ALGEBRAIC VECTOR BUNDLES OVER REAL ALGEBRAIC VARIETIES

M. BUCHNER AND W. KUCHARZ

By an affine algebraic variety, we mean in this note a locally ringed space (X, \mathcal{R}_X) which is isomorphic to a ringed space of the form (V, \mathcal{R}_V) , where V is a Zariski closed subset in \mathbb{R}^n and \mathcal{R}_V is the sheaf of rings of regular functions on V. Recall that $\mathcal{R}_V(V)$ is the localization of the ring of polynomial functions on V with respect to the multiplicatively closed subset consisting of functions vanishing nowhere on V [2, 15].

Let **F** be one of the fields **R**, **C** or **H** (quaternions). A continuous **F**-vector bundle ξ over X is said to admit an algebraic structure if there exists a finitely generated projective module P over the ring $\mathcal{R}_X(X) \otimes_{\mathbf{R}} \mathbf{F}$ such that the **F**-vector bundle over X, associated with P in the standard way, is C^0 isomorphic to ξ .

Our purpose is to study the following

PROBLEM. Characterize continuous \mathbf{F} -vector bundles over X which admit an algebraic structure.

This is an old problem, but despite considerable effort, the situation is well understood only in a few special cases: when X is the unit sphere S^n [4, 16], when X is the real projective space $\mathbf{R}P^n$ [5, 7] and when $\dim X \leq 3$ and $\mathbf{F} = \mathbf{R}$ [8, 9] (cf. also [13] for a short survey).

Clearly, $\mathbb{R}P^n$ with its natural structure of an abstract real algebraic variety is actually an affine variety and every affine real algebraic variety admits a locally closed embedding in some $\mathbb{R}P^n$.

Let us first consider C-vector bundles.

Let X be an affine nonsingular real algebraic variety and assume for a moment that X is embedded in $\mathbb{R}P^n$ as a locally closed subvariety. Consider $\mathbb{R}P^n$ as a subset of the complex projective space $\mathbb{C}P^n$. Let U be a Zariski neighborhood of X in the set of nonsingular points of the Zariski (complex) closure of X in $\mathbb{C}P^n$. Denote by $H^{\mathrm{even}}_{\mathrm{alg}}(U,\mathbb{Z})$ the subgroup of the cohomology group $H^{\mathrm{even}}(U,\mathbb{Z})$ generated by the cohomology classes which are Poincaré dual to the homology classes in the Borel-Moore homology group $H_{\mathrm{even}}(U,\mathbb{Z})$ represented by the closed irreducible complex algebraic subvarieties of U (cf. [3]). Let $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X,\mathbb{Z})$ be the image of $H^{\mathrm{even}}_{\mathrm{alg}}(U,\mathbb{Z})$ via the restriction homomorphism $H^{\mathrm{even}}(U,\mathbb{Z}) \to H^{\mathrm{even}}(X,\mathbb{Z})$. One easily checks that $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X,\mathbb{Z})$ does not depend on the choice of U or the choice of the embedding of X in $\mathbb{R}P^n$.

Received by the editors November 14, 1986.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 14F05, 55B15.

Both authors were supported by NSF grant DMS-8602672.

THEOREM 1. Let X be an affine nonsingular real algebraic variety and let ξ be a continuous \mathbf{C} -vector bundle over X. If ξ admits an algebraic structure, then the total Chern class $c(\xi)$ of ξ belongs to $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X,\mathbf{Z})$. Conversely, ξ admits an algebraic structure, provided that $c(\xi)$ belongs to $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X,\mathbf{Z}), X$ is compact, $\dim X \leq 5$ and ξ is of constant rank.

SKETCH OF PROOF. We can assume that X is a locally closed subvariety in $\mathbb{R}P^n$. Suppose that ξ admits an algebraic structure. Then one can find a Zariski neighborhood U of X in the Zariski closure of X in $\mathbb{C}P^n$ and an algebraic vector bundle $\tilde{\xi}$ over U such that the restriction $\tilde{\xi} \mid X$ of $\tilde{\xi}$ to X is C^0 isomorphic to ξ . It easily follows from [3] that $c(\xi)$ belongs to $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X, \mathbf{Z})$.

If all assumptions of the second part of Theorem 1 are satisfied, then with the help of the Grothendieck formula (cf. [6, p. 151]), one constructs a continuous C-vector bundle η over X such that rank $\eta=2$, η admits an algebraic structure and $c(\eta)=c(\xi)$ (here both assumptions, $c(\xi)\in H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(X,\mathbf{Z})$ and $\dim X\leq 5$ are essential). Since ξ is of constant rank, ξ and η are stably equivalent [12]. The conclusion follows now from [16, Theorem 2.2].

Our next step is the calculation of the groups $H^{2k}_{\mathbf{C}-\mathbf{alg}}(X, \mathbf{Z})$ for a large class of varieties.

THEOREM 2. Let X be a locally closed nonsingular algebraic subvariety of $\mathbb{R}P^n$ and let $X_{\mathbb{C}}$ be the Zariski closure of X in $\mathbb{C}P^n$. Assume that $X_{\mathbb{C}}$ is nonsingular. Then $H^{2i}_{\mathbb{C}-\mathrm{alg}}(X,\mathbf{Z})$ is equal to the image of the restriction homomorphism

$$H^{2i}(\mathbf{R}P^n, \mathbf{Z}) \to H^{2i}(X, \mathbf{Z})$$

in each of the following two cases:

- (a) $2i \leq 2 \dim X n$.
- (b) $X_{\mathbf{C}}$ is an ideal theoretic complete intersection in $\mathbf{C}P^n$ and $2i < \dim X$.

SKETCH OF PROOF. Consider the commutative diagram

$$\begin{array}{ccc} H^{2i}(\mathbf{C}P^n,\mathbf{Z}) & \stackrel{\gamma}{\longrightarrow} & H^{2i}(X_{\mathbf{C}},\mathbf{Z}) \\ \delta & & & \beta \downarrow \\ H^{2i}(\mathbf{R}P^n,\mathbf{Z}) & \stackrel{\alpha}{\longrightarrow} & H^{2i}(X,\mathbf{Z}) \end{array}$$

where all homomorphisms are the restriction homomorphisms. If γ is an isomorphism, then $H^{2i}(X_{\mathbf{C}}, \mathbf{Z}) = H^{2i}_{\mathrm{alg}}(X_{\mathbf{C}}, \mathbf{Z})$ and β maps $H^{2i}(X_{\mathbf{C}}, \mathbf{Z})$ onto $H^{2i}_{\mathbf{C}-\mathrm{alg}}(X, \mathbf{Z})$. Moreover, since δ is an epimorphism, $H^{2i}_{\mathbf{C}-\mathrm{alg}}(X, \mathbf{Z})$ is equal to the image of α .

If (a) is satisfied, then γ is an isomorphism by the Lefschetz theorem [1].

If (b) is satisfied, then γ is an isomorphism by the Larsen theorem [10].

Notice that if (b) is satisfied and dim X is odd, then $H^{\text{even}}_{\mathbf{C}-\text{alg}}(X, \mathbf{Z})$ is completely determined. For even dim X, the situation is more complicated. Indeed, let

$$V^{n} = \{ [x_0, \dots, x_n, x_{n+1}] \in \mathbf{R}P^{n+1} \mid x_0^2 + \dots + x_n^2 = x_{n+1}^2 \}.$$

Then the Zariski closure of V^n in $\mathbb{C}P^{n+1}$ is nonsingular and the restriction homomorphism $H^{\text{even}}(\mathbb{R}P^{n+1}, \mathbb{Z}) \to H^{\text{even}}(V^n, \mathbb{Z})$ is the zero homomorphism.

On the other hand, V^n is algebraically isomorphic to S^n and hence every continuous C-vector bundle over V^n admits an algebraic structure [4, 16]. It follows from Theorem 1 that $H^n_{\mathbf{C}-\mathrm{alg}}(V^n, \mathbf{Z})$ is nontrivial, provided that n is even.

The example above indicates that the case in which $\dim X$ is even can only be handled under some additional assumptions.

Denote by P(n; k) the projective space associated with the vector space of all homogeneous polynomials in $\mathbf{R}[x_0, \ldots, x_n]$ of degree k. If an element H in P(n; k) is represented by a polynomial G, then V(H) will denote the subvariety of $\mathbf{R}P^n$ defined by G.

THEOREM 3. Let Y be a locally closed algebraic subvariety of $\mathbb{R}P^n$, dim Y ≥ 2 . Assume that the Zariski closure of Y in $\mathbb{C}P^n$ is a nonsingular ideal theoretic complete intersection. Then there exists a nonnegative integer k_0 such that, for every integer k greater than k_0 , one can find a subset Σ_k of P(n;k) which is a countable union of proper subvarieties of P(n;k) and has the property that for every H in $P(n;k)\backslash\Sigma_k$, V(H) is either empty or nonsingular and transverse to Y and the group $H^{\mathrm{even}}_{\mathbf{C}-\mathrm{alg}}(Y\cap V(H),\mathbf{Z})$ is equal to the image of the restriction homomorphism

$$H^{\mathrm{even}}(\mathbf{R}P^n, \mathbf{Z}) \to H^{\mathrm{even}}(Y \cap V(H), \mathbf{Z}).$$

In particular, if $Y = \mathbb{R}P^n$, then Theorem 3 determines $H_{\mathbf{C}-\text{alg}}^{\text{even}}$ for generic algebraic hypersurfaces in $\mathbb{R}P^n$, $n \geq 2$, of sufficiently high degree.

The proof of Theorem 3 is technically more complicated. Besides the Lefschetz theorem Moishezon's result [11, Theorem 5.4] also plays an essential role.

Theorems 2 and 3 show that, in many cases, Theorem 1 imposes severe restrictions on continuous C-vector bundles admitting an algebraic structure.

Among several applications of Theorem 3, we want to select only the simplest one.

THEOREM 4. Let n be a positive integer. Then there exists a C^{∞} embedding $h \colon S^n \to \mathbb{R}^{n+1}$, arbitrarily close in the C^{∞} topology to the inclusion map, and a closed nonsingular algebraic subvariety X in \mathbb{R}^{n+1} such that $h(S^n) = X$ and every continuous \mathbb{C} -vector bundle over X admitting an algebraic structure is stably trivial. If $n = 4 \pmod{8}$, then also every continuous \mathbb{R} - or \mathbb{H} -vector bundle over X admitting an algebraic structure is stably trivial.

Theorem 4 is interesting in view of the fact that every continuous \mathbf{F} -vector bundle over S^n admits an algebraic structure [4, 16]. Let us also mention that every continuous stably trivial \mathbf{F} -vector bundle admits an algebraic structure [16, Theorem 2.2].

The second part of Theorem 4 immediately implies that Shiota's conjecture [14, p. 1007] is false over X. Shiota has conjectured that a continuous \mathbf{R} -vector bundle ξ of constant rank over an affine nonsingular compact real algebraic variety Y admits an algebraic structure if and only if all Stiefel-Whitney classes of ξ are Poincaré dual to the $\mathbf{Z}/2\mathbf{Z}$ -homology classes of Y represented by closed algebraic subvarieties of Y. He proved the "only if" part of the

conjecture and the "if" part is established in [8, 9] for vector bundles over surfaces and threefolds.

SKETCH OF THE PROOF OF THEOREM 4. Let G be an element in P(n+1;2k+2) represented by the homogeneous polynomial

$$(x_0^2 + \cdots + x_n^2 - x_{n+1}^2)(x_0^2 + \cdots + x_n^2 + x_{n+1}^2)^k$$
.

If we identify \mathbf{R}^{n+1} with a subset of $\mathbf{R}P^{n+1}$ via the map which sends (x_0,\ldots,x_n) to $[x_0,\ldots,x_n,1]$, then $S^n=V(G)$. By Theorem 3 (applied to $Y=\mathbf{R}P^{n+1}$ and k sufficiently large) together with Theorem 1, there exists an element H in P(n+1;2k+2) such that H is arbitrarily close to G and for every continuous G-vector bundle ξ over X=V(H), the total Chern class of ξ is equal to 0. Clearly, there exists a G^∞ embedding $h\colon S^n\to \mathbf{R}^{n+1}$ which is close to the inclusion map and satisfies $h(S^n)=X$. Since X is diffeomorphic to S^n , the vector bundle ξ is stably trivial.

The second part of Theorem 4 follows by considering the complexification and the realification of vector bundles and by using the fact that the reduced Grothendieck group of continuous \mathbf{F} -vector bundles over X is isomorphic to \mathbf{Z} .

REFERENCES

- 1. A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69 (2) (1959), 713-717.
- 2. J. Bochnak, M. Coste and M. F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb., Vol. 12, Springer-Verlag, New York, 1987.
- 3. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513.
 - 4. R. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969), 222-225.
- 5. A. V. Geramita and L. G. Roberts, Algebraic vector bundles on projective spaces, Invent. Math. 10 (1970), 298-304.
- A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137-154.
- 7. J. P. Jouanolou, Comparison des K-theories algébrique et topologique de quelque variétés algébrique, C. R. Acad. Sci. Paris Ser. A 272 (1971), 1373–1375.
- 8. W. Kucharz, Vector bundles over real algebraic surfaces and threefolds, Compositio Math. 60 (1986), 209-225.
 - 9. ____, Topology of real algebraic threefolds, Duke Math. J. 53 (1986), 1073-1079.
- M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251–260.
- 11. B. G. Moishezon, Algebraic homology classes on algebraic varieties, Math. USSR-Izv. 1 (1967), 209-251.
 - 12. F. P. Peterson, Some remarks on Chern classes, Ann. of Math. (2) 60 (1959), 414-420.
- 13. L. G. Roberts, Comparison of algebraic and topological K-theory, Algebraic K-Theory II, Lecture Notes in Math., vol. 342, Springer-Verlag, Berlin and New York, 1973, pp. 74-78.
- 14. M. Shiota, Real algebraic realization of characteristic classes, R. I. M. S. Kyoto Univ. 18 (1982), 995-1008.
- 15. R. Silhol, Géométrie algébrique sur un corps non algébriquement clos, Comm. Alg. 6 (1978), 1131-1155.
- 16. R. G. Swan, Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201-234.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87131