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HARMONIC MEASURE IN CONVEX DOMAINS 

DAVID JERISON 

Introduction. Let Q be an open, convex subset of R^. At almost every 
point x of dQ, with respect to surface measure da, there is a unique 
outer unit normal 6. The map g: dQ -* Sn given by g(x) = 9 and 
defined almost everywhere is called the Gauss map. (Sn, n = N - 1, is 
the unit sphere in R^.) Suppose that the origin 0 belongs to Q. Harmonic 
measure for fit at 0 is the probability measure co such that for all continuous 
functions ƒ on dQ1, 

M(0) = f fdco 
Jan 

where u solves the Dirichlet problem: Au = 0 in Q and u = ƒ on dQ. 
Since Q is a Lipschitz domain, Dahlberg's theorem [4] implies that dco 

and da are mutually absolutely continuous. Thus we can define a measure 
fi on Sn by ju = g*a> or 

//(^) = w(^-1(£')) for a l l ocs" 1 . 

We would like to pose the inverse problem: Given a probability measure 
ju on Sn, is there a domain Q for which /z(2?) = co(g~{(E))? Loosely 
speaking, we would like to find the convex domain given harmonic measure 
as a function of the unit normal. 

We will solve the problem in case dju = Rd6, R smooth and positive. 

THEOREM 1. For kan integer >k(N) and0<a<\, let Re Ck>a(SN-{) 
be a positive function with ƒ Rd6 = 1. There exists a strictly convex domain 
Q containing the origin, with Ck+2>a boundary, such that for E c SN~l, 

co(g-{(E)) = J Rd9, 

where g is the Gauss map and co is harmonic measure for Q at 0. The 
domain Q, is unique up to dilation. 

Our problem is natural for three reasons. First, it is analogous and 
closely related to the classical Minkowski problem. Second it is entirely 
solved in the plane by a continuous version of the well-known Schwarz-
Christoffel formula. Third, the proof requires new, optimal estimates for 
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harmonic measure in convex domains. These estimates dovetail with re­
cent optimal estimates for the Monge-Ampère equation due to L. Caffarelli. 
The proof of Theorem 1 depends by way of Caffarelli's methods on the 
entire development of regularity theory in the Minkowski problem. We 
would like to thank L. Caffarelli for explaining his recent results and for 
his encouragement. 

The Minkowski problem is to find a convex body Q given Gaussian 
curvature AT as a function of the unit normal. (See [3].) But K is the 
Jacobian determinant of the Gauss map; informally, dd = Kda or do = 
( 1 /K) dd. Thus the Minkowski problem can be rephrased: Find the convex 
domain Q given surface measure da as a function of the unit normal. 
In our problem we have simply replaced surface measure with harmonic 
measure. 

The Schwarz-Christoffel formula 
m 

O'(z) = reiy/ J J ( z - ^ ) " ^ , ^ i <x2 < ••• < xm, r > 0, y/ e R, 
k=\ 

gives the conformai mapping <S> from the upper half-plane H = {z e 
C: Imz > 0} to a polygon Q with vertices 0(^i) , . . . ,0(xm) , O(oo) and 
exterior angles nfi\9...,7tfim, In — Y^k=\nfik> We confine ourselves to 
the convex case: 0 < fik < 1 and £™=1 pk < 2. (If £™=i fik < 1» then the 
polygon is unbounded, O(oo) = oo.) Observe that argO'(x) = .x-J^Li nfij 
for x G (Xk-\,Xk)k = 1,..., m + 1, with the convention xo = -oo, xm+\ = 
oo. It follows that the outer normal to the side <I>((.Xfc-i >•**:)) is ak = 
x - 71 /2 - nY^JLkfij' S° far Q is only defined up to translation. We 
can fix O by <P(i) = 0. Let ck = co(Q>((Xk-\9Xk))). Then // = ^ c s * 
Furthermore, since the harmonic measure for Q at 0 is the push-forward 
of the harmonic measure for H at /, Ck — \ f*k dt/{\ +12). Thus we can 
realize any ju that is a finite sum of delta functions by a suitable polygon 
Q. 

In general, for an arbitrary probability measure ju on [0,2n) define the 
monotone function U: R —• [0,2n) by 

U(x) = min {a: //([0,a]) > i | ^ ^ J . 

For any JE* c [0,2n), ju(E) = j^ fv-^E) dt/{\ + t2). Define a conformai 
mapping <1> of H by argO^jc) - 7r/2 = U(x). Thus 

O'(z) = exp[-F(z) + i(U{z) + TT/2)] 

where V(z) is the harmonic conjugate of U. If we normalize O by <!>(/) = 0, 
then g*(co) = //, as desired. Notice that V is unique up to an additive 
constant, so that Q is unique up to dilation. Regularity properties of 
the Poisson integral and Hilbert transform imply that if dju = Rdd with 
R e Ck>a(Sl), k = 0,1,2,... 0 < a < 1 and R > 0, then U and V belong 
to Ck+l>a and dQ is a C/:+2'°!, strictly convex curve. 
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Estimates for harmonic measure. The estimates for harmonic measure 
that we need are expressed in terms of cross-sections of ft. Let H = {x e 
RN:(x-x0)-a> 0} be a half-space. Let E = ftndH and F = (dQ)nH. 
Let \E be the subset of E given by dilation by the factor 1/2 from an 
origin defined as the center of mass of E. Let \F be the set of points of 
F whose orthogonal projection onto dH lies in \E. 

THEOREM 2. Let CI be a convex, open set in RN such that Br c ft c B\. 
(Br is the ball of radius r about 0.) There is a constant C depending only 
on N and r such that 

(a) co(F) < Ca)(\F), 
(b) m2L\xeF h(x) < Cco(F)/a(F), where h = dco/da. 

These estimates should be compared with the case of Lipschitz domains. 
(See, e.g. [5].) Estimate (b) permits h to vanish but not to blow up. The 
key difference with the Lipschitz case is that instead of looking at "surface 
balls" of the form Bt(x) n dQ we need to use the sets F, which resemble 
ellipses with uncontrolled eccentricity. 

THEOREM 3. Suppose that ft is a convex domain Br c ft c B\, dQ is 
C1 and strictly convex. For any ô > 0 there is e > 0 depending only on ô, 
N, r, the C1 modulus of continuity and the modulus of strict convexity such 
that 

max h < (1 + S)co(F)/a(F) whenever o(F) < e. 
xeF 

This improvement of (b) is analogous to the improvement of Dahlberg's 
theorem in [6]. 

The main ingredient in the proof of Theorem 2 beyond what is already 
known for Lipschitz domains is that Green's function is almost concave 
in the following sense: 

LEMMA. Let G be Green's function for Q with pole at 0. (AG — -ô, so 
that G > 0.) There is a constant C = C(N, r) such that 

G{x) + G{y) < CG((x + y)/2) for allx,yeQ\Br. 
Sketch of the Proof of Theorem 1. We find Q by the method of con­

tinuity. Let T„ = fsn dB. Let Rl = (1 - t)r~l + tR. We wish to show 
that T — {t e [0,1]: there is a strictly convex, Ck+2>a domain £1* with 
dp} = Rtdd} is both open and closed in [0,1]. Since, Q° = B\ yields 
dju° = T"1 dd, we have 0 G F, and it follows that F = [0,1]. 

To show that F is open, we express the equation in terms of the 
Minkowski support function w(0) = x • e (x = g~l(e)) on the sphere Sn. 
The domain ft can be recovered from u by considering F(r, 0) = rw(0), 
a function in polar coordinates on R^ • VF is homogeneous of degree 0 
and VF: Sn —* dQ is the inverse mapping of g. From now on we will 
regard functions and measures on Sn and öft as identified via g and VF. 
If utj = VijU denote covariant derivatives of u in an orthonormal frame 
on Sn, the Minkowski equation is (see [3]) 

j w ? x 1 do 

det(uu + uou) = T = -Tâ. 
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Since h = do/do and R = dco/dd, we have 

(*) h det(Uij + uSij) = R. 

The linearized equation is 

d_ 
ds 

LV = —Jlu+sv det((M + SV)ij + (w + 5V)5|y) 
5 = 0 

= (A^-ÜI); - JÇTA(AV), 

where Cij(Ujk+uôjk) = ( 1 IK)otk defines Q,- and A is the Neumann operator, 
that is the operator taking a function on <9£2 to the normal derivative of 
its harmonic extension. 

fRdd=l implies fLvdd = 0 for all v and hence L*l = 0 . By 
the theory of linear elliptic equations, the range of L is the orthogonal 
complement of the null space of L*. (This is the only place at which 
the requirement k > k(N) plays a role.) Thus, by the implicit function 
theorem, in order to prove that T is open we need only show that L*v = 0 
implies v is constant. 

We will simultaneously find the null space of L and L*. Notice that 
R does not change when u is replaced by w + su since the corresponding 
region is the dilate (1 + s)Q. Therefore, Lu — 0. Conversely, we have 

PROPOSITION 1. IfL*v = 0 or ifL(vu) = 0, then v is constant. 

The proposition follows immediately from the formula 

[ vL(uv)dO = - f hudjViVjdd- [ p\Vv\2 

Jsn Jsn JQ 

where v is the harmonic extension of v to Q and /? is the harmonic function 
in Q, with boundary values uh. Indeed, L*v = 0 and L(vu) = 0 both imply 
that the left-hand side is zero. But the right-hand side only vanishes when 
v is constant. 

In addition to proving that T is open, the proposition contains a unique­
ness result: the only infinitesimal changes that preserve R are dilations. 
This is known as infinitesimal rigidity. 

The fact that T is closed depends on a priori inequalities. We need to 
show that given a strictly convex, Ck+2>a domain Q, the Ck+2'a norm and 
modulus of strict continuity are controlled by the Ck>a norm and positive 
lower bound of R. Then a standard limiting argument shows that T is 
closed. 

First of all, we dilate Q so that B\ is the smallest ball containing Q. 

PROPOSITION 2. There exists r > 0, depending only on the lower bound 
for R such that BrcQcB\. 

This can be proved by an easy argument involving comparison with a 
hemisphere. 

Consider a function w: D —• R, D c R", such that {(w(x),xi,...,xn): 
x G D} is a portion of dQ. Because Br c Q c B\, \Vw\ is bounded 
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above, that is, we have a priori bounds on the Lipschitz constant of w. 
The normal vector is 6 = ( -1 , Vw)/y/l + |Vw|2, so that 

dO/do = (1 + \Vw\2)-{{n+2)/2) det(Wij) (wu = d2w/dxidxj) 

and our equation is 

(**) det(w/7) = (1 + \Vw\2Yn+2^2h/R. 

Apart from the factor h, this is the equation of the Minkowski problem. 
R is a smooth function of 0, so the right-hand side involves only first 
derivatives of w. The function h is the normal derivative of Green's 
function. As one can see from R2 and from the linearized operator L, 
the factor h should be viewed as a nonlinear first order pseudodifferential 
operator on w. Its regularity properties are only slightly worse that those 
of R and 1 + |Vw|2. Our strategy is to derive some regularity for h and 
deduce some further regularity for w from the Monge-Ampère equation 
(**). Next, based on new estimates for w, we can improve our regularity 
estimates for h, and so on. 

THEOREM 4. Let Br c Q C B\, Q a smooth, strictly convex domain 
in R"*1. Suppose that, locally, dQ is given by the graph of functions w 
satisfying det(î/^) = ƒ. Suppose also that 

max/(jt)<Ci f f(x)dx/vol(E) 
xeE J^E 

for all sets E = {x e Rn : w(x) < a • x + b}. Then the C1 modulus 
of continuity and modulus of strict convexity ofw depend only on C\, r, 
and n. 

Note that Theorem 2 implies that E = (1 + \Vw\2)^n+2>>l2hlR satisfies 
the hypothesis of Theorem 4 because \Vw\ is bounded above and R is 
bounded above and below by positive constants. Theorem 4 follows from 
the method used by L. Caffarelli [1] to derive the same conclusion from 
the stronger hypothesis Cf1 < ƒ < Ci. 

As a result of Theorem 4 we have control on the modulus of continuity 
of the Gauss map and hence of (1 + \Vw\2Yn+2^2/R. An application of 
Theorem 3 implies that our function ƒ satisfies, in addition, 

(t) max ƒ (JC) < ( 1 + S) f f(x) dx/ vo\(E) 
XEE JE 

with S -> 0 as vol(E) -• 0. 

THEOREM 5. If, in addition to the hypothesis of Theorem 4, we have (f), 
then the LP norm ofwij is bounded a priori for all i, j = 1,..., « and any 
p < oo. In particular, the Cl>a norm ofw is bounded a priori for any a < 1. 

Theorem 5 follows from the method of another theorem of Caffarelli 
[2] with the same conclusion as Theorem 5, under the stronger hypothesis 
that ƒ is positive and continuous. 

Once we have C l a ! control of w it follows that h has an a priori positive 
lower bound and h belongs to Ca. From this point on the regularity of 
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(1 + \Vw\2Yn+2^2/R and h are identical, and a somewhat more standard 
bootstrap argument leads to a priori bounds on the Ck+2>a norm of w. 
This concludes the proof of existence. 

For uniqueness observe that local uniqueness implies that the map from 
çk+z,a d o m a i n s (modulo dilation) to densities R in Ck>a is a local homeo-
morphism. The existence proof, local uniqueness, and a bifurcation argu­
ment yield a continuous right inverse to this map. It is then easy to check 
that the range of the inverse map is both closed and open, and hence the 
map is surjective. I am indebted to P. Pansu and B. E. J. Pahlberg for 
explaining this proof of uniqueness to me. 

One may be able to pursue the analogy with the Minkowski problem 
further. We propose that fdQt x • 6 dco(x) is a concave function of t if 
Q' = (1 - t)Q° + tQ\ and that this function is linear only when Ql is a 
dilate of Q°. This is analogous to the Brunn-Minkowski inequality, which 
leads to uniqueness in the generalized Minkowski problem (see [3]). 
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