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The word "foliation" stands out in the title of the book under review as 
requiring explanation. For those who are predisposed to botanical terminology 
(this definitely includes the reviewer) this term conjures up images which 
are perhaps reminiscent of Desargues [20]. The term "structure feuilletée" 
was coined by Georges Reeb [2, 16]. Later authors began using the briefer 
"feuilletage" which was translated as "foliation." Reeb winces at the botanical 
interpretation and offers instead a gastronomic motivation [18]: 

"A défaut de botaniste l'assemblée comptera peut-être un 
pâtissier. La pâte feuilletée—j'ai de bonnes raisons de le 
croire—donne une bonne idée d'un feuilletage (de codimen-
sion 1 dans R3) dont elle dessine bien les feuilles et en suggère 
des propriétés." 

Of course the more mundane translation to "sheeted" or "layered" shows 
that the terminology is appropriate since it suggests the image of pages in a 
book. Unlike the ill-fated terminology of Desargues, "foliation" has become a 
mathematical household word. 

A foliation is simply a decomposition of a manifold into a disjoint union 
of immersed submanifolds (called leaves) of constant dimension such that 
the decomposition is locally homeomorphic to the decomposition of Rn = 
Rk x Rn~k into the parallel submanifolds Rk x {point}. The most classical 
version of this is the "flow box" neighborhood of a point at which a vector 
field is nonzero (fc = 1). With this case in mind the study of foliations may 
be thought of as a generalization of Poincaré's study of differential equations 
from the dynamic viewpoint [14]. One of the charming aspects of this subject 
is that there are several sources of historical motivation. Reeb, for example, 
derives inspiration from the study of differential equations in the complex 
domain inaugurated by Painlevé. Differential equations is not the only field 
which can claim the study of foliations. Geometers and topologists can also 
participate and claim antecedents such as É. Cartan, C. Ehresmann, H. Hopf, 
and H. Kneser. 

The book under review deals with the principal results obtained in the 
theory of foliations during the period 1947-1965. The earliest of these results 
were the discovery of the Reeb foliation and the Reeb stability theorems [17]. 
H. Hopf had asked whether there is a completely integrable plane field on the 
3-sphere. Reeb answered this question by constructing the now well-known 
foliation having a single toral leaf with all other leaves planar and spiralling 
towards the toral leaf. This example provided the justification for the further 
qualitative study of foliations. Furthermore, its significance in motivating 
later work of Haefliger and Novikov cannot be overstated. 
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The Reeb stability theorems give information about leaves near a compact 
leaf. The local version, which is true for any codimension, says that some 
neighborhood of a compact leaf having finite fundamental group consists en­
tirely of compact leaves having finite fundamental groups. The arguments 
used in the proof are variants of those associated with the theory of cov­
ering spaces. For foliations of codimension one of a compact manifold the 
neighborhood can be taken to be the entire manifold; that is, every leaf of 
the foliation is compact. Reeb also showed that similar statements hold for 
perturbations of the original foliation. In [3] Ehresmann and Shih observed 
that the hypothesis of having a finite fundamental group for the leaf can be 
weakened. This involved the notion of holonomy. Based loops in the original 
leaf can be lifted to nearby leaves in an obvious way which turns out to be 
independent of the homotopy class of the loop. This procedure is a general­
ization of the classical Poincaré map of a periodic orbit of a flow, where the 
periodic orbit is the loop and the lifted path is a nearby (generally not closed) 
trajectory of approximately the same length. In this way, the fundamental 
group of a leaf determines, by homomorphic image, a group of germs of local 
homeomorphisms of Rn~k which fix the origin. This image group (actually 
its isomorphism class) is called the holonomy group of the leaf. The term 
holonomy is from differential geometry and goes back to E. Cartan. Ehres­
mann's motivation in selecting this term is the analogy between a foliation 
and an integrable (i.e., flat) connection. With these refinements the local 
Reeb stability theorem takes the following form. 

THEOREM. If L is a compact leaf of a foliation which has a finite holo­
nomy group then there is a neighborhood of L consisting entirely of compact 
leaves having finite holonomy groups. Furthermore, in a sufficiently small 
neighborhood of L the compact leaves will all be covering spaces of L. 

The thesis of Haefliger [7] contains further important advances in the qual­
itative study of foliations. One of these was the first essential use of the 
classical arguments of Poincaré and Bendixson to prove the following result 
concerning real analytic foliations of codimension one. 

THEOREM (HAEFLIGER). If a compact manifold admits a real analytic 
foliation of codimension one then the manifold has infinite fundamental group. 

In particular, simply connected manifolds such as the 3-sphere do not have 
analytic foliations of codimension one. It was already clear that the Reeb 
foliation of the 3-sphere is not analytic because the holonomy group of the 
toral leaf contains germs which are nontrivial even though they are the identity 
on an open subinterval. It is precisely this phenomenon which Haefliger's proof 
detects. If a simple closed curve is everywhere transverse to the foliation then 
it bounds an immersed disk which can be perturbed to be in general position 
with respect to the foliation. This means that the singular foliation induced 
on the disk has only Morse singularities (centers and saddles). This idea of 
using surfaces in general position with respect to a codimension one foliation 
was a significant advance of the theory. 

Another major advance was made by Novikov [12]. Novikov's paper stands 
out from the rest of the literature in this field as having an unusually high 
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ratio of inspiration to perspiration. The most famous results in this paper are 
the compact leaf theorems. Kneser [11] had shown that every foliation of the 
Klein bottle having one-dimensional leaves must have a compact leaf (circle). 
Novikov showed that a codimension one foliation of a compact 3-manifold 
having finite fundamental group must have a compact leaf; in fact, such a 
foliated manifold must contain a solid torus foliated in the same manner as 
the Reeb foliation. The techniques used by Novikov were similar to those of 
Haefliger except that the phenomenon being sought was different. Novikov 
showed that the hypotheses imply the existence of a one-parameter family 
of embedded circles Ct (t > 0), each of which is contained in a single leaf, 
such that for t > 0, Ct is homotopic to zero in its leaf whereas Co is not. In 
the subsequent literature Co is usually called a vanishing cycle. Novikov also 
showed that any codimension one foliation of a compact 3-manifold having 
nonzero second homotopy group must have a compact leaf (but not necessarily 
a torus). The arguments in this case start with an embedded 2-sphere in 
general position with respect to the foliation. The compact leaf theorems 
take the following amalgamated form. 

THEOREM (NOVIKOV). If M is a compact 3-manifold whose universal 
covering space is not contractible then every codimension one foliation of M 
has a compact leaf 

Significant advances in understanding the dynamics of codimension one 
foliations were made by Sacksteder [15]. A minimal set of a foliation is a 
nonempty compact set which is a union of leaves and which has no proper 
subset satisfying these conditions. This notion was originally introduced 
by G. D. BirkhofF in the context of flows. Understanding the nature of mini^ 
mal sets is the first step toward describing the structure of a foliation. In [1] 
A. Denjoy had shown that a flow on the 2-torus which is twice continuously 
differentiate and without stationary points can only have either a single pe­
riodic orbit or the entire torus as a minimal set. Denjoy also gave a coun­
terexample for the C1 case, that is, a flow containing a unique minimal set 
which is homeomorphic locally to the product of a Cantor set and an interval. 
Inspired by Denjoy's work and its generalization to flows on arbitrary surfaces 
by A. J. Schwartz, Sacksteder obtained the following fundamental result. 

THEOREM (SACKSTEDER). Suppose that M is a minimal set of a codi­
mension one foliation of class C2 which is neither a single compact leaf nor 
the entire manifold. Then for some leaf in M there is an element in its holo-
nomy group whose derivative (at the fixed point corresponding to the leaf) has 
absolute value < 1. In particular, the fixed point is contracting and isolated 
and the leaf has nontrivial holonomy and fundamental groups. 

In the classical case the only possibilities for the leaf are the line, which is 
simply connected, and the circle, so Sacksteder's result is a generalization of 
Denjoy's. 

Activity in the study of foliations has increased dramatically since 1965. 
Evidence of this is provided by the massive bibliography compiled by Godbil-
lon [5]. In the process new directions of inquiry have been pursued. Among 
these are the study of characteristic classes and classifying spaces for folia­
tions, questions of existence (on a particular manifold or even in a particular 
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homotopy class of A:-plane fields), and geometric properties of an asymptotic 
nature (e.g., curvature and growth properties of leaves). However, these top­
ics are beyond the scope of the book under review and will not be discussed 
here. 

The present book provides a detailed introduction to the topics described 
above. It also includes introductory material on differentiable manifolds and 
an appendix on the Frobenius theorem. The book is divided into eight chap­
ters, four of which have extensive notes at the end. These notes describe 
additional results; some are in survey format. The book concludes with a 
list of exercises. The original version of the book, in Portuguese, appeared 
in the series Projeto Euclides written for study by students in Brazil. The 
English translation, by S. Goodman, is excellent. On the dust jacket the 
book takes credit for being "a valuable tool for students and those study­
ing the theory of foliations, as well as a comprehensive reference source for 
research libraries." The first of these assertions, which is compatible with 
the authors' intentions as set forth in the introduction, is definitely valid. 
There are very detailed proofs of the results of Reeb, Haefliger, and Novikov 
described above. Although Sacksteder's theorem is not proved, the chapter 
notes contain a statement of the result as well as a detailed presentation of the 
Denjoy counterexample. In addition, Chapter 5 contains an example, due to 
Sacksteder, of a C°° foliation of codimension one which possesses a nowhere 
dense minimal set which is not a single compact leaf. The style of exposi­
tion is leisurely and illuminating and brought back to this reviewer pleasant 
memories of his first course in differential topology (taught by E. Lima). The 
authors' particular interest in singularities of differential forms is shown in 
some of the chapter notes which contain material one is not likely to see in 
other books on foliations. 

The publisher's assertion that this book is a comprehensive reference source 
is unjustified hyperbole. Although a good introduction, the book was not 
really up to date when written and, in some instances, the exposition lacks 
polish. For example, the authors seem to convey the impression that if the 
union of two foliation charts is contained in a third foliation chart then any 
plaque of the first chart intersects at most one plaque of the second. That 
this is false is easily seen from examples of codimension two. This causes 
the argument at the bottom of p. 62 to be flawed. Later on the authors 
offer a different argument requiring differentiability which seems adequate. In 
general the use of differentiability in proofs is pedagogically sound, especially 
when the continuous case is much more work. In Chapters 6 and 7, however, 
the authors assume the foliations to be of class C2 in the use of general 
position arguments for surfaces. The C1 case would have not have been much 
harder using the arguments of [4]. The chapter on actions by Lie groups 
(Chapter 8) is rather half-baked. Several proofs are given of Lima's result that 
the 3-sphere cannot have two commuting vector fields which are everywhere 
linearly independent. This is an important result, but it was eclipsed by 
the work of Novikov. The most important result in this chapter, beyond 
Lima's theorem, is the observation that a locally free action of codimension 
one cannot have vanishing cycles, but no reference is given for this result. 
A suitable reference would have been [13] (where the vanishing cycle result 
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is attributed to Roussarie) which also contains a more general extension of 
Lima's result than that presented in this book. 

The book would have been more up to date had the chapter notes continued 
past Chapter 5. The book does not mention the compact leaf theorem of 
Kneser [11] even though this reference is cited in another context. Most 
astonishing of all is that the authors never mention the counterexamples to 
compact leaf theorems in higher codimension discovered by their neighbor 
P. Schweitzer [19]! Also, the bibliography at the end of the book was neither 
translated nor updated. For example, we are still offered a Spanish translation 
of Seifert and Threfall (sic), and all works cited after 1976 are of Brazilian 
origin. 

There are other sources with which the present book should be compared. 
The expository papers by Haefliger [8, 9] still provide an excellent crash-
course, but the book under review is much more detailed. Readers wanting 
a more comprehensive treatment, which takes the subject past 1970, should 
study the multiple-volume works of Godbillon [6] and Hector and Hirsch [10]. 
The reader who still hasn't had enough can read all of the papers listed in 
Godbillon's bibliography [5]. 

To summarize, the Camacho-Neto book is a detailed but outdated intro­
duction to the geometric (qualitative) study of foliations. Given the price of 
the translated version, the enterprising student of foliations might consider 
reading the original version. This would allow her or him to learn some math­
ematical Portuguese along the way. This is a useful endeavor, since many, if 
not most, of those who work in this field have paid mathematical visits to 
either I.M.P.A. or P.U.C. in Rio de Janeiro. 
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This book, aimed at a mixed public of physicists and mathematicians, starts 
with a 150-page chapter, called the Introduction, on optics. The purpose of 
this introduction is to illustrate the importance of symplectic geometry for 
physics. 

The primitive way in which the discussion starts with Gaussian optics may 
serve as an eye-opener for some. However, it may also make a somewhat 
artificial impression on those who already have seen the relation between 
Snell's law, Fermat's principle, and Hamilton's treatment of geometric optics 
in some early physics course. 

The subsequent epic story of Fresnel's discovery of the wave nature of 
light, leading to oscillatory integrals, is always very impressive. Here I am 
curious whether Fresnel himself really used complex notation as suggested in 
the book. Also I missed the end of the story, explaining light, and in particular 
its polarization, as rapidly oscillating solutions of Maxwell's equations. 

Instead the book takes a surprising and exciting turn to use Fresnel inte­
grals in order to pass to the standard representation of the metaplectic group 
on L2(Rn) . This move into quantum mechanics is followed by, among other 
things, a discussion of the Groenwald-van Hove theorem, saying that there 
is no way of extending the metaplectic representation to include any non-
quadratic polynomial. It is a great service to the public to treat this subject 
so completely in this book. 

Maxwell's equations do appear at the end of Chapter I, but only to treat the 
motion of a charged particle in an electromagnetic field as being Hamiltonian 
with respect to a symplectic form on the cotangent bundle, which differs from 
the standard one by a "magnetic term". 

Chapter I is concluded with the provoking question "Why symplectic ge­
ometry?" I would like to add to their answer that classical mechanics not 


