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STOCHASTIC PROCESSES AS FOURIER INTEGRALS 
AND DILATION OF VECTOR MEASURES 

CHRISTIAN HOUDRÉ 

1. Introduction. In this note we give an overview of some recent ad­
vances in representations of stochastic processes as Fourier integrals. These 
advances provide a Plancherel and a Hausdorff-Young theory for stochas­
tic processes and random measures which were not previously available. 
We expect several applications of these methods, two of which are: exis­
tence results for linear stochastic differential equations (see Theorem 6) 
and a framework in which to develop a Fourier theory for the ubiquitous 
white noise model. 

The idea of representing a stochastic process as a Fourier series or in­
tegral goes back at least to the work of Slutsky [S] and Cramer [C], where 
such representations were derived for mean squared continuous stationary 
processes. Without the stationarity assumption, and via vector measures, 
Phillips [Ph] and Kluvânek [K] also obtained Fourier representation the­
orems for (strongly) continuous processes. Typical assumptions made to 
derive these Fourier integrals are the continuity of the process, the global 
norm boundedness of the representing vector measure, as well as its o-
additivity, or the orthogonality of its increments. However, for basic 
classes of stochastic processes these assumptions are not verified, e.g., a 
process with orthogonal increments is not necessarily continuous, while a 
white measure is only locally bounded. In [Ho2], the above restrictions 
are relaxed. The presentation of the approach developed therein unfolds 
as follows: we first replace convergence by summability and obtain a rep­
resentation theorem for the corresponding continuous processes. We then 
also replace continuity by measurability, and present a Plancherel and a 
Hausdorff-Young type theorem for random measures (Theorems 2 and 3). 
We then show that these random measures can be dilated to orthogonally 
scattered ones. For this dilation result the heart of our method is Theorem 
4, which is a Grothendieck type inequality. Finally, a study of a class of 
linear stochastic differential equations is presented. 

2. Some preliminaries. Let (Q,^,^0) be a probability space and for 
1 < a < 2, let Z/*(fi,^,<^) (La(^) for short) be the space of random 
variables with finite ath moment (for probabilistic considerations the case 
a > 2 is of little interest, furthermore included in a = 2). On La(<^) the 
norm is denoted by || • \\a and for Y and Z in Z/*(^), the "inner product" 
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of Y and Z is (Y,Z)a = ^YZ<a~l\ where Z<<*> = \Z\a~xZ and W is the 
expectation. For 1 < fi < +00, Z/(R) is the usual Lebesgue space with 
associated norm denoted by || • ||^. We also denote by Co(R) (resp. CC(R)) 
the space of continuous functions vanishing at infinity (resp. with compact 
support) and the uniform norm by || • ||oo- Finally, 1/(R)F is the space 
of functions ƒ G Ll(R) and such that ƒ G Z/(R). Let &(R) be the Borel 
cr-ring of R and let &o(9) be the J-ring of elements of â&{T&) with finite 
Lebesgue measure. A {random) measure is a, finitely additive set function 
ju: ^b(R) -»• L0(&>)(L0(&>) is the vector space of random variables). 

DEFINITION 1. A random measure ju has finite fi-variation with respect 
to the Z/*-norm if// is Z/*(<^)-valued and if ||/j| | = sup{||//||(^), ^ G &o(R)} 
is finite, where ||//||(^) = sup{|| Y^n

i=l aiju(Aj)\\a: {Ai} c ^b(R) finite parti­
tion of ^, *, G C, || £?=i fl/^JI^ < 1}. 

For p = 4-00, our definition reduces to the ordinary semivariation but 
for 1 < /? < +00, it differs from the usual p-semivariation (see [D]) in that 
it involves ft and not its conjugate exponent. 

The integration with respect to ju can now be defined as follows: for 
a simple function ƒ : R —• C, ƒ = Xw=i ̂ iXAi9 At G ^b(R)> as usual, the 
integral is fRfd[t = Y%=\ ajju(Ai). If ju has finite /^-variation (with respect 
to the Z/*-norm), then || JR/rf/i||a < | | / I | | (^) | | / | | / Ï , where A = U L ^ > 
hence the integral can be extended to Z/(R). This is done so, an integration 
with respect to ju is always taken in this sense. 

Finally, a random measure is orthogonally scattered if (ju(A), ju(B))2 = 0 
whenever A n B = 0, and stationarily scattered if 

(ti(A),ti(B))2 = (ju(A + 0 ,M* + Oh, 

for ^ , 5 G ^b(R)> * € R, where A + t = {a + t: a e A}. A fundamental 
example of such a measure is a w/wte measure W, i.e., ( W(̂ 4), WCöJh = 
1-4n51, the Lebesgue measure of AnB. The 2-variation of a white measure 
is finite but for any /? ^ 2, its ^-variation is infinite. 

In the rest of this paper, by a process we always mean a strongly mea­
surable bounded function X: R —• Z/*(^), for some 1 < a < 2. With this 
convention we set the following definition in which the first integral is a 
Lebesgue-Bochner integral. 

DEFINITION 2. A process X is fi-bounded if there exist a constant AT > 0 
such that 

Il r II / r * \1 / / ? 

/ /(OJT/rfd <K[ \f(t)\fidt) 
\\JR \\a V R / 

for all ƒ inZ/(R)F . 
Our definition is clearly motivated by the scalar theory, but also by a 

F-boundedness concept introduced by Bochner [B], which corresponds to 
the case /? = +00. In fact, Bochner also introduced, for /? < +00, a /?-
boundedness notion (which has not been further studied), wherein ƒ above 
is replaced by ƒ. These two definitions will be shown to be dual of one 
another. 
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3. Fourier integrals. Our first result is a duality theorem between ran­
dom processes and measures. Its proof, goes along classical lines: a repre­
sentation theorem and a vector valued approximation. 

THEOREM 1. A process X is {strongly) continuous and fi-bounded if and 
only if there exists a {unique) measure ju of finite fi-variation such that for 
allt, 

x'=^XXiJT)ei,idm 

in Z/*(< )̂, uniformly on compact subsets of R. 

When /a is of bounded semivariation the bounded Borel functions are 
//-integrable, hence the above limit is just JR eil^ dfi{Ç), and we recover the 
result of Phillips and Kluvanek. Although it is a characterization, Theorem 
1 is highly unsatisfactory because of the continuity requirement on X. 
Even under "weaker" conditions, the best possible results will guarantee 
convergence only for almost all t. For example if X e Lp{R,a), 1 < p < 
+oo, the Lebesgue-Bochner spaces of Z/*(^)-valued functions, the above 
Cesàro integrals converge in Z/(R, a), this is again unsatisfactory, since for 
no t, does / ^ ( l - ^e** dW{Ç) converge, either in L2{&>) or in Z/(R,2), 
1 < p < +oo. Theorem 1 does not provide a way of defining the Fourier 
transform of a white measure. 

For some fixed a, let J(P be the Banach spaces (under the ^-variation 
norm) of measures with finite /?-variation. Again, for // of bounded 
semivariation, i.e., JLL G ^#°°, the exponentials are /^-integrable, hence 
ft = {fl{t)} makes perfect sense and is an oo-bounded process. In or­
der to define the Fourier transform beyond the space ^ ° ° , our strategy is 
to think of ft not as a stochastic process, but more globally as a stochastic 
measure, e.g., for ju e Jt°°9 djx{t) = fi{t) dt e J£x. We first tackle the case 
P = 2, the relevant result being a Plancherel type theorem. 

THEOREM 2. There exists a unique linear operator A from */#2 onto itself 
such that 

(i) A// = /}, for jueJf2n Jf°°, 
(ii) ||A//|| = ||//||. 

For ju e ^#2, the unique element Aju e Jf1 is obviously denoted by ft. 
If ix € ^#2, and if, as in Theorem 1, its Cesàro averages converge, the two 
definitions of the Fourier transform agree and we have, 

dAju{t) = I lim^ fX (l - i|i) e^d/iit) J dt. 

It is not difficult to see that ju (resp. ft) is orthogonally scattered if and only 
if ft (resp. /*) is stationarily scattered. Since W enjoys both properties so 
does AW = W, moreover W is Gaussian if and only if W is also Gaussian, 
i.e., for each A e &o(R), W{A) is a Gaussian random variable. Finally, W 
can also be recovered from W by the inversion formula: W{A) = W{Â) = 
kXAdW. 
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As in the scalar case, for fi ^ 2, a dichotomy occurs. First, for 2 < /? < 
oo, we can interpolate between ^#2 and ^#°° and thus define the Fourier 
transform by extension. 

THEOREM 3. For 2 < /? < oo, the Fourier transform operator is a con­
traction from Jf$ into J£y, l/fi + 1/y = 1. 

For 2 < P < oo, the Fourier transform shares properties similar to the 
Fourier transform on JK2. In particular, an inversion formula holds and, 
again, under the conditions of Theorem 1, the two definitions of transform 
coincide. 

For 1 < fi < 2, the approach presented here does not work, and this is 
not surprising in view of the scalar case. Only the methods developed by 
Gel'fand (see [GV]) or by Hida (see [Hi]), i.e., generalized processes and 
random distributions, seem to provide a reasonable way of defining the 
Fourier transform. 

4. Dilations. In this section, we analyze the role of the subclasses of 
orthogonally scattered measures in the spaces Jf$. Our first result provides 
a characterization of the elements of J?P among the finitely additive set 
functions from ^b(K) to La(&>). 

THEOREM 4. Let 1 < a < 2 < /? < +oo (resp. let ft — +oo). A measure ju 
has finite ^-variation if and only if there exists a nonnegative function h in 
L0/P~2(R) (resp. a finite positive Borel measure h) such that || fR ƒ dju\\a < 
(k\f\2hdty/2 (resp. \\ fRfdp\\a < (fR\f\2dh)^\ for all ƒ i n Q(R). 

For a = 2 and ju G ^ ° ° , (fg) -+ & fRf(t)d/i(t) fRg(t)d/i(t) defines a 
bounded bilinear functional on Co(R) x Cb(R), and the existence part in 
Theorem 4 is just one of the various forms of Grothendieck's inequality 
(see [Pi]). In general, h above does not have compact support. A case at 
hand is a white measure for which the above inequality (in the 2-bounded 
case) becomes equality with h = 1. Hence, in contrast to the classical 
Grothendieck inequality a "dominating" measure is not necessarily finite. 

As important consequences of Theorem 4 we state two results which for 
a = 2 and /? = +oo are respectively due to Niemi [N] and Bochner [B]. 
We state our first result only for a < 2, the quadratic case with 2 < /? < oo 
being essentially contained in [Hoi]. 

THEOREM 5. A measure ju: ^b(R) —• La(£P) has finite fi-variation if and 
only if there exist a probability space (Ù,&,^) with L2(â°) c L2(£P) and 
a orthogonally scattered, L2(&)-valued, measure v of finite (y•, p)-variation 
and X in L2a/2~a(&>) such that /i = XPv, i.e., ju(A) = kPv(A), A e ^b(R), 
where P is the orthogonal projection from L2(^) to L2(3P). 

The methods developed here are useful in finding existence theorems 
and solutions for linear stochastic differential equations and more gener­
ally, for linear stochastic analysis. As an example, we state a last theorem 
and refer the reader to [Ho2] where more details, in particular, applications 
to symmetric a stable measures, can be found. 
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THEOREM 6. Let Y be a continuous ^-bounded process whose spectral 
measure is orthogonally scattered, and let 

T V* ^ 
L = Pn

akdF 
k=0 

be a linear autonomous differential operator. Then, the stochastic differen­
tial equation LX = Y has a continuous ̂ -bounded solution if and only if it 
has a continuous fi-bounded solution whose spectral measure is orthogonally 
scattered. 
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