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The year 1885 was an important year for approximation theory, for 
in that year Weierstrass and Runge announced well-known approximation 
theorems bearing their names. It is the 1885 theorem of Weierstrass, as­
serting the density of polynomials in the real variable in the Banach space 
C[a, b] where [a, b] is a closed interval, that will concern us in this re­
view. Since then several important extensions of the theorem have been 
obtained by De la Vallé Poussin [17], Bernstein [5], Stone [15], and Whit­
ney [18] and others, by stressing one aspect or another of the classical 
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approximation theorem. The results of the first two mathematicians im­
ply Weierstrass theorem on differentiable functions, which asserts that the 
space of real valued polynomials on Rn is dense in the space Cm(Rn) of m 
times continuously differentiable real valued functions on Rn, in the topol­
ogy rjf of uniform convergence of a function and its first m derivatives on 
compact subsets of jRn. The well-known theorem of Stone referred to in 
the literature as the Stone-Weierstrass theorem characterizes dense subal-
gebras, J / , of the algebra C(X) of continuous real valued functions on a 
compact set X in the uniform topology in terms of separation properties 
of points in X by functions in J / . A corollary of this theorem is the den­
sity of polynomials in n variables in the Banach space C(X), where X is 
a compact subset of Rn which is also referred to as Weierstrass approxi­
mation theorem in the literature. Whitney's ideal theorem asserts that the 
T£*-closure of a subspace s/ of Cm(Rn) which is also an ideal is the same 
as the T™-closure of sf, where x™ is the topology of pointwise convergence 
of a function and its first m derivatives. The results in this monograph 
are the outcome of the persistent efforts of several mathematicians in the 
past two decades, mostly under the inspiration of Nachbin, to extend the 
preceding theorems to the setting of infinite dimensional Banach spaces. 
It includes among others the results of Abuabara, Aron, Bombai, Ferrera, 
Gomez, Guerreiro, Lesmes, Llavona, Nachbin, Prolla, Restrepo, Valdivia, 
Wells, Wulbert, and Zapata related to approximation of continuously dif­
ferentiable function on Banach spaces. 

Before describing the contents and goals of the monograph under re­
view let us recall some terminology. In what follows F, F are real infinite 
dimensional Banach spaces, and F', F' are the duals of E and F respec­
tively. To formulate the classical approximation theorem in an infinite 
dimensional setting we need an infinite dimensional notion of a polyno­
mial mapping. A continuous «-homogeneous polynomial, n > 1, on E to 
F is a mapping p on E to F which is a composition of the form A o A„, 
where A is a symmetric «-linear transformation on En to F, and An is the 
diagonal map on E —• En. The o-homogeneous polynomials are constant 
functions on E to F. The vector space of continuous n homogeneous 
polynomials on E to F is denoted by P(nE;F). An interesting subspace 
of P(nE;F) is the space Pf(nE\F) generated by collections of the form 
(pn ® y where (p e E', y e F, and (çn ® y)(x) = (pn{x)y for x e E. Let 
P{E\F) = £ ~ 0 F " ( F ; F ) , and Pf(E;F) = TZLopf("E>F)- T h e v e c t o r 

spaces P(E;F), and Pf(E;F) are respectively known as the space of poly­
nomials on F to F and the space of finite polynomials on F to F. The 
space P(nE;F) is equipped with a norm in a natural way, by defining 
||p|| = sup{||p(x)|| \x e F, 11*11 < 1}. P(nE\F) equipped with this norm is 
a Banach space, and the completion of Pf{

nE\F) in P(nE;F) is denoted 
by Pc(

nE;F). It is verified that Pf(
nE;F) = Pc{

nE\F) = P{nE\F) if and 
only if F is finite dimensional. 

If £F{E\F) is a vector space of continuous F-valued functions on F, 
and T is any locally convex topology on F, let &ï(E\F)ffiu(E;F)) be 
the subspace of ^(E,F) consisting of functions, ƒ, such that the re­
strictions of ƒ to bounded subsets B of F are r-continuous (uniformly 
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T-continuous on B). Of special interest here are the spaces Cm(E;F) of 
m times continuously differentiable F-valued functions on E, m e N, 
and the associated spaces C£(E;F) and C%U(E;F), where w signifies the 
weak topology on E. Thus if ƒ € Cm(E;F), then the nth differential of 
ƒ, dnf, 0 < n < m, is a continuous mapping on E into P(nE\F). As 
usual C°°{E\F) = nm>i Cm(E;F). When F is the real line we denote the 
function spaces ^(E;F), ^(E,F), etc. simply as ^(E)9^i(E)9 etc. 

When E is infinite dimensional, the spaces Cm(E\F) may be equipped 
with different locally convex topologies. The topologies rjf, T™ already in­
troduced here when E is finite dimensional, naturally extend to the infinite 
dimensional setting. The locally convex topology xf on Cm(E\F) is de­
termined by the seminorms ƒ -+ J2i\\djf(x)(y)\\ \x,y e C,0 < j < m}, 
where C is allowed to vary over compact sets in E. Let CjJ*(E\F) be 
the subspace of Cm(E;F) of functions ƒ such that the function ƒ and its 
derivatives dJƒ, 1 < j < m, are all bounded on bounded subsets of E. A 
useful locally convex space of differentiable functions arises by equipping 
C^(E; F) with the topology T™ of uniform convergence of a function and 
its first m derivatives on bounded subsets of E. 

Unlike the spaces Pf{E), P{E), Cm{E), the spaces Pf{E\ F), P{E\ F) and 
Cm(E; F) are not algebras. The situation is somewhat remedied by the con­
cepts of a polynomial algebra and submodules of Cm(E\F) over Cm(E). 
A subspace J / of Cm(E\F) is called a polynomial algebra if for every 
g e sf, and p e Pf(F;F), the composition p o g e srf. The spaces 
Pf(E;F),P(E;F) and Cm(E\F) are polynomial algebras. It is verified 
that if F = R, any polynomial algebra is an algebra in the usual sense. 

In his attempts to generalize Whitney's theorem to subalgebras of topo­
logical algebras of differentiable functions along the lines of Stone-
Weierstrass theorem, Nachbin made a deep contribution by isolating the 
necessary separation conditions which ensure the density of subalgebras 
in certain topological algebras of differentiable functions. For instance, 
a theorem of Nachbin [10] asserts that if $f is a subalgebra of Cm(Rn), 
generated by a subset G of Cm(Rn), then sf is dense in Cm(Rn) in the 
topology T™ , if and only if G satisfies the following separation conditions: 
N(1)G separates points in Rn, N(2) for any x e E there exists a function 
feG such that f(x) ^ 0, and N(3) for x e E, and v e Rn, v f 0, there is 
a function feG such that df(x)(v) ^ 0. An immediate corollary of this 
theorem is the Weierstrass theorem on differentiable functions. 

Let us consider the problem of generalizing Nachbin's version of the 
Weierstrass theorem to the infinite dimensional setting. A special case of 
the problem is to discuss the density of P/(H) in C2(H) in the x2

u topol­
ogy, where H is an infinite dimensional Hubert space. As observed by 
Lesmes [8], and independently by Llavona, let us consider the problem 
of approximating the function ƒ: H —• R defined by f(x) — (x,x) in 
the xl topology by functions in P/{H). A simple computation yields that 
d2f(x) = 2j, where j is the canonical isomorphism of H onto H'. How­
ever if cp e Pf(H),d2ç>(x) is a linear transformation of finite rank on H 
into H' which therefore cannot belong to the set of isomorphisms of H 
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onto H' (which is an open subset of the Banach space of operators on 
H into H1). Thus ƒ is not approximable by finite polynomials in the zj 
topology on C2(H). Thus P/(H) is not dense in C2(H) in the x\ topology. 
Hence it is a nontrivial problem to extend Nachbin's theorem to the infi­
nite dimensional setting. Note that P/(H) does indeed satisfy Nachbin's 
conditions N(l) to N(3). To remedy the situation we may consider a new 
topology on Cm(E;F). Efforts in this direction by Llavona [9], Bombai 
and Llavona [9], Prolla [13], Prolla and Guerreiro [14] culminated in the 
approximation theorem that Pf{E\F) is dense in r™ topology if E has 
approximation property, Day [7]. On the other hand Aron and Prolla [3] 
continued their study with the rjf topology by restricting their attention 
to the important subspace C%U(E;F) of Cm{E\F) and succeeded in prov­
ing that Pf{E\F) is dense in C™U{E\F) in the T™ topology if E' has the 
bounded approximation property, [7]. In fact, their theorem asserts that 
Pf(E\F) is T™ dense in C™U(E;F), if E' has the bounded approximation 
property. In particular P/(H) is T£* dense in C™U(H), if H is a Hubert 
space. 

The main goal of the monograph is to discuss the density of various 
polynomial algebras in diverse spaces of differentiable functions on E to 
F, which arise by requiring the derivatives to satisfy continuity condi­
tions of one sort or another. These assertions and their proofs are much 
deeper than the one presented in the preceding paragraph by way of il­
lustration. The author also discusses some important properties of locally 
convex spaces of differentiable functions on E in terms of properties of 
E. For instance it is proved that the locally convex space (Cm(E), T™) has 
the approximation property if and only if E has the approximation prop­
erty. In addition to these theorems, in his attempts to render the book 
self-contained, the author has elegantly presented recent results on weakly 
continuous functions and compact holomorphic mappings from the pa­
pers of Aron-Herves-Valdivia [2] and Aron-Schottenloher [4]. Apart from 
their importance in approximation theory, these theorems are of consid­
erable interest in the larger context of functional analysis in general. An 
account of the reviewer's theorem characterizing super reflexive spaces, 
Sundaresan [16], and related theorems on approximation of differentiable 
functions is also included. The book concludes with a discussion of ex­
tending the Paley-Wiener-Schwartz characterization of Fourier transforms 
of distributions with compact support to the infinite dimensional setting, 
Abuabara [1], Nachbin and Dineen [12]. A proof of Whitney's ideal the­
orem is presented in the appendix. 

This book is mostly self-contained and may be used for a one semester 
course on applications of functional analysis and Banach space theory for 
second year graduate students. 
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Equimultiplicity and blowing up, by M. Herrmann, S. Ikeda and U. Orbanz, 
with an appendix by B. Moonen. Springer-Verlag, Berlin, Heidelberg, 
New York, 1988, xvii + 629 pp., $99.50. ISBN 3-540-15289-x 

This book is intended as a special course in commutative algebra. It 
deals with two main subjects: the first is the notion of equimultiplicity 
and the second is the algebraic study of various graded rings in relation 
to blowing up. This topic arises directly from the resolution of algebraic 
and complex-analytic singularities. In 1964 Heisuke Hironaka solved the 
problem of the resolution of singularities of an algebraic variety over a 
field of characteristic zero. This problem of resolution of singularities, 
simply put, is to prove (or disprove): 


