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ON FOURIER COEFFICIENTS OF A CONTINUOUS 
PERIODIC FUNCTION OF BOUNDED ENTROPY NORM 

ROMUALD DABROWSKI 

In 1983 B. Korenblum [5, 6] introduced a new class of Banach function 
spaces associated with the notion of entropy (we will call these spaces and 
their norms entropy spaces and entropy norms, respectively). The entropy 
norms are intermediate between the uniform and the variation norms. One 
application of entropy spaces is a new convergence test for Fourier series which 
includes classical tests of Dirichlet-Jordan and Dini-Lipschitz [6]. The aim of 
this note is to point out a natural connection between entropy spaces and 
Hardy space ReH1 [4]. In fact any entropy space can be embedded into 
ReH1 via a multiplier type bounded operator. As a corollary we obtain a 
growth condition for Fourier coefficients of a continuous periodic function of 
bounded entropy norm. 

1. Two representations of an entropy norm. Let T = R/Z be the 
unit circle, and let \E\ = fE dx denote the normalized Lebesgue measure of 
a Borel subset E of T. Also, let A;(s), 0 < s < 1, be a positive nondecreasing 
concave function such that k(s) = 1. The A;-entropy of a finite subset E of 
T (E ^ 0 ) is k(E) = J2ik{\Ii\), where {Ii} are the complementary arcs of 
E in T. For an infinite subset E of T we set k(E) = sup{k(F);F C E, 
F finite}. We also put k(0) = 0. The k-entropy norm [5, 6] of a real 
continuous function ƒ on T is defined by the formula 

\\fh= f k(rH{y})dy. 
JR 

THEOREM 1 [2]. Let k(s), 0 < s < 1, be a positive nondecreasing concave 
function such that k(0~*~) = 0 and lima->o(k(s)/s) = oo. There is a unique 
Borel probability measure /i^ on the unit interval (0,1] such that 

IIƒII* = / ƒ \nj{f)dxd^{s), 

where H/(/) is the oscillation of the function ƒ on the arc I = I{x,s) in T 
of length s and center at x. A relationship between k and //& is given by the 
formula 

Hs) — - dfik{u>) dt. 
Jo Jt u 

It is then proved in [2] that the set Ck of real continuous functions on T of 
finite fc-entropy norm is a Banach algebra with respect to the norm ||-||fc+|H|oo-
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2. Natural embedding of the space Ck into Hardy space ReH1. We 
recall that a real function a(t) on T is called an atom if (i) the support of a(t) is 
contained in a subarc I of T; (ii) \a(t)\ < | / | _ 1 for all t in T; (iii) fT a{i) dt = 0. 
It is proved in [1] that 

(2.1) sup{||a||Retfi, a atom} = 1, 

for a suitable choice of norm of Re H1. From now on we fix a function k with 
the properties assumed in Theorem 1 and we let /i = fik be the corresponding 
probability measure. Also, let A/ denote the characteristic function of a 
subarc I of T. For any function ƒ, ƒ € C&, we put 

(2.2) Tkf(t) = [ [ (l/s2)A,(0(ƒ(0 - ƒ(/)) dMs) dx, 

where I = 7(x, s), i 6 T, 0 < s < 1, and ƒ(/) = ^ fjf(x)dx. A standard 
argument involving Fubini's theorem shows that integral (2.2) makes sense 
for almost all t in T and it defines a bounded linear operator from the space 
Ck to the space Ll(T) of all Lebesgue integrable functions on T. In fact much 
more can be said about the operator TV We first observe that for any arc 
ƒ = I(x, s), x € T, 0 < s < 1, one can write 

JA,(0(/(«) - ƒ(/)) = fW)a,(0, t € r, 
where a/(£) is an atom supported on / and dependent on ƒ. Hence (2.2) can 
be viewed as a Bochner integral [7] of a strongly measurable function 

{x,s)h+ £nj(x,a)(/)aj (x,a), 

defined on measure space (T x (0, l],dxdfj,k) with values in ReH1. Now the 
Minkowski's inequality for the norm of a Bochner integral and (2.1) yield the 
following result. 

THEOREM 2. T* is a bounded linear operator from space Ck to Hardy 
space Re H1 such that 

Hi* ƒ Un» m < || ƒ II*, feck. 
3. Operator Tk as a multiplier. For any integer n and t in T we put 

en(t) = exp(27rint). A direct calculation of the value of operator Tk on en 

leads to the following theorem. 

THEOREM 3. Operator Tk is of multiplier type, i.e. Tken = f3n(k)en, 
n G Z, where /3n(k) is given by the formula 

(3.1) pn{k) = r-4~2 f (cos(27rns) - 1 4- 2 7 r 2 n V ) 4 ^ W , n ^ 0. 
z7T n ,/(o,i] 5 

Moreover, one has 0o(k) = 0 and /?n(&) = P-n{k) > 0 /or n ^ 0, ana1 7*, 
restricted to Ck{0) = {ƒ G C*; JT ƒ(£) d£ = 0}, zs injective. 

It is a well-known result of Hardy [3] that if J2n
 cnen is the Fourier series 

of a function g G ReH1 then X)n=o lcn/nl < ^ll^llRe/f1 f° r certain constant 
C independent of g. This fact together with Theorems 1 and 2 imply the 
following corollary. 
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COROLLARY. Let f be a continuous function of bounded k-entropy. If 
^Znanen(t) is the Fourier series of f, then £n#o&*( f c)lan/nl - cWfh-

EXAMPLES. 1. If k(s) = s, then fi is the point mass measure Si concen­
trated at s = 1 and /3n(k) = 1 for any n / 0. Note that in this case ||/||fc is 
just the oscillation of a function ƒ on T. 

2. Suppose that dfj,(s) = g s 9 - 1 ds for some g, 0 < q < 1. Then a repeated 
integration by parts leads to the formula 

xlq-4 + 2nx-q (1 - cos(27ry))yq ~2 dy J , n > 0. 

In particular, if k(s) = s(\ \og(s)\ + 1) is the Shannon entropy, then d/j,(s) = 
ds (see [2]) and pk(n) = /Q

n(l - cos(27ry))y-1 dy - (3/2), n > 0. Now it 
is not difficult to prove that limn_>o(/?n(fc)/log(n)) = 1. Therefore, using 
Theorem 3 we conclude that if J2n

 an^n is the Fourier series of a continuous 
function of bounded Shannon entropy norm then J ^ ^ o lan(log(|rc|)/n| < 00. 
Similarly, formula (3.2) implies that if {an}n €z are the Fourier coefficients of a 
continuous function with bounded Lipschitz entropy norm (i.e. k{s) = s9, 0 < 
q < 1, and by [2] dfi(s) = ^ ^ ( ^ - h g ^ - l ) ^ " 1 ds), then Yln*o \an\/\n\q < 00. 
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