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for arbitrary r. It is worth remarking here that Gromov's original paper on 
this subject [G3] only gave full details of the proof in the 1-dimensional case, 
leaving a large part of the proof for arbitrary n up to reader's imagination. 
This generalization looked plausible, but it wasn't at all clear how one might 
avoid a horribly messy argument. Gromov has now expressed his ideas much 
more fully, and has completed the proof in a very elegant, if abstract, way. 

To end with, here are some comments on the book as a whole. It has been 
carefully written. The main theorems are clearly stated and their proofs, in­
sofar as I have studied them, are accurate and quite detailed. The book is 
also essentially self-contained, so that it should be accessible to anyone who 
has a knowledge of the basics of differential topology and geometry. But one 
also needs a good deal of persistence, since it is easy to be overwhelmed by 
the wealth of new ideas and the many, very varied examples which accompany 
each theorem. And so one must make a considerable initial effort to under­
stand the basic ideas and language and to learn one's way around. However, 
it's well worth it. The book is a wonderful treasure house of ideas. 
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This translation (not always felicitous) from the original German version 
of 1982 is essentially a reprise of [IT], which appeared first in 1974. That 
book showed, efficiently and attractively, how nonlinear functional analysis in 
conjunction with the convexity methods of Fenchel, Moreau, and Rockafellar 
could supply a unified treatment for problems of variational calculus and op­
timal control. Unlike its predecessor (whose 450-page English translation is 
unfortunately out of print), this brief monograph is not self-contained, and 
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draws repeatedly on [IT and ATF], among others, especially for proofs of ex­
istence of solutions to extremal problems. Moreover, sufficient conditions are 
barely mentioned. What remains is the author's distillation, based on some 
twenty years' experience, of the principles available for obtaining necessary 
conditions for the solutions to (smooth) extremal problems. These principles, 
set forth in successive chapter headings, are those of Lagrange for constrained 
problems, duality in convex analysis and convex programming, extension in 
variational problems, and complete constraint removal. 

Extremal problems have been associated with mathematics since antiquity 
and their formulation and resolution by variational methods are among the 
first successful applications of the calculus. Efforts since 1940 to extend the 
classical framework to embrace problems arising in the optimal control of 
systems have generated renewed interest in the subject. 

In a modern setting, the theory of extremal problems is concerned with 
examining the points x which could supply a minimum (or maximum) value 
to a real-valued function ƒ on a (Banach) space AT, when restricted to a set 
A Ç X. Assuming that ƒ is, say, Fréchet differentiate at x € A°, then the 
Fermât Principle implies the familiar necessary condition for minimization, 
viz, that the Fréchet derivative 

(1) / ' ( x ) = 0 . 

Moreover, when ƒ is convex on X, then 

(2) / ( x ) - / ( x ) > / ' ( x ) ( x - x ) , V x e X , 

and (1) suffices to infer that x is a global mimimizer for the problem, even 
when x is a boundary point of A. However, in the latter case, (1) is no longer 
necessary for minimization. Instead, as Rockafellar has shown (in [Ro]), when 
A is convex and closed we should expect the inclusion 

(3) 0 e d(f + 6A)(x) = df(x) + d{6A)(x), 

where df(x) = {x* G X* : f(x) - f(x) > x*(x — x), Vx} defines the subdiffer-
ential of ƒ at x, and 6A is the convex indicator function of A with values -f 1 
on A, +oo otherwise. It is also known (e.g., from [ET]) that a minimizing x 
exists if, in addition, ƒ is lower semicontinuous on a reflexive X and coercive 
on A (in that ||x|| —• + oo on A => f(x) —• +oo), since then each sublevel set 
{x € A: f(x) < c} is (weakly) compact. 

We may regard (3) as an expression of the Lagrange Principle, which as­
serts that constrained extremal problems can be attacked by considering a 
suitable related problem without constraints. To obtain a form which has 
more familiar classical antecedents, suppose that A = {x: F(x) = 0 } , where 
F: X —• Y is a Banach space mapping assumed continuously Fréchet differ-
entiable at x with derivative F'{x): X —• Y linear and continuous. Then if 
F'{x) is onto (or has a range of finite codimension), there exists A € R and a 
y* G Y* for which the Lagrangian 

(4) C = \f + y*oF satisfies (1), i.e, C'(x) = 0. 

This result is a consequence of Lyusternik's work (from 1934) in characterizing 
tangency for sets as smooth as A. A and y* may be termed Lagrange multi­
pliers, and under certain additional conditions it can be shown that A ^ 0. 
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When Y = Rn, inequality constraints in the form F(x) < 0 (interpreted 
componentwise) can also be handled, and there result the Kuhn-Tucker con­
ditions of linear programming (from 1951), namely that (4) holds with A and 
each component of y* G Rn nonnegative, while each summand in the dot 
product y* • F(x) vanishes. Conversely, it is trivial to see that when A ^ 0, 
these conditions are sufficient for the constrained minimization provided that 
x minimizes C (and this would be assured by the convexity of £). The only 
new material in the present book is the discussion in Chapter 4 of recent 
work by Clarke, Ioffe, Miljutin, and others to the effect that if x minimizes 
ƒ when restricted to the null set of F, as above, then with sufficient differen­
tiability and regularity, there exists a y* G Y* for which x minimizes locally 
the penalty-like function f + y* - F + e||F(-)||, for each e > 0. This result 
embodies the principle of complete constraint removal, which is regarded as 
a culmination of Lagrange's prescription for treating extremal problems with 
side conditions (discussed thoroughly in Chapter 1), and it is used to obtain 
second-order conditions necessary for minimization. 

The author uses these results to obtain the standard necessary conditions 
for (smooth) problems in the classical variational calculus where, say 

(5) f(x)= f L(t,x(t),x(t))dt, 
J a 

on an appropriate (Sobolev) space of functions on [o,6], and the constraints 
can be described by suitable functions F. 

Much of the book is directed toward yet another exploration of convex­
ity and its dominant role in both variational calculus and optimal control. 
(Among similar recent expositions are [BP, Ce, Cl, ET, Sm, Tr and Ze].) 
For the minimization of integral ƒ as above, the convexity of L in x is known to 
be of vital importance for necessity (Weierstrass, c. 1879), sufficiency (Weier-
strass, 1879; Hubert, 1900, field theory) and existence (Tonelli, 1915). (Sur­
prisingly unexplored until recently is the fact that convexity of L in x and x 
produces a convex ƒ which affords elementary sufficiency arguments; see [Ew 
and Tr]). In particular, Tonelli showed that such convexity was responsible 
for the requisite lower semicontinuity of ƒ. (In [1], Cesari provides a lively 
account of the contributions of Tonelli and his successors.) 

Convexity in u of L(t, x, u) is of equal significance to problems in optimal 
control in which it is desired to minimize a performance integral ƒ (x, u) = 
fa L(t,x,u)dt when the state x(t) € Rn is determined from the "control" 
u(t) € î / Ç R f c through a given system of differential equations x = g(t, x, tz). 
In most applications, the controls are discontinuous, and U is not open, so that 
classical variational methods cannot be used to characterize optimality in u. 
Instead, from 1961, we have the Pontrjagin conditions asserting that the values 
of an optimal control û should minimize at a.e. t G [a, b] those of an associated 
integrand h(t, x(t), u) = \L(t, x(t), u) + p(t) • g(t, x(t), u) for all u G [/, where 
A G R, p is an appropriate adjoint or costate function, and x is the associated 
optimal state. In simple cases, when enough convexity is present, this result 
can be motivated by sufficiency considerations (as in the [TV] supplement) and 
Tikhomirov shows how it can be derived (in Chapter 1) from an amalgam of 
earlier results, tapping the appropriate convexity which resides in integral 
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functionals as revealed by Lyapunov's Theorem. When L is not suitably 
convex, one remedy may be found through the Extension Principle in the 
form of Bogoljubov's Convexification Theorem (of 1930), which in Chapter 
3 is related to chattering in control theory and given a relatively accessible 
proof, wherein the principal ingredient is Fenchel (second) conjugation. (The 
Fenchel conjugate (or polar) of ƒ : X —• (—oc, +00] is the convex function ƒ* 
on the dual X* defined by 

n o = *up[**(*)-/(*)]. 
xex 

Its conjugate ƒ**, similarly defined, provides explicitly the greatest convex 
minorant of ƒ.) 

However, there is little attempt to utilize this same duality (developed in 
Chapter 2) to explore the Hamiltonian formulation of the problems considered 
(as in [Ro]), nor is there any presentation of the extensions of the results to 
nonsmooth extremal problems (as in [CI]). Since these newer tools have been 
used recently by Clarke, Vinter and others [2, 3, 4], to shed further light on 
fundamental properties of solutions to classical (smooth) problems, it seems 
unfortunate that Tikhomirov has not employed his evident expositional talent 
to incorporate them in this latest version of his work. 

Within its restrictions the book fulfills most of the goals stated by its 
author in a preface notable for its candor. Moreover, it is rich in historical-
philosophical commentary and its length recommends it as an adjunct to a 
graduate level course in this subject. However, with few worked examples, 
and no problem sets, it probably would not serve as the text. 
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This book is an important contribution to analytic number theory, espe­
cially to the branch which is collected in Mathematical Reviews under the title 
"Modular Theory". Before we come to our subject we have to tell something 
of the background in which Hecke's theory assumes a conspicuous place. In 
this we allow ourselves some simplifications. 

A question which has attracted mathematicians since Fermât and Euler is 
the following: given a positive definite quadratic form 

2fc 

ƒ M = Yl foiXiXi 
M = l 

with integral fa, how many solutions has the equation 

(i) m=g 
for an integral g and integral x{l The question can be put into the frame of 
analytic function theory by the evident identity 

(2) *(*, / ) = J2 e*"izI[x] = £ Nv> 9)e2*igz 

xez2k g 

with a complex variable z, where N(f,g) denotes the number of solutions of 
(1). What makes the problem interesting is the fact that this function is a 
modular form in z satisfying the functional equations 

( 3 ) ^(^)^+d)" fc = ± ^ ) 

where a , . . . , d are integers with the properties 

(4) ad — be = 1, c = 0 mod q 

and where g is an integer, characteristic for f[x], the so-called level of ƒ. The 
matrices (a

c
b

d) satisfying (4) form the subgroup To(q) of the modular group 
SL2(Z). 

Modular forms and their quotients, modular functions, are intrinsically 
connected with elliptic functions and so belong to the central subjects of 


