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ALGEBRAIC VECTOR BUNDLES 
OVER REAL ALGEBRAIC VARIETIES 

M. BUCHNER AND W. KUCHARZ 

By an affine algebraic variety, we mean in this note a locally ringed space 
(X, Rx) which is isomorphic to a ringed space of the form (V, Ry), where V is 
a Zariski closed subset in R n and Ry is the sheaf of rings of regular functions 
on V. Recall that £y 0 0 is the localization of the ring of polynomial functions 
on V with respect to the multiplicatively closed subset consisting of functions 
vanishing nowhere on V [2, 15]. 

Let F be one of the fields R, C or H (quaternions). A continuous F-vector 
bundle £ over X is said to admit an algebraic structure if there exists a finitely 
generated projective module P over the ring %x{X) (8>R F such that the F-
vector bundle over X, associated with P in the standard way, is C° isomorphic 
t o e 

Our purpose is to study the following 
PROBLEM. Characterize continuous F-vector bundles over X which admit 

an algebraic structure. 
This is an old problem, but despite considerable effort, the situation is well 

understood only in a few special cases: when X is the unit sphere Sn [4, 16], 
when X is the real projective space R F n [5, 7] and when dimX < 3 and 
F = R [8, 9] (cf. also [13] for a short survey). 

Clearly, R F n with its natural structure of an abstract real algebraic variety 
is actually an affine variety and every affine real algebraic variety admits a 
locally closed embedding in some R P n . 

Let us first consider C-vector bundles. 
Let X be an affine nonsingular real algebraic variety and assume for a mo­

ment that X is embedded in R P n as a locally closed subvariety. Consider 
R P n as a subset of the complex projective space CPn. Let U be a Zariski 
neighborhood of X in the set of nonsingular points of the Zariski (complex) 
closure of X in C P n . Denote by H%[£n(U,Z) the subgroup of the coho­
mology group Heven(U, Z) generated by the cohomology classes which are 
Poincaré dual to the homology classes in the Borel-Moore homology group 
#even(CAZ) represented by the closed irreducible complex algebraic subvari-
eties of U (cf. [3]). Let # g ^ l g ( X , Z ) be the image of H%™{U,Z) via the 
restriction homomorphism #even(*7,Z) - • if e v e n(X,Z). One easily checks 
that i ^ - a i g ( ^ 21) does n ° t depend on the choice of U or the choice of the 
embedding of X in RP n . 
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THEOREM 1. Let X be an affine nonsingular real algebraic variety and let 
£ be a continuous C-vector bundle over X. If £ admits an algebraic structure, 
then the total Chern class c(£) of £ belongs to HQ^ (X,Z). Conversely, £ 
admits an algebraic structure, provided that c(£) belongs to HQ^Y (X^Z)^X 
is compact, dimX < 5 and £ is of constant rank. 

SKETCH OF PROOF. We can assume that X is a locally closed subvariety 
in RjPn. Suppose that £ admits an algebraic structure. Then one can find 
a Zariski neighborhood U of X in the Zariski closure of X in CPn and an 
algebraic vector bundle £ over U such that the restriction £ | X of £ to X is C° 
isomorphic to £. It easily follows from [3] that c(£) belongs to H^^llg(X, Z). 

If all assumptions of the second part of Theorem 1 are satisfied, then with 
the help of the Grothendieck formula (cf. [6, p. 151]), one constructs a contin­
uous C-vector bundle rj over X such that rank rj = 2, rj admits an algebraic 
structure and c(rj) — c(£) (here both assumptions, c(£) E H^^llg(X,Z) and 
dimX < 5 are essential). Since £ is of constant rank, £ and rj are stably 
equivalent [12]. The conclusion follows now from [16, Theorem 2.2]. 

Our next step is the calculation of the groups H'^_zXg{X^ Z) for a large 
class of varieties. 

THEOREM 2. Let X be a locally closed nonsingular algebraic subvariety 
ofRPn and let Xc be the Zariski closure of X in CPn. Assume that XQ 
is nonsingular. Then HQ_&1 (X,Z) is equal to the image of the restriction 
homomorphism 

H2i{RPn,Z)->H2i{X,Z) 

in each of the following two cases: 
(a) 2i< 2 d i m X - n . 
(b) Xc is an ideal theoretic complete intersection in CPn and 2i < dim X. 

SKETCH OF PROOF. Consider the commutative diagram 

H2i(CPn,Z) —1-+ H2i{Xc,Z) 

H2i{RPn,Z) —^—> H2i{X,Z) 

where all homomorphisms are the restriction homomorphisms. If 7 is an 
isomorphism, then H2i(Xc, Z) = H$g{Xc, Z) and /? maps H2i{Xc, Z) onto 
ijQ_a lg(X, Z). Moreover, since 6 is an epimorphism, H^_3ilg(X1 Z) is equal 
to the image of a. 

If (a) is satisfied, then 7 is an isomorphism by the Lefschetz theorem [1]. 
If (b) is satisfied, then 7 is an isomorphism by the Larsen theorem [10]. 
Notice that if (b) is satisfied and dimX is odd, then HçfZaig ( ^ ^) *s c o m " 

pletely determined. For even dimX, the situation is more complicated. In­
deed, let 

Vn = {[x0,...,xn,xn+1)€RPn+1\x2 + .-- + x2
n = x2

n+1}. 

Then the Zariski closure of Vn in C P n + 1 is nonsingular and the restriction ho­
momorphism # e v e n ( R P n + 1 , Z ) ~+ Heyen(Vn,Z) is the zero homomorphism. 
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On the other hand, Vn is algebraically isomorphic to Sn and hence every 
continuous C-vector bundle over Vn admits an algebraic structure [4, 16]. It 
follows from Theorem 1 that i fg_ a l (Vn,Z) is nontrivial, provided that n is 
even. 

The example above indicates that the case in which dim X is even can only 
be handled under some additional assumptions. 

Denote by P(n; k) the projective space associated with the vector space 
of all homogeneous polynomials in R[xo, . . . , xn] of degree k. If an element 
H in P(n; k) is represented by a polynomial G, then V (H) will denote the 
subvariety of R P n defined by G. 

THEOREM 3. Let Y be a locally closed algebraic subvariety o /RP n , dim F 
> 2. Assume that the Zariski closure of Y in CPn is a nonsingular ideal 
theoretic complete intersection. Then there exists a nonnegative integer ko 
such that, for every integer k greater than ko, one can find a subset £& of 
P(n; k) which is a countable union of proper subvarieties ofP(n; k) and has the 
property that for every H in P(n; A;)\£fc, V(H) is either empty or nonsingular 
and transverse to Y and the group HçJ^^YC\V(H), Z) is equal to the image 
of the restriction homomorphism 

# e v e n ( R P n , Z) -» F e v e n ( F n V(H), Z). 

In particular, if Y = R P n , then Theorem 3 determines HQH£ig f° r generic 
algebraic hypersurfaces in R P n , n > 2, of sufficiently high degree. 

The proof of Theorem 3 is technically more complicated. Besides the Lef-
schetz theorem Moishezon's result [11, Theorem 5.4] also plays an essential 
role. 

Theorems 2 and 3 show that, in many cases, Theorem 1 imposes severe 
restrictions on continuous C-vector bundles admitting an algebraic structure. 

Among several applications of Theorem 3, we want to select only the sim­
plest one. 

THEOREM 4. Let n be a positive integer. Then there exists a C°° embed­
ding h: Sn —• R n + 1 , arbitrarily close in the C°° topology to the inclusion map, 
and a closed nonsingular algebraic subvariety X in R n + 1 such that h{Sn) = X 
and every continuous C-vector bundle over X admitting an algebraic structure 
is stably trivial. Ifn = 4 (mod 8), then also every continuous R- or H-vector 
bundle over X admitting an algebraic structure is stably trivial. 

Theorem 4 is interesting in view of the fact that every continuous F-vector 
bundle over Sn admits an algebraic structure [4, 16]. Let us also mention that 
every continuous stably trivial F-vector bundle admits an algebraic structure 
[16, Theorem 2.2]. 

The second part of Theorem 4 immediately implies that Shiota's conjecture 
[14, p. 1007] is false over X. Shiota has conjectured that a continuous R-vector 
bundle f of constant rank over an affine nonsingular compact real algebraic 
variety Y admits an algebraic structure if and only if all Stiefel-Whitney 
classes of f are Poincaré dual to the Z/2Z-homology classes of Y represented 
by closed algebraic subvarieties of Y. He proved the "only if" part of the 
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conjecture and the "if" part is established in [8, 9] for vector bundles over 
surfaces and threefolds. 

SKETCH OF THE PROOF OF THEOREM 4. Let G be an element in 
P(n + 1; 2k + 2) represented by the homogeneous polynomial 

{xl + • • • + x2
n - a£+1)(sg + • • • + xl + xl+x)

k. 

If we identify R n + 1 with a subset of R P n + 1 via the map which sends 
(xo, . . . ,^n) to [xo,.. . , z n , 1], then Sn = V{G). By Theorem 3 (applied to 
Y — R P n + 1 and k sufficiently large) together with Theorem 1, there exists 
an element H in P(n + 1 ; 2k + 2) such that H is arbitrarily close to G and for 
every continuous C-vector bundle £ over X = V(H), the total Chern class of 
£ is equal to 0. Clearly, there exists a C°° embedding h: Sn —• R n + 1 which is 
close to the inclusion map and satisfies h(Sn) = X. Since X is diffeomorphic 
to 5 n , the vector bundle £ is stably trivial. 

The second part of Theorem 4 follows by considering the complexification 
and the realification of vector bundles and by using the fact that the reduced 
Grothendieck group of continuous F-vector bundles over X is isomorphic to 
Z. 

REFERENCES 

1. A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of 
Math. 69 (2) (1959), 713-717. 

2. J. Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. Gren-
zgeb., Vol. 12, Springer-Verlag, New York, 1987. 

3. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, 
Bull. Soc. Math. France 89 (1961), 461-513. 

4. R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222-225. 
5. A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective spaces, Invent. 

Math. 10 (1970), 298-304. 
6. A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 

137-154. 
7. J. P. Jouanolou, Comparison des K-theories algébrique et topologique de quelque variétés 

algébrique, C. R. Acad. Sci. Paris Ser. A 272 (1971), 1373-1375. 
8. W. Kucharz, Vector bundles over real algebraic surfaces and threefolds, Compositio Math. 

60 (1986), 209-225. 
9. , Topology of real algebraic threefolds, Duke Math. J. 53 (1986), 1073-1079. 
10. M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 

251-260. 
11. B. G. Moishezon, Algebraic homology classes on algebraic varieties, Math. USSR-Izv. 

1 (1967), 209-251. 
12. F. P. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 60 (1959), 414-420. 
13. L. G. Roberts, Comparison of algebraic and topological K-theory, Algebraic iC-Theory 

II, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 74-78. 
14. M. Shiota, Real algebraic realization of characteristic classes, R. I. M. S. Kyoto Univ. 

18 (1982), 995-1008. 
15. R. Silhol, Géométrie algébrique sur un corps non algébriquement clos, Comm. Alg. 6 

(1978), 1131-1155. 
16. R. G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 

(1977), 201-234. 

D E P A R T M E N T O F M A T H E M A T I C S A N D S T A T I S T I C S , U N I V E R S I T Y O F N E W M E X ­

I C O , A L B U Q U E R Q U E , N E W M E X I C O 87131 


