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NUMERICAL METHODS FOR EXTREMAL PROBLEMS 
IN THE CALCULUS OF VARIATIONS 
AND OPTIMAL CONTROL THEORY 

JOHN GREGORY 

Introduction. New, general methods are given to find numerical solutions 
for extremal problems in the calculus of variations and optimal control theory. 
Theoretical methods are derived and used to establish pointwise a priori error 
estimates with maximum error at the node point, ||e||oo, equal to 0(h2) and 
a Richardson error of 0(h4). This is done under the weak assumption that 
there are no conjugate points on the interval and not under the usual convexity 
assumptions. 

Of practical interest is that these methods (i) are very easy to implement, 
(ii) hold for well-defined mixtures of initial value and boundary value prob
lems, (iii) use multipliers, and not ill-conditioned penalty methods, for both 
equality and inequality constraints, in a natural, efficient manner, and (iv) 
are applicable to transversality, type-minimal time problems. 

The heart of these methods is the algorithm (4) and the a priori estimates in 
Theorem 2 for the m-dependent variable problem in the calculus of variations 
given below. Once this is established we quote Hestenes [5] and show that 
very general optimal control problems can be easily reformulated and solved 
as calculus of variations problems. 

The calculus of variations problem. The problem is to find numerical 
solutions for extremal solutions of 

(1) / (*)= f f(t,x,x')dt, 
J a 

where x(t) is an m-vector. This will be done by finding approximate numerical 
solutions of the first variational problem 

(2) /'(*, y) = f\yTfx + y'Tfx>) dt = 0 
J a 

for numerical admissible variations y(t). The setting and background is given 
in Hestenes [5, pp. 57-62]. In particular, we require that the m x m matrix 
fx'x' be invertible for each t in [a, 6], enough smoothness on ƒ to yield a unique 
piecewise smooth solution, and that (1) have no conjugate points in [a, b). 

Letting 7r = (a = ÜQ < a\ < • • • < a^ = b) be a partition of [a, 6], with 
afc+i — afc = h = (b — a)/N, and Zk(t) the spline hat functions with Zk(ak) = 1, 
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Zk(t) = Zk(t)Imxm, and letting 
N N 

(3) xh(t) = ^2zk{t)Ck and yh{t) = ^2zk{t)Dk 

k=0 k=0 

be, respectively, the numerical solution to our problem and the numerical 
admissible variation, and utilizing the linearity of y(t) in (2), we have the 
algorithm 
(4) 

, / * Xk + Xk-i Xk-xk-i\ h f m xk + xk-i xk-xk-i\ U («*-„ , - ) + -ƒ* \ak_lt , ) 

r ( * %k+Xk+l Xk+l-Xk\ 
-fx>\ak, 2 ' h J 

, h ( * xk + xk+i xk+x-xk\ 
+ 2 / . (*» 2 ' h ) = ° 

for k = 1,2,..., N — 1. In the above a£ = (ak 4- ak+i)/2 and xk = Xh{ak) is 
the computed value of the solution x(t) at ak. 

We note that (4) is a block tridiagonal system of equations which is easily 
solved in practice by Newton's method with the accuracy described in The
orem 2 below. For the two-point boundary value problem with x{a) = xa 

and x(b) = x^, (4) is a system of m(N — 1) nonlinear equations in m (TV — 1) 
unknowns. For the initial value problem with x(a) = xa and x'(a) = xf

a, we 
have a nonlinear equation in the m variables Xfc+i for each A; = l ,2, . . . , iV — 1. 

The first theorem involves long, but elementary calculations with local 
truncation error, see [4]. 

THEOREM 1. Between corners ofx(t), the local truncation error is h3Q(ak) 
+ O{h5),for fc = l , 2 , . . . , 7 V - l . 

The vector Q(t) depends only on the solution x(t) and its derivatives and 
ƒ and its derivatives. Thus, 

THEOREM 2. For h > 0 sufficiently small there exists C > 0 independent 
of h so that for any component e of the error eh{ak) = x(ak) — Xh{ak) we have 
\e\ < Ch2. In addition, the Richardson solution xfi(t), where 

xh(ak) = [4*h/2{zk) ~ xh(ak)]/3, 

has a maximum component, pointwise error satisfying \eR\ < Ch4, where eR 

is any component ofeh(ak) = x(ak) — xfi(ak). 

The proof of this result is too long and difficult to be given here and will 
appear elsewhere. A brief sketch is as follows. Using Theorem 1 and (4) we 
obtain an (approximate) second variational problem. This is a linear sys
tem AhEh = /i3Q + 0(/i5), where Ah is a block tridiagonal matrix, Eh is 
the m(N - 1) error vector, and Q(ak) is the fcth component of Q, described 
above. Extensions of the author's quadratic form theory [1] and generaliza
tions of results for ordinary differential equations by the author and Zeman 
[3] lead to an error of the form Hü^l^ < C/i3/2. Using these results it may 
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be shown that the matrix Ah is invertible with bounded elements. Thus, 
Eh = Aj;x{h3Q + 0{hb)) implies that ||£*||oo < Ch2. We note that this 
last result is a significant generalization of the classical result of Henrici [4] 
for J — d iag( - l ,2 , -1) when m = 1, where the elements of J - 1 may be 
computed explicitly. 

Optimal control problems. Our final result is to indicate that the prac
tical and theoretical results obtained for the general calculus of variations 
problems above are applicable to a very large class of numerical optimal con
trol problems. 

Hestenes [5, pp. 346-351] shows that "A General Control Problem of Bolza" 
defined by the conditions 

(5) Ip(x) = gp(b) + f Lp{t,x(t),u{t))dt (p = 0 , l , . . . ,p) , 
Jt° 

(6) <pa(t,x,u) <0 (1 < a < ra'), <pa(t, z , u ) = 0 (m' < a < m), 
(7) x% = f%(t,x,u), and 

(8a) ts = T5 (6), x{{ts) = Xis{b) (i = 1 , . . . , n; s = 0,1), 

(8b) / 7 ( s ) < 0 ( 1 < 7 < P ' ) , l1(x)=0 {p' < 7 < P ) , 
has a minimizing solution for 7o(z) of the form 

x0:x0(t), b0, u0{t) {t° <t<t') 

if there exist multipliers 

Ao > 0, A7, pi{t), na{t) 

( 7 = l , . . . , p ; t = l , . . . , n ; a = l , . . . , m ) , 

not vanishing simultaneously, and functions 

(9) H{t,x,u,p,v) = pij% - XpLp - HaPai G(b) = Xpgp 

(p = 0 , l , . . . ,p ) 

satisfying the usual, expected conditions (see [5, pp. 348-350]). 
Finally, we claim that 

THEOREM 3. The definitions of x n + 1 (<),...,xn+q+m(t) given by 

(10a) xi = ui~n, xi(a)=0 (i = n + 1, . . . ,n + q) 

(10b) x{ = / i l
a"n"9 , ^ ^ ( ^ = 0 (t = n + g + l , . . . , n + g + m) 

a//or̂  ti5 ô convert the general control problem of Bolza to a problem of the 
form (1) that admits a numerical solution with the errors described in Theorem 
2 above. 
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