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HARMONIC MEASURE IN CONVEX DOMAINS

DAVID JERISON

Introduction. Let Q be an open, convex subset of RY. At almost every
point x of 9L, with respect to surface measure do, there is a unique
outer unit normal §. The map g: 9Q — S”" given by g(x) = 6 and
defined almost everywhere is called the Gauss map. (S", n = N — 1, is
the unit sphere in RY.) Suppose that the origin 0 belongs to Q. Harmonic
measure for Q at 0 is the probability measure w such that for all continuous
functions f on 9Q!,

u(0) = /a fdo

where u solves the Dirichlet problem: Au = 0in Q and ¥ = f on 8Q.

Since Q is a Lipschitz domain, Dahlberg’s theorem [4] implies that dw
and do are mutually absolutely continuous. Thus we can define a measure
pnonS" by u=g.wor

UWE)=w(g ' (E)) forall ECS".

We would like to pose the inverse problem: Given a probability measure
u on S", is there a domain Q for which u(E) = w(g~'(E))? Loosely
speaking, we would like to find the convex domain given harmonic measure
as a function of the unit normal.

We will solve the problem in case du = Rd60, R smooth and positive.

THEOREM 1. Fork an integer > k(N) and0 < a < 1, let R € Ck2(SN-1)
be a positive function with [ Rd0 = 1. There exists a strictly convex domain
Q containing the origin, with Ck*2* boundary, such that for E c SN,

(g~ (E)) = /E Rd6,

where g is the Gauss map and  is harmonic measure for Q at 0. The
domain Q is unique up to dilation.

Our problem is natural for three reasons. First, it is analogous and
closely related to the classical Minkowski problem. Second it is entirely
solved in the plane by a continuous version of the well-known Schwarz-
Christoffel formula. Third, the proof requires new, optimal estimates for
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harmonic measure in convex domains. These estimates dovetail with re-
cent optimal estimates for the Monge-Ampére equation due to L. Caffarelli.
The proof of Theorem 1 depends by way of Caffarelli’s methods on the
entire development of regularity theory in the Minkowski problem. We
would like to thank L. Caffarelli for explaining his recent results and for
his encouragement.

The Minkowski problem is to find a convex body Q given Gaussian
curvature K as a function of the unit normal. (See [3].) But K is the
Jacobian determinant of the Gauss map; informally, d0 = K do or do =
(1/K)d8. Thus the Minkowski problem can be rephrased: Find the convex
domain Q given surface measure do as a function of the unit normal.
In our problem we have simply replaced surface measure with harmonic
measure.

The Schwarz-Christoffel formula

m
D(z)=re¥ [[(z-x) P xi<x2< - <Xm, r>0, yER,
k=1

gives the conformal mapping ® from the upper half-plane H = {z €
C: Imz > 0} to a polygon Q with vertices D(x,),...,D(x,,), P(oo) and
exterior angles npBy,...,nBm, 2n — > ;. nBr. We confine ourselves to
the convex case: 0 < B < 1 and >;_, Bx < 2. (If 371, Bx < 1, then the
polygon is unbounded, ®(co) = 00.) Observe that argd’(x) = x—>_;°, nB;
for x € (xy_1,x)k = 1,...,m + 1, with the convention Xy = —00, Xy =
co. It follows that the outer normal to the side ®((x;_;, X)) is oy =
x-n/2-nY7, Bj. So far Q is only defined up to translation. We
can fix ® by (i) = 0. Let ¢, = w(P((Xk_1,Xx))). Then u = Eckaak.
Furthermore, since the harmonic measure for Q at 0 is the push-forward
of the harmonic measure for H at i, ¢, = 7 [* dt/(1+*). Thus we can
realize any u that is a finite sum of delta functions by a suitable polygon

In general, for an arbitrary probability measure x4 on [0, 27) define the
monotone function U: R — [0, 27) by

U(x) = min -qop>l/xiﬁ_

= @bl =2 ] T+

For any E C [0,27), u(E) = % [z dt/(1 + £*). Define a conformal
mapping ® of H by arg®'(x) — n/2 = U(x). Thus

D'(z) = exp[-V(z) +i(U(z) + n/2)]

where V' (z) is the harmonic conjugate of U. If we normalize ® by ®(i) = 0,
then g.(w) = u, as desired. Notice that V is unique up to an additive
constant, so that Q is unique up to dilation. Regularity properties of
the Poisson integral and Hilbert transform imply that if du = Rd6 with
Re Ck*(S'), k=0,1,2,... 0<a<1and R > 0, then U and V belong
to Cktle and 9Q is a Ck+2, strictly convex curve.
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Estimates for harmonic measure. The estimates for harmonic measure
that we need are expressed in terms of cross-sections of Q. Let H = {x €
RY: (x — xp) -a > 0} be a half-space. Let E = QNAH and F = (0Q)NH.
Let %E be the subset of E given by dilation by the factor 1/2 from an
origin defined as the center of mass of E. Let 3F be the set of points of
F whose orthogonal projection onto 8 H lies in JE.

THEOREM 2. Let Q be a convex, open set in RY such that B, c Q C B,.
(B, is the ball of radius r about 0.) There is a constant C depending only
on N and r such that

(a) w(F) < Cw(3F),
(b) maxyer h(x) < Cw(F)/o(F), where h =dw/da.

These estimates should be compared with the case of Lipschitz domains.
(See, e.g. [5].) Estimate (b) permits 4 to vanish but not to blow up. The
key difference with the Lipschitz case is that instead of looking at “surface
balls” of the form B,(x) N dQ we need to use the sets F, which resemble
ellipses with uncontrolled eccentricity.

THEOREM 3. Suppose that Q is a convex domain B, ¢ Q C By, 0Q is
C! and strictly convex. For any 6 > 0 there is € > 0 depending only on 6,
N, r, the C' modulus of continuity and the modulus of strict convexity such
that

mea}&h < (1 +0)w(F)/a(F) whenever a(F) < &.
X

This improvement of (b) is analogous to the improvement of Dahlberg’s
theorem in [6].

The main ingredient in the proof of Theorem 2 beyond what is already
known for Lipschitz domains is that Green’s function is almost concave
in the following sense:

LEMMA. Let G be Green’s function for Q with pole at 0. (AG = -6, so
that G > 0.) There is a constant C = C(N,r) such that

G(x)+G(y) < CG((x+y)/2) forallx,y€Q\B,.

Sketch of the Proof of Theorem 1. We find Q by the method of con-
tinuity. Let 7, = [, d6. Let R' = (1 — #)7,! + tR. We wish to show
that T = {t € [0,1]: there is a strictly convex, C*¥*2* domain Q' with
du' = R,d0} is both open and closed in [0,1]. Since, Q° = B, yields
du® = 1;1d6, we have 0 € T, and it follows that T = [0, 1].

To show that T is open, we express the equation in terms of the
Minkowski support function u(6) = x - 6 (x = g~!(6)) on the sphere S”.
The domain Q can be recovered from u by considering F(r, 8) = ru(f),
a function in polar coordinates on RY - VF is homogeneous of degree 0
and VF: §" — 9Q is the inverse mapping of g. From now on we will
regard functions and measures on S$” and 92 as identified via g and VF.
If u;; = V;ju denote covariant derivatives of # in an orthonormal frame
on S”, the Minkowski equation is (see [3])

do

1
det(uij + udij) = X = 70
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Since & = dw/do and R = dw/d0, we have
(%) h det(u;; + ué,-j) =R.

The linearized equation is

Lv= %huﬂv det((u + sv);; + (u + 5v)d;))
s=0

1
= (hcijvi)j — EA(’!U),

where ¢;;(ujx+udji) = (1/K)d; defines c;; and A is the Neumann operator,
that is the operator taking a function on 4 to the normal derivative of
its harmonic extension.

JRd6 =1 implies [ Lvdf = O for all v and hence L*1 = 0. By
the theory of linear elliptic equations, the range of L is the orthogonal
complement of the null space of L*. (This is the only place at which
the requirement k > k(N) plays a role.) Thus, by the implicit function
theorem, in order to prove that 7 is open we need only show that L*v = 0
implies v is constant.

We will simultaneously find the null space of L and L*. Notice that
R does not change when u is replaced by u + su since the corresponding
region is the dilate (1 + 5)Q. Therefore, Lu = 0. Conversely, we have

ProrosITION 1. If L*v = 0 or if L(vu) = 0, then v is constant.

The proposition follows immediately from the formula

/ vL(uv)dl = —-/ hucijvivjd()—/ BIVo|?
sn S Q

where U is the harmonic extension of v to Q and # is the harmonic function
in Q with boundary values uA. Indeed, L*v = 0 and L(vu) = 0 both imply
that the left-hand side is zero. But the right-hand side only vanishes when
v is constant.

In addition to proving that T is open, the proposition contains a unique-
ness result: the only infinitesimal changes that preserve R are dilations.
This is known as infinitesimal rigidity.

The fact that T is closed depends on a priori inequalities. We need to
show that given a strictly convex, C¥*2« domain Q, the C¥*2® norm and
modulus of strict continuity are controlled by the C¥* norm and positive
lower bound of R. Then a standard limiting argument shows that T is
closed.

First of all, we dilate Q so that B, is the smallest ball containing €.

PROPOSITION 2. There exists r > 0, depending only on the lower bound
for R such that B, C Q C Bj.

This can be proved by an easy argument involving comparison with a
hemisphere.

Consider a function w: D — R, D C R”, such that {(w(x), x1,...,Xn):
x € D} is a portion of Q. Because B, C Q C B;, |Vw| is bounded
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above, that is, we have a priori bounds on the Lipschitz constant of w.
The normal vector is § = (—1,Vw)/+/1 + |[Vw|?, so that

db/da = (1 + |Vw|?)~ (D2 det(w;;)  (w;; = d*w/0x;0x;)
and our equation is
(%) det(w;;) = (1 + [Vw[*)"*+2/2 /R,

Apart from the factor 4, this is the equation of the Minkowski problem.
R is a smooth function of 6, so the right-hand side involves only first
derivatives of w. The function /4 is the normal derivative of Green’s
function. As one can see from R? and from the linearized operator L,
the factor 4 should be viewed as a nonlinear first order pseudodifferential
operator on w. Its regularity properties are only slightly worse that those
of R and 1 + |[Vw|?. Our strategy is to derive some regularity for 4 and
deduce some further regularity for w from the Monge-Ampeére equation
(**). Next, based on new estimates for w, we can improve our regularity
estimates for 4, and so on.

THEOREM 4. Let B, C Q C B;, Q a smooth, strictly convex domain
in R"™1. Suppose that, locally, 0Q is given by the graph of functions w
satisfying det(w;;) = f. Suppose also that

max f(x) < G A J(x)dx/ vol(E)

for all sets E = {x € R* : w(x) < a-x + b}. Then the C' modulus
of continuity and modulus of strict convexity of w depend only on C, r,
and n.

Note that Theorem 2 implies that F = (1 + |Vw|?)"+2/2h /R satisfies
the hypothesis of Theorem 4 because |Vw| is bounded above and R is
bounded above and below by positive constants. Theorem 4 follows from
the method used by L. Caffarelli [1] to derive the same conclusion from
the stronger hypothesis C;! < f < C.

As a result of Theorem 4 we have control on the modulus of continuity
of the Gauss map and hence of (1 + |Vw|?)(**2/2/R. An application of
Theorem 3 implies that our function f satisfies, in addition,

M) max f(x) < (1 +9) [E £(x)dx/ vol(E)

with § — 0 as vol(E) — 0.

THEOREM 5. If, in addition to the hypothesis of Theorem 4, we have (1),
then the LP norm of w;j is bounded a priori for all i, j = 1,...,n and any
p < oo. In particular, the CY* norm of w is bounded a priori for any a < 1.

Theorem 5 follows from the method of another theorem of Caffarelli
[2] with the same conclusion as Theorem 5, under the stronger hypothesis
that f is positive and continuous.

Once we have C! control of w it follows that /# has an a priori positive
lower bound and 4 belongs to C®. From this point on the regularity of
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(1 + |Vw|?)"+2)/2 /R and h are identical, and a somewhat more standard
bootstrap argument leads to a priori bounds on the C¥*2® norm of w.
This concludes the proof of existence.

For uniqueness observe that local uniqueness implies that the map from
Ck+z2 domains (modulo dilation) to densities R in C* is a local homeo-
morphism. The existence proof, local uniqueness, and a bifurcation argu-
ment yield a continuous right inverse to this map. It is then easy to check
that the range of the inverse map is both closed and open, and hence the
map is surjective. I am indebted to P. Pansu and B. E. J. Pahlberg for
explaining this proof of uniqueness to me.

One may be able to pursue the analogy with the Minkowski problem
further. We propose that fagr X - @dw(x) is a concave function of ¢ if
Q' = (1 -1)Q% +tQ!, and that this function is linear only when Q! is a
dilate of QO. This is analogous to the Brunn-Minkowski inequality, which
leads to uniqueness in the generalized Minkowski problem (see [3]).
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