = 1,075,292,778,753,150, computed 
by Lagarias, Miller and Odlyzko [6] in 1985. They used a supercomputer, 
of course, but it did not generate each of these primes. They used an 
inclusion-exclusion technique based on a formula devised by Meissel in 
1871 (and improved by several researchers since then). It is interesting to 
note that they chose the algorithm which is asymptotically second fastest. 
(The overhead of the algorithm which is ultimately fastest makes it slower 
than the second best one for numbers which are small enough to perform 
the calculation at all.) 

The distribution of prime numbers is closely connected to the location 
of the zeros of the Riemann zeta function. This function of a complex 
variable has infinitely many zeros with real part between 0 and 1. If all 



366 BOOK REVIEWS 

of these zeros had real part equal to 1/2, as Riemann conjectured in his 
famous Riemann Hypothesis, then Li(x) would be a very good approxi­
mation to n(x), as we would have n(x) = Li(x) + 0(xl/2logx). Various 
mathematicians have determined that the first few zeros of the zeta func­
tion all lie on the line Re(s) = 1/2. The record is held by van de Lune, 
te Riele and Winter [9] who in 1986 verified the Riemann Hypothesis for 
the first 1,500,000,001 zeros. 

What is the longest table of prime numbers ever made? The longest 
table ever published is that of D. N. Lehmer [7], which lists the primes up 
to 10,017,000. In the middle of the nineteenth century, Kulik prepared 
a table of factors of all numbers (other than multiples of 2, 3, and 5) up 
to 100,330,200. The primes up to this limit can be found easily in this 
table. However, there is only one copy of it (in the Vienna Academy of 
Sciences), one volume (out of 8) is missing, and the table contains too 
many errors to be worth publishing. In 1959, Baker and Gruenberger 
published a microcard table of the first six million primes—those up to 
104,395,289. Now that we have computers, no more extensive tables are 
likely to be published because it is quite easy to generate a table of primes 
in a computer memory by the Sieve of Eratosthenes. Then the computer 
can perform the desired examination of the table and print a summary of 
the result. What then is the largest x so that all primes up to x have ever 
been formed and studied in a computer memory? Young and Potier [10] 
have computed all primes up to 7.2635 x 1013 and studied the gaps between 
consecutive primes. Their record-making calculations are still continuing 
now. 

It is easy to exhibit large gaps between consecutive primes: A block of 
N consecutive composite numbers begins with (N + 1)! +2 . Hence it is 
no big deal to find a long block of composite numbers unless it is the first 
occurrence of a block of that length. The prime gaps have been tabulated 
by Young and Potier [10] for primes up to 7.2635 x 1013. The largest 
gap they found was 778 (i.e., 777 composites) which follows the prime 
42,842,283,925,351. Naturally, they did not find examples of every gap 
up to 778. The smallest missing gap size is 676. 

While Euclid knew that there are infinitely many primes, even today 
we do not know whether there are infinitely many pairs p, p + 2 of twin 
primes. Therefore, it is worthwhile to count the small twin primes and 
to seek large ones. The largest x for which we know exactly how many 
twin primes there are below x is 1011: In 1976 Brent counted 224,376,048 
primes p < 1011 for which p + 2 is also prime. Noting that this number 
is approximately the population of the United States, Shanks [8, second 
edition, p. 219] proposed giving each American one pair of prime twins. 
Numerical evidence and a heuristic argument suggest that the number of 
pairs of twin primes up to x is asymptotically ex/ log2 x, where c is an 
explicitly given constant. 

About a dozen pairs of twin primes are known in which the numbers 
have more than 1000 digits. Most of these were discovered by Dubner, 
Keller and Atkin and Rickert. The three largest known pairs are 663777 x 
27650±1, 571305x27701±l and 1706595x211235±l. These were discovered 
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in 1989 by a team of six coworkers headed by Bodo Parady. The numbers 
in the pairs have 2309, 2324 and 3389 digits, respectively. The fact that 
it is comparatively easy to find such large twin prime pairs supports the 
conjecture that there are infinitely many of them. 

It is not trivial to prove that a number with more than 1000 digits is 
prime. The special form kln ± 1 of the large prime pairs is chosen to 
facilitate these proofs. If JV is a large prime, then it is almost always easy 
to prove that N is prime provided that one knows the prime factorization 
of either N - 1 or N + 1. A theorem like this one is used for the proof: 

THEOREM 1 (PROTH, POCKINGTON, LEHMER, SELFRIDGE). If N is odd 
and if for each prime q dividing N - 1 there exists an a for which aN~l = 1 
(mod N), but a^'W* £ 1 (mod N), then N is prime. 

The a's are found by trial and error. Usually it is easy to find them 
among the small quadratic nonresidues of N. There is a similar theorem 
for the case of N+1 factored completely. See [2] for references to theorems 
of this type. For the special case of Mersenne numbers Mp = 2P - 1 there 
is an even more efficient test: 

THEOREM 2 (LUCAS, LEHMER). Ifp is odd, then Mp is prime if and only 
ifSp-x = 0 (mod Mp), where Sx = 4 and Sj+{ = Sj - 2 for j > 1. 

The three largest known Mersenne primes are Mp for p = 110503, 
132049 and 216091. Colquitt and Welsh discovered 110503 after Slowin-
ski found the other two. The 65050-digit number M2i609i is presently the 
largest known prime. The search for new Mersenne primes is continuing. 
As of June, 1989, all p up to about 145,000 have been tested. This shows 
that Mi 32049 is the thirtieth Mersenne prime in order of size. 

The even perfect numbers are 2P~XMP for those p for which Mp is 
prime. No odd perfect numbers are known and it is likely that there 
are none. Many theorems give improbable properties of hypothetical odd 
perfect numbers. The record lower bound on the size of an odd perfect 
number is due to Brent and Cohen [1] who showed that any such number 
must exceed 10150. Exactly thirty-one perfect numbers are known, one for 
each Mersenne prime. 

The iterated use of Theorem 1 is an efficient method for generating large 
random primes for use in cryptography. To construct a secret 100-digit 
prime, say, for the Rivest-Shamir-Adleman public-key cryptosystem, you 
might proceed as follows: Begin with a 10-digit number iVi which you 
know is prime. (It doesn't have to be secret.) Try various random 10-
digit numbers k\ until some JV2 = 2k\N\ + 1 satisfies 2Nl~x = 1 (mod N2). 
(Satisfying the latter congruence shows that N2 is probably prime.) Try 
to prove that N2 is prime via Theorem 1. (If you fail, try more values of 
k\.) Now repeat the process with 1 added to the subscripts. After nine 
iterations you arrive at a 100-digit prime 7V10 which no one has ever seen 
before. 

There are two ways that primes may be in arithmetic progressions: They 
may lie in a given (infinite) arithmetic progression or they may form the 
entire (finite) progression. Dirichlet proved that if the first term a and 
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common difference d > 1 of an arithmetic progression are relatively prime, 
then the arithmetic progression contains infinitely many primes. When a 
and d > 1 are relatively prime, define p(d,a) to be the smallest prime in 
the arithmetic progression {a + kd\k > 0}. The question of how large 
p(d,a) can be is a very difficult one. There are not enough primes for it 
to be much smaller than c/)(d)\ogd always, where </>(d) is the number of 
a relatively prime to d with 1 < a < d. In the other direction, Elliott 
and Halberstam [5] have shown that for all e > 0 and for all d > 1 not 
belonging to a thin (density 0) sequence, we have p(d,a) < (/)(d)(\ogd)1+e 

for almost all a relatively prime to d with 1 < a < d. To avoid a trivial 
difficulty, we usually restrict a to lie between 1 and d. Define p(d) to be 
the greatest p(d,a) for 1 < a < d with a relatively prime to d. Linnik's 
theorem asserts that there is a constant L > 1 such that p(d) < dL for all 
sufficiently large d. Various authors have proved a succession of smaller 
values for L. Chen [3] proved in 1979 that L = 17 will do. This is 
the record for results in published papers. Chen and Liu have claimed 
that L — 13.5 will do, but their paper has not appeared yet. It has been 
conjectured that L = 2 or even that p(d) < of log2 d, but we are far from 
proving any inequality that good. 

Even less is known about primes which form an arithmetic progression. 
In 1939, van der Corput proved that there are infinitely many three-term 
arithmetic progressions of primes. However, we still do not know whether 
there are infinitely many arithmetic progressions consisting of four primes. 
Computer searches have uncovered many arithmetic progressions consist­
ing of a small number of primes. The record is a progression of 19 primes 
discovered by Pritchard in 1985. The first term is 8,297,644,387 and the 
common difference is 4,180,566,390. 

Some large primes are interesting because they divide numbers of simple 
form such as bn ± 1 or Fibonacci numbers un for small b and n. (See [2], 
for example.) To factor a large integer is a difficult problem. Let me 
mention the record factorizations for the two fastest known algorithms. 
The running time for Pomerance's quadratic sieve method depends on the 
size of the number factored and not on the nature of the prime factors 
of the number. It is appropriate to use the size of the number factored 
to measure the success of this method. The record is the factorization of 
the 106-digit divisor of 2353 + 1 done in April, 1989, by A. K. Lenstra, 
M. Manasse and several dozen other researchers who ran the program on 
thousands of computers for several months. H. W. Lenstra, Jr.'s elliptic 
curve factorization method tends to find small prime factors more quickly 
than larger ones. The size of the prime factor discovered is the appropriate 
measure of its success. Only about a dozen factors having more than 30 
digits have been discovered in the four years the method has been in use. 
The greatest of these is the 38-digit prime factor of the Fibonacci number 
w467 (which has 98 digits) discovered in May, 1989, by Silverman. By the 
way, the record Fibonacci prime is W2971, discovered by Williams. 

Ribenboim's book is informative and easy to read. One can begin read­
ing almost anywhere. It is even chattier than a book review in this Bulletin. 
The book is accessible to nonexperts. It is not just a list of records. Much 
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background material is included, too. Many simple proofs are given. It 
is an excellent source of ideas for a lecture to a mathematics club or high 
school. 

My main criticism of it is the poor quality of typesetting. It is far 
inferior to the TgX to which I have become accustomed. The 101-pp. 
bibliography has a verbose three-column format. One column holds the 
year of the publication and another gives the author. The title and the 
other information occupies the third column. 

The book is so popular that the first edition sold out completely in only 
one year. A second edition will appear soon. Many of the records have 
been broken; these will be updated in the new edition. (Some records in 
this review will be superseded before it appears in print.) A few typo­
graphical errors will be corrected as well, but, alas, the book will not be 
retypeset. 
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1. Introduction. Two important threads in the fabric of stochastic pro­
cesses come together in this monograph: semimartingales and convergence 


