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HOMOLOGY USING CHOW VARIETIES 

ERIC M. FRIEDLANDER 

We introduce "Lawson homology groups" LrH2r+i(Xf2i) associated to 
an arbitrary projective algebraic variety X over an algebraically closed 
field k of characteristic p > 0 and a prime I ^ p. Our work is directly 
inspired by recent work of Blaine Lawson (cf. [5, 6]), consisting in part of 
an algebraization of Lawson's geometric ideas and analytic arguments. 

The Lawson homology group LQH^X, Z/) is the /th etale /-adic homol­
ogy group of X, whereas Lr//2r(XZ/) is the group of algebraic r-cycles 
on X modulo algebraic equivalence (see Theorem 5 below). More gen­
erally, LrH2r+i(X,2i) should be viewed as an /-adic homology group of 
X involving ur algebraic dimensions and i topological dimensions." As 
we describe below, these groups are interesting algebraic invariants with 
good properties which should prove useful in the study of algebraic cycles. 
Moreover, the author and Barry Mazur construct maps LrH2r+i(X, Z/) -> 
Lr-iH2r+i(X, Z/) whose iterates determine the cycle map relating algebraic 
cycles to etale homology. 

We gratefully thank Blaine Lawson for sharing his recent results with us 
while still in their formative stages. We also acknowledge our great debt to 
Ofer Gabber whose insights were essential to our early understanding of 
Lawson's work. Proofs of results announced below, as well as statements 
and proofs of further results being developed in collaboration with Blaine 
Lawson and Barry Mazur, will appear elsewhere. 

1. Definitions. The starting point of our work is the Chow variety 
Cr>d(X,j) of effective (homogeneous, of dimension equal to) r cycles of 
degree d on the projective space P^ supported on the variety X, where X 
has given a closed embedding j : X cPN. For example, CN-\td(PN, id) is 
the projective space of dimension (Njd) whose points correspond to ho­
mogeneous forms in N + 1 variables of degree d. Our Lawson homology 
groups LrH2r+i(X,2i) arise by considering the group completion of the 
algebraic monoid Ud>0 Q</(-£ J) °f effective r cycles on X. 

We require a functor from algebraic varieties to topological spaces. We 
use the following composition of four functors: 

| . | = Re(.)oholim(.)o(Z//)00(.)o(.)et, 
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where (-)et is the étale topological type functor from varieties to inverse 
systems of simplicial sets (cf. [4]), (Z//)oo() is the Bousfield-Kan Z//-
completion functor (cf. [1]), holim(-) is the Bousfield-Kan homotopy in­
verse limit functor (cf. [1]), and Re() is the geometric realization functor 
from simplicial sets to topological spaces. 

DEFINITION 1. Let AT be a projective algebraic variety with a given closed 
embedding j : X cPN, and let r denote a nonnegative integer < dim(X). 
Applying the functor | • | and the bar construction to the algebraic monoid 
LL/>o Cr,d(X>J)> w e obtain the simplicial space 

* = U | C a | = U |Ca X C6| S Jl \CaXCbxCe\... 
aeA a,beA a,b,ceA 

where A denotes the monoid of connected components of U^>0 Cr§d(X, j) 
and Ca denotes the component associated to aeA. We denote by 3Sr{X) 
the space obtained as the geometric realization of this simplicial space 
and we define the stable Chow space of r-cycles, denoted &&r(X), to be 
the loop space of &r(X). 

PROPOSITION 2. The spaces &r(X) and Çi3Sr{X) are infinite loop spaces. 
Moreover, there is a natural map of H-spaces \\aeA \Ca\ -• Cl&r{X) which 
is a topological group completion. 

If we restrict our attention to complex varieties and if we replace the 
functor | • | by the functor ()a n which associates to a complex variety its 
underlying topological space with the analytic topology, then the above 
construction yields a space Q&r(X*n), the analytic stable Chow space ofr-
cycles. In the special case in which X = P^, the space %ÇPN) considered by 
Lawson is homotopy equivalent to the identity component of Q&r(X

an). 
More generally, Q^r(Xan) entails the stabilization of Ud>ocrAx™>J) 
with respect to all its connected components, whereas Lawson's original 
construction involved stabilization with respect to addition of multiples 
of a chosen linear subspace assumed to lie in X [5]. Lawson's proof 
of his main theorem (Theorem 2 of [5]; our algebraic version is Theo­
rem 6 below) taken in conjunction with the topological group comple­
tion property of Proposition 2 applies to prove an analogous theorem 
for 0&r(X*n) valid for any complex projective variety X and including 
a nontrivial statement concerning connected components. The homotopy 
groups 7r*(£l^r(X

an)) are an integral form for n*(Q&r(X)) whose com-
plexification 7r*(Q^r(A

ran)) ® C admits the structure of a colimit of mixed 
Hodge structures respected by many of our algebraic arguments. 

In what follows, we ignore this finer structure provided when k = C by 
Cl&r(X

an), choosing to concentrate on the more algebraic £l3§r(X). 
DEFINITION 3. The Lawson homology group LrH2r+i(X,2i) is the ith 

homotopy group of the stable Chow variety space Q&r(X) for some em­
bedding j : X c P": 
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2. Basic properties. In the following proposition, we state basic for­
mal properties of the Lawson homology groups. The homotopy groups of 
Q&r(X

an) also satisfy properties 4(a), 4(c), and 4(d), but not 4(b). 

PROPOSITION 4. (a) The Lawson homology groups LrH2r+i(X,2i) are 
independent {up to natural isomorphism) of the embedding j : X c P^ 
used to define them. 

(b) If X can be defined as the zero locus in some projective space of 
homogeneous equations all of whose coefficients lie in some subfield F ofk 
(i.e., X is defined over F), then Gal(k/F) naturally acts on LrH2r+i(X, Z/) 
for any r < dim(Z), i > 0. 

(c) Any map f\X-+Y naturally induces a homomorphism 

ƒ* : LrH2r+i(X, 1[) -*• LrH2r+i(Y, Z/) 

for any0<r < dim(X), 0 < i. 
(d) Any flat map g: X -+ Y induces a homomorphism 

g* : LrH2r+i(Y, Z/) -• Lr+cH2r+2c+i(X, Z/) 

for any 0 < r < dim(7), 0 < i, where c = dim(X) - dim(7). 

The proofs of properties 4(a), (c), (d) use rational continuous maps, our 
name for correspondences sufficiently like morphisms that they induce 
continuous maps via the functor | • |. Property 4(b) is a consequence of 
the algebraic nature of the definition of Lawson homology groups. 

As mentioned earlier, the special cases r = 0 and i = 0 yield familiar 
invariants. 

THEOREM 5. Assume X is connected. Then 
ƒ Z, i = 0, 

L o ^ ( Z ' Z / ) = l l i m ^ ( Z e t , Z / / « ) , / > 0 , 

where the inverse limit is indexed by pairs arising from the indexing category 
of the pro-simplicial set Xet (i.e., the etale topological type of X) and the 
natural numbers n > 0. Moreover, 

LrH2r(X, Z/) = (r-cycles on X)/algebraic equivalence. 

The proof that LQHI(X, Z/) equals /-adic etale homology relies upon an 
analysis by P. Deligne [2] of the etale cohomology of symmetric prod­
ucts of varieties as well as the classical Dold-Thom theorem [3]. The fact 
that LrH2r(X,2i) equals algebraic r-cycles modulo algebraic equivalence 
is proved using the group completion assertion of Proposition 2 and an 
understanding of the connected components of LI</>0 Crj(X, j). 

3. Algebraic suspension. Following Lawson [5], we consider the "alge­
braic suspension" operation Z() sending a closed algebraic subvariety Y 
of Pn to its cone £ 7 in Pn+1 (defined by the same homogeneous equa­
tions not involving the new homogeneous coordinate). Theorem 6 is our 
algebraic generalization of Lawson's main theorem [5, Theorem 2]. 
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THEOREM 6. Algebraic suspension Z() induces a homotopy equivalence 
Z: 3§r{X) —• <&r+iÇ£X)' Consequently, E induces isomorphisms 

Z* : LrH2r+i(X, Z/) —• Lr+i//2r+2+/(2X, Z/) 
/or anyO<r< dim(A'), 0 < i. 

The proof of Theorem 6 places in the context of correspondences and 
Chow coordinates (cf. [7]) Lawson's proof of his suspension theorem [6]. 
Namely, we consider the open subset Tr+lfd(LX) of Cr+{>d(ZX) consisting 
of those cycles each component of which meets X c EX properly. We 
exhibit a rational continuous map which provides a homotopy deforma­
tion retraction for the subspace \L{Cr>d{X))\ ~ Crtd(X) inside |rr+1^(SX)|. 
Furthermore, for integers e > 0, we construct another rational continu­
ous map which provides a homotopy relating multiplication of cycles on 
Y*X by e, \Cr+{>d(ZX)\ —> \Cr+\tde(ix)\, to a map which factors through 
\Tr+\,deÇ£X)\ and restricts to multiplication by e on \Tr+i>d(LX)\. We 
complete the proof by interpreting the topological group completion of 
LL/>o \Cr+\,d(£X)\ as an //-space homologically equivalent to a mapping 
telescope. 

4. Computations. Theorems 5 and 6 easily imply the following. 
COROLLARY 7. 

!

Z, i = 0, 

Z/, / = 2,4,.. . ,2JV-2r, 
0, otherwise. 

Finally, we describe the Lawson homology groups associated to codi-
mension 1 cycles on a smooth projective algebraic variety X. 

THEOREM 8. Let X be a smooth projective algebraic variety of dimension 
n. Then 

NS(X), i = 0, 
lim/Z^PicoWet^//"), i = l, 
Z/f i = 2, 
0, otherwise, 

where NS(X) denotes the Neron-Severi group ofX and Pico(X) denotes the 
connected component of the Picard variety ofX. 

The proof of Theorem 8 entails an investigation of the natural map 
from a sufficiently general component of codimension 1 cycles to Pico(X). 
This enables us to verify that the homotopy type of the fiber of the map 
from |Q^n_i(X)| -• |Pic(Z)| is essentially the /-adic homotopy type of 
infinite complex projective space. 
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