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FUNCTIONAL ANALYSIS AND ADDITIVE ARITHMETIC 
FUNCTIONS 

P. D. T. A. ELLIOTT 

In memory of Professor M. Kac 

Geometry Prince has familiar, 
Twin; 
Upon looking out, 
Sees himself looking in. 

1. A function is arithmetic if it is defined on the positive integers. Those 
arithmetic functions which assume real values and satisfy f(ab)-f(a)+f(b) 
for mutually prime integers a, b are classically called additive. The following 
examples illustrate the interest of these functions, both for themselves and for 
their applications. 

An additive function is defined by its values on the prime powers. I shall 
denote a typical prime power by q, and the prime of which it is a power by q0. 
A well-known additive function is o)(n) which, with o)(q) = 1, counts the 
number of distinct prime divisors of n. Let vx(n\ . . .) denote the frequency 
amongst the positive integers not exceeding x of those for which property ... 
holds. Then as x -» oo 

vx(n; o)(n) - loglogx < z(loglogx)1/2) => -= f e~'2/2dt. 

More generally, for an additive function f(n) define 

A{x) =LfiûLL\ B{x) JZ\MÎ.U- L))1/2 > o. 
X 4 \ io! \X q \ loi] 

Then if | / (^) | < 1 for all 4 and B(x) is unbounded with x, the celebrated 
theorem of Erdös-Kac [18,19] asserts (essentially) that, as JC -» 00, 

vx(n; f(n)-A(x) < zB{x)) => -±= f e~^dt. 
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It is natural to ask for the weakest conditions on ƒ under which such a result 
can hold. 

The ideas applied by Erdös and Kac were realized in a wider conceptual 
setting by KubiHus [25], who generalized and elaborated their theorem. Unfor
tunately the archetypal result to which their method aspires is that, as x -> oo, 

(1) vx(n;f(n)-a{x)<zp{x))-*F(z) 

for some a(x), /?(*) > 0 if and only if 

(2) P( £ Yq - a{x) < zfi(x)) =* F(z), 

where the independent random variables Y respectively assume the values 
f(q) with probability q~\l - q^l\ and 0 with probability 1 - q~\l - qöl)l 
and this result is false. Not only do the mechanics of the underlying sieve 
method fail (see, for example, Elliott [11, Chapter 3, pp. 145-146]), but such an 
'isomorphism' would force all the limiting distributions of the frequencies (1) 
to be infinitely divisible, and it is known that they are not. 

In the work of Erdös-Kac and Kubilius the philosophy is maintained by 
specializing a(x) and fl(x) to A(x) and B(x\ and requiring (although it is 
not formulated in this way) that, for each fixed y > 0, B(xy)/B(x) approach 
1 as x -> oo. One steps from (1) to (2) with the probabilistic device of 
truncation, and the 'isomorphism' indeed holds. The number-theoretic prob
lem of deciding which frequencies (1) converge is reduced to a problem in the 
theory of probability proper, with a readily available solution. This result has 
been bought at a high price, however. The difficulties of handling an occa
sional large value of \f(q)\ have been legislated away, and as a consequence 
many interesting distributions F(z), including all the stable laws beyond the 
normal law, cannot be considered. 

In fact a more exact 'isomorphism' between the behavior of the distributions 
in (1) and (2) can be obtained, but the random variables Y must be defined 
differently. If we restrict ourselves to the consideration of measurable func
tions )8(x) which as x -> oo satisfy fi(x) -> oo and /$(xy)//}(x) -> 1 for each 
fixed y > 0, then 

(3) px(n; / ( n ) - a(x) < zp(x)) - F(z) 

for some a(x), if and only if 

(4) p(ZZq- ttl(x) < zp(x)\ =* F(z), 

where for some constant D the independent random variables Zq assume 
values f(q) — Dlogq with probability q~l(l - qöl\ and 0 with probability 
1 — q~l(l — qö1)- Moreover, ax(x) = a(x) - Dlogx. The deduction of (3) 
from (4) may be found in Levin and Timofeev [31] (see also ElHott [6]); that of 
(4) from (3) is in ElHott [8]. Here there is no restriction upon the additive 
function ƒ. The method of proof, quite different from that of Erdös-Kac and 
KubiHus, involves extensive appeal to Fourier analysis, in particular to the 
theory of Dirichlet series in the manner of Halâsz [20]. I do not pursue here the 



ADDITIVE ARITHMETIC FUNCTIONS 181 

question of whether the growth condition upon fi(x) is appropriate, noting 
only that, in general, necessary and sufficient conditions for the weak conver
gence of the arithmetic frequencies (3) are still not known. Instead, I would 
like to draw attention to the term - D log q in the definition of the variable Zq. 
Where does this logarithm come from? 

In another direction let av a2 , . . . , be a sequence of positive rationals. Let 
Q* be the group of positive rationals with multiplication as group law, T its 
subgroup generated by the az, and G the quotient group Q*/T. A homomor-
phism of G into the additive reals may be viewed as an additive arithmetic 
function ƒ, extended to the rationals by f(r/s) = f(r) — f(s), which satisfies 
f{at) = 0 for all i. Conditions involving coprimality may be suppressed, so 
that, in the standard terminology, ƒ is completely additive. 

Considering additive functions to be characters on G, and allowing them (by 
abuse of meaning) to assume values in differing groups, one sees that the 
determination of G is equivalent to the characterization of various additive 
functions which vanish on the at. Moreover, this procedure may be given a 
quantitative aspect. Thus, in order that some integral power of the integer n be 
representable in the form a(l • • • ad

k
k with integers dp it is necessary and 

sufficient that every real completely additive ƒ with f{at) = 0, i = 1 , . . . , k, 
also satisfy f(n) = 0. An account of the appropriate mathematics, which 
generalizes and extends earlier results of Dress and Volkmann [3], Wolke [43], 
Meyer [32]—see also Ruzsa [35]—may be found in Elliott [13, Chapter 15]. In 
the present paper I shall confine myself to real or complex additive functions. 

As an example of this procedure we set an = (6« 4- 5)/(12« 4- 11), and 
employ the inequality 

(5) 

£ \\F{q)-M\ogq\2^ sup ± £ | /(6« + 5) - f(\2n + 11)|2 

(* ,6 ) - l 

with a constant c, and function M of x, which is contained in Theorem (10.1) 
of Elliott [13]. If now m is an integer which is not divisible by 2 or 3, then it 
has a representation 

M \ 12», + 11J 

with integers v and di9 each nt lying in the interval m < «, < (23m)c. For it 
follows from (5) that if f(6n + 5) - f(\2n + 11) = 0 for m < n < (23m)c, 
then in particular 

_ 6m + 5 / 6m + 5 \ 
MlogÏ2^TTr = Aï2^TTï) = 0' 

so that M = 0. In this case the infinite generators of G are provided by the 
images of the primes 2 and 3 under the canonical map Q* -» G. Another 
argument shows that G is finitely generated, so that it has its finite torsion 
group as a direct summand. 



182 P. D. T. A. ELLIOTT 

It is essential that in the inequality (5) no restriction should be placed upon 
ƒ beyond that it be additive; and it is clearly desirable to obtain for c a value 
which is as close to 1 as possible. The general direction in classical probabilistic 
number theory is to derive the value distribution of an additive function ƒ on 
the integers from its given distribution on the prime powers. Here, as in the 
step from (3) to (4), we are going in the opposite direction. We are concerned 
with a function whose values on a specific sequence of integers are known, and 
whose values on the prime powers we wish to determine. This is the passage, 
from Dirichlet series to Euler product, which is taken in the proof of the prime 
number theorem, save that we do not now have any regularity conditions 
satisfied by ƒ which would guarantee an analytic continuation of an ap
propriate Dirichlet series. Once again a logarithm intervenes. 

In the present paper I do not consider in detail the probabilistic theory of 
numbers, nor the multiphcative representation of integers. An extensive account 
of the former can be found in my two-volume work [11], and of the latter in its 
companion volume [13]. Instead, I shall give a functional analytic overview, 
and indicate a source for the logarithms. This view enables a clearer presenta
tion of many of the problems, and introduces a new precision into certain 
results. As an example, I prove that with an appropriately chosen function M 
of x, the inequality 

(6) £ i | / ( 4 ) - M l o g t f | 2 « m a x ± £ | f(n + 1) - ƒ(») |2 

certainly holds with any fixed c > 8. Moreover, by varying the spaces on 
which we view various operators, generalizations are suggested which would 
otherwise be less obvious. 

2. We begin with the Turân-Kubilius inequality 

(?) Ei/oo-^oof^xiK*)2 . 

With f(n) = co(«) and A(x), B(x) replaced by loglogx, this inequality was 
first established by Turân [39]. Note that for x > 2 

£ i = loglogx+0(l) . 

An important application which he had in view was the simpler proof of a 
result of Hardy and Ramanujan [21] that for each positive Ô most integers n 
have \u(n) — log log n\ < (loglog«)1/2+ô. Turân was well aware of the flexibil
ity of his argument. As he himself wrote to me in 1976: ". . . from H. R.'s paper 
in 1917 seventeen years passed until 1934, without the sUghtest sign of realising 
that such general theorems exist at all." With hindsight we may see in (7) an 
analogue of Tchebyshev's inequality in the theory of probability, but Turân 
knew little of probability in 1934. Indeed, it was this very paper of Turân 
which promoted the interest of Kac in these matters, leading to the joint work 
with Erdös mentioned earlier. Lacking any other aesthetic, Turân [39] gener
alized his inequality to cover the cases when f(p) is bounded and B(x) is 
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replaced by A(x). His argument was to expand the inner square, invert the 
order of summation, and show that in the resulting estimations the main terms 
cancel. 

Whilst Erdös employed the method of Turân in many special circumstances, 
Kubilius gave it the outcome (7). He followed the original argument of Turân, 
together with judicious applications of the Cauchy-Schwarz inequality, employ
ing elementary results on the distribution of prime numbers. By this time the 
influence of probability was paramount, and in his monograph [26] of 1962 
Kubilius views the inequaltiy (7) as a species of the 'Law of Large Numbers.' 

In the form given above the Turân-Kubilius inequality has another ad
vantage (see Elliott [5]): the quantities on both sides may be viewed as the 
squares of norms. Let C* be the complex space with one coordinate for each of 
the s prime powers q not exceeding x. Let C[x] be the complex space with one 
coordinate for each of the [x] positive integers n not exceeding x. If on the 
space Cs we employ the L2 norm 

IWI=(LW 2) 1 / 2 , 

and o n C w the corresponding norm 

IMhflkl2)172, 
then the Turân-Kubilius inequality asserts that the map A: Cs -* C[x] given by 

has norm bounded uniformly for all x > 2. Here q\\n denotes that q divides n 
but qq0 does not, and I have avoided discussion of the slightly differing 
formulations of the Turân-Kubilius inequality. 

In this form the Turân-Kubilius inequality represents something intrinsic 
about the positive integers. This may be illustrated in another way by consider
ing the dual map A': (C1*1)' -> (C5)', which has the same norm as A. 
Otherwise expressed, this yields that the inequality 

w ,?/K) 
« s 0 (mod q) 

«^E 

(n s b (modq) denoting that q\\(n - b)) holds for all complex numbers an, 
for all x > 2. In some average sense, random sequences an are well distributed 
in residue classes to prime powers q all the way up to x. This inequality looks 
like others, that arose in the theory of the Large Sieve. I shall return to this 
topic again. 

Since || A|| is finite, how big is it? An elementary argument, as for example in 
Elliott [9], shows that, as x -> oo, y = limsup||A||2 satisfies y < 2, and the 
consideration of special cases shows that y > 1. The asymptotic value y has 
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only recently been obtained (Kubilius [28, 29]; Hildebrand [23]). I first 
consider the treatment in [28]. 

For convenience of exposition consider the ratio 
|2 

r = ( « 5 2 ) - 1 ! 
W = l 

with B2 = T,p<nf(p)2p~l, which is appropriate to a strongly-additive arith
metic function, an additive function which also satisfies f(pk) = f(p) for all 
positive k. Following the argument of Turân we expand the square and invert 
the order of summation, to obtain for T the representation Q1 + Q2 - O, 
where 

p*l- UP 1X2P 

02= I E(«(j»)/^/-V» + « ( / ) / ^ - ^ ) V | 

-EE^O/^V/, 

with a(v) = u l — n l[n/v], 

Q- E E P - 1 / 2 / - 1 / 2 X nX i Kp*h 
p<n /<« 

and for each prime p (or /) xp = f(p)p~1/2B~1, so that 

E*2 = i-

A straightforward application of the Cauchy-Schwarz inequality gives Q2 <£ 
(log«)~1 /2 , and it is clear that the bound Qx < 1 is essentially best possible. 
The main interest lies in Q. 

The coefficient matrix G of Q is symmetric, and represents a self-adjoint 
operator on the L2 space C', where * denotes the number of primes p not 
exceeding n. We need an estimate for its smallest eigenvalue. In fact almost its 
whole spectrum can be obtained. We shall apply the notion that an approxi
mate eigenvector gives rise to an approximate eigenvalue. 

LEMMA 1. Let The a self-adjoint operator on a complex Hubert space. For any 
vector x and complex number a, there is a X in the closure of the spectrum ofTso 
that 

\X - a\ | | ;C||<||7JC - ax\\. 

PROOF. This result is equivalent to the assertion that for a self-adjoint 
operator T the norm of the resolvent operator R(a; T) does not exceed the 
reciprocal of the distance of a from the spectrum of T. In his paper Kubilius 
makes the assertion of the lemma only for a symmetric matrix, giving no 
reference. For that case a simple proof may be given. 
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Let / denote the identity map on the same space as T, and let dj9 

j = 1 , . . . , ky be an orthonormal basis for the space made up of eigenvectors of 
T. Then 

k 

( T - « ƒ ) * = £ ( X y - a ) c y < / , , 

where Xj denotes the eigenvalue corresponding to dj9 and Cj is the inner 
product of x against dj. Hence 

E | ( \ y - a ) c y . | 2 = | | r x - a x | | 2 , 
7 = 1 

and the desired result follows by choosing for À an eigenvalue which minimizes 
\\j - « | . 

An inductive proof of the existence of the basis dj (the spectral decomposi
tion theorem for finite spaces) may be found in Lang [30]. 

There is a companion to this lemma which I shall employ later. It asserts 
that for isolated eigenvalues an approximate eigenfunction must be near to a 
genuine eigenfunction. 

LEMMA 2. Let X be an eigenvalue of the self-adjoint operator T which is at a 
positive distance 8 from the rest of the spectrum. Then for any vector x there is a 
further vector z, belonging to the eigenspace of T corresponding to X, so that 
8\\x - z\\ < ||7JC - XJC||. 

PROOF. This also follows from the spectral decomposition of the underlying 
space with respect to T. For finite spaces, and in the notation of the proof of 
the previous lemma, we have 

ll(r-x/)x||2-Elx.-xlV-
If now z is the sum of the Cjdj9 where j runs through the values for 

which X7 = X, then the right-hand side of this equation is at least 

as large as ô2||x — z||2. 
A result similar to Lemma 2 I proved as Lemma (5.7) of my book [13], save 

that I made rather a meal of it—all the more curious since I employed the 
above simple argument in a typical situation on pages 433 and 434 of that 
same volume. In this paper I shall employ Lemmas 1 and 2 for compact 
operators. A straightforward modification of the argument for finite spaces 
will suffice in this case. A detailed discussion of the general theory of 
self-adjoint operators is given in Yosida [44]. 

To obtain suitable candidates for the eigenvectors of G, Kubilius considers 
the problem of estimating 

v/.\ = ff4'(u)il'(v)u~1v~1dud» 
l^(ufu-ldu ' 
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where the double integral is taken over the triangle 0 < u < 1, 0 < u < 1, 
u + v > 1. This can be viewed as an extremal problem involving functions of 
the class L2 with respect to the measure M _ 1 & o n O < w < l . That it is 
appropriate is not immediately clear, and I shall discuss this presently. 

By considering V(\p + yh) for a temporarily fixed A, and varying the real 
numbers y, Kubilius shows that any function \p which gives an extremal value 
X of V(\p) must satisfy 

f1 ^ ( Ü ) Ü - 1 * = \^ / (M) I. n-u 

on 0 < u < 1. It must be an eigenvalue of the operator 

(10) *(«)-> f1 l>(v)v~ldv. 
h-u 

Let us call this operator T; it will appear many times in what follows. 
The eigenfunctions of T will satisfy the relation 

X(l - w)f(t /) = ^( l - u) 

where ' denotes differentiation with respect to u, and hence the second-order 
differential equation 

(11) w(l - II)*"(II) - utfiu) + X"2</>(w) = 0. 

This is an equation of hypergeometric type, and solutions 

en) <*>»=up (-i),-|-*(;)(r i1)"-"^ - «o' 
with \r = ( - l ) r _ 1 r" 1 are exhibited, one for each positive integer r. In terms 
of the standard notation for Jacobi polynomials, 

<*>,(«) = «/>r<l?>(l-2«). 

See, for example, Rainville [34, Chapter 6]. In particular 

It will be convenient to use \pr(
u) t 0 denote the (renormalized) function 

Let zr be the vector in C' with ^-component p l/1y\>r(\o%p/\og n). A direct 
computation shows that 

\Gzr-\rzr\<^(logn) -1/2 

which by Lemma 1 guarantees the existence of an eigenvalue vr of G in the 
range \vr - Xr\ «: (log«)"1/2. For r < cx(\o%n)l/A and a suitably chosen 
constant cl9 the eigenvalues for differing r will be distinct. We do not as yet 
know whether any occur multiply for G. 

Since G is symmetric, 

£ v? = trace(G2), 
r - l 
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and this trace Kubilius estimates, in a straightforward manner, to be f (2) + 
0(loglogfl/log«) in terms of the Riemann zeta function C(k) = EJLxl/r*. 
Since demonstrably 

£ K - «2), 
r - l 

we see that all eigenvalues of G with r > c1(log«)1/4 are 0((log«)~1/4) in 
size. Their effect in G is small. 

The highest eigenvalue of - G is thus - v2, giving 

T < 3 / 2 + 0((l0grt)-1 /2). 

Moreover, with x = z2 we can obtain for T a similar estimate in the other 
direction. This gives for the maximal value of T the estimate 3/2 + 
0((log n)~1/2% which is the main result of Kubilius' paper. 

A second method is sketched, as follows. Direct computation shows that for 
each positive integer k 

where the summation is taken over those fc-tuples of primes that satisfy pj < n 
for every j \ ptpi+i > n for 1 < i < fc — 1, pkP\ > n. This sum in turn is 
closely approximated by 

(13) ƒ (HI •"• w * ) ' 1 ^ ! •- duk 

taken over the region 0 < wy ^ 1 for every 7, ut + ui+1 > 1 for 1 < i < k - 1, 
and uk + ux > 1. 

Defining 

$(u u ) ~ I1 if "*> l~ Mi> 
10 otherwise, 

this last integral may be written in the form 

f u^duA U2ldu2-- f Hu^ujuï1 duk. 

Expanding the function 6 in terms of the eigenfunctions <f>r, say 

r - 1 

we see that 

ar = 2r[ <br{u)u ldu = 2rÀr<|)r(w1), 

and readily obtain the estimate 

(14) tr(G*)= £(-l) (r"1)V^ + ö(l), 
r » l 

valid as n -» 00. 
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Since G is symmetric, 

£ vr
k = tr(G*) = S(k) + o(l) 

r = l 

for even integers k. Assuming that \vr\ does not increase with r, we deduce the 
estimate 

limsup|*>J< liminf f(/c) = 1 . 

Indeed, for x = zl9 Q has the value 1 + 0((log«)"1 /2), so that vx = 1 + o(l). 
Removing v\ from the trace gives 

v* < S(k) - 1 + o(l) 

for every even k, and so 

limsup|*>2|< liminf(f(fc) - l)1/k = 1/2. 

Since for x = z2, Q has the value - 1 / 2 + 0((log«) - 1 / 2) , we get v2 = - 1 / 2 
+ o(l), and so on. 

This method leads to the value y = 3/2 but does not seem as well able to 
give a quantitative estimate for T in terms of n. 

It seems that these two arguments were devised in the opposite order. 
Improving upon his earlier work [27], Kubilius, in a lecture given at Oberwol-
fach, Germany, in November 1980, reduced the problem of estimating r to the 
evaluation of the multiple integral (13). 

At that meeting H. Montgomery showed that the polynomials <j>r were 
eigenfunctions of the operator T, with eigenvalues Xr. Once we decide to look 
for polynomial eigenfunctions of the operator T at (10) it is clear that those of 
degree r would have the corresponding eigenvalue Xr The \pr may then be 
found by direct substitution. However, for the asymptotic estimation of 
trace(G^) it is sufficient that such polynomials, of arbitrary degree, should 
exist. This, as was pointed out by Wirsing in a letter to Montgomery in early 
January 1981, may be obtained by noting that the linear operator T - XrI 
takes the finite-dimensional space of polynomials of degree at most r and 
vanishing at u = 0 into the similar space where the degree is at most r - 1, a 
space of smaller dimension. In the same letter the relation E^X^. = f (2) is 
already employed. 

There was an exchange of letters between Montgomery and Kubilius, and at 
some stage the alternative method, presented preferentially in Kubilius' paper, 
was developed. This gives more directly estimates for the eigenvalues of the 
operator under consideration, so that they are sharper. For this argument to 
succeed when applied to a discrete operator it is very helpful that the 
eigenvalues decrease steadily in size, because no analogue of Weierstrass' 
approximation of a continuous function by polynomials, with which to gain 
completeness, is available. 

In a later section I shall show that when not working in a Hubert space it is 
advantageous to combine the two methods. The use of iterations to determine 
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the spectral radius of an operator is, of course, well known. To put this into 
practice is another matter. Thus in connection with the Large Sieve I suggested 
in [4], 1971, that one might iterate the operator. However, even though one 
could formulate an appropriate problem in terms of gamma functions, which 
have convenient convolutions, I balked at the complications; and later devel
opments have not used this method at all. 

The following background remarks may be helpful. In treating sums involv
ing primes it is convenient to apply the prime number theorem in the form 

^1==f 1^7 + 0 ( x e x p ( - c v ^ g ^ ) ) 

with c > 0 (see, for example, Davenport [2], Prachar [33]). Then by partial 
summation 

£ — = loglogx + c2 + o(cxp(- c3]/\ogx)) 

with constants c2,c3 > 0, uniformly for x > 2. This enables sums over ranges 
x/l < p < x to be well approximated by continuous functions provided / is 
not too near to x. When / is near to x, upper bounds are usually sufficient. 
Similar results hold when the summations are over prime powers, rather than 
primes. 

Let W be the space of complex-valued functions h(u) = ug(u) where g(u) 
is continuous on the interval 0 < w < 1, and define 

11*11= S U P |g(«0l-
0<u<l 

This space is complete. It is mapped into itself by the transformation T which 
takes h to the function 

fl h(u) , 

This transformation is bounded on W, of norm 1. 
Let H be the Hilbert space of complex-valued Lebesgue measurable func

tions k(u\ defined on the unit interval, with 

n \k(u)\2 j 
I ' v n du < oo. 
J0 u 

We make the usual identification of functions differing on a set of measure 
zero. The inner product on H is given by 

[kt]=»«u)7@_du 
J0 U 

The points of W are everywhere dense in H (in the topology of H\ and an 
application of Fubini's theorem shows that T is a self-adjoint operator in H. 
An application of the Cauchy-Schwarz inequality shows that it is bounded. 

In view of the well-known theorem of Weierstrass, we see that the polynomi
als \pr(

u) s P a n ^> anc* therefore H. In particular, for every nonzero complex 
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number p, and member x of H, 
| | ( r -p / )x | |> | | x | |m in |X r -p | . 

r 
This shows that the spectrum of T contains only the eigenvalues Xr9 and 
possibly the real number zero. 

If Tg = 0 in H, then by differentiation of Tg, g is seen to be zero also. Thus 
zero is not an eigenvalue of T. However, the range of T is not the whole of if, 
since there are functions in H which are not absolutely continuous. Thus zero 
does belong to the spectrum of H, Of course T is a compact operator, of 
Hilbert-Schmidt type. 

A feeling for the size of the polynomials ypj(u) may be obtained by 
evaluating the integral 

Jl-v u 

once employing the spectral decomposition of 6(uy v) by T, and once directly. 
This leads to the representation 

00 \b(v)2 

- i o g ( i - » ) = £ ^ , 
y- i J 

valid in the interval 0 < v < 1. 
Why are continuous analogues on the (product of) interval(s) (0,1), such as 

V(yp) and (10), reasonable? 
The logarithmic function appears first in probabilistic number theory in 

Erdös' characterization of finitely distributed additive functions [17], 1946. 
There it is introduced to make the proof work, and not for any background 
philosophical reason. He applies his characterization to show that if a real-val
ued additive function ƒ is monotone, or satisfies f(n + 1) - ƒ(«) -» 0 as 
n -» oo, then it must be a constant multiple of logw. Erdös's arguments were 
rather special, and at the end of his paper he conjectured that this last 
conclusion could be drawn from the hypothesis that 

Urn x " x E |/(n + l ) - / ( n ) | « 0 . 

Moreover, any additive function ƒ for which f(n + 1) - f(n) was bounded 
above should differ by a bounded function from a multiple of log n. 

These conjectures were proved valid by Kâtai [24] and Wirsing [42], and by 
Wirsing [41], respectively, and largely regarded as giving characterizations of 
the function logw. Although ingenious, the proofs were again of a special 
nature. Besides this, the application of Halâsz's method in the theory of 
Dirichlet series [20] made possible a better understanding of the limiting 
behavior of translations of additive functions (e.g., Elliott and Ryavec [16], 
Levin and Timofeev [31]), and so of finitely distributed functions. 

Altogether one gained the diffuse notion that any real additive function 
which is sufficiently regular must in some sense be near to a multiple of a 
logarithm. To make this precise in any given situation one needed a source for 
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the logarithm, which in the above works was obtained indirectly. More recent 
experience in probabilistic number theory helps (Elliott [7]): 

Let measurable functions a(x), P(x) > 0 exist so that as x -> oo 

(15) ,x(n; f{n) - a(x) < zfi(x)) - ft j{ 'g> J; 

the frequencies converge weakly to the improper law with jump at the origin. 
Suppose further that ji(x) -* oo as x -* oo, and that hmsupP(xy)/P(x) is 
finite for each positive y. Then the function a(x) has a decomposition 
a(x) = ax(x) + a2(x) with respect to the group of substitutions x *-+ xy

9 so 
that ax(x

y) = yax{x) + o(P(x)% and a2(x
y) = ot2(x) + o(/3(x)\ as x -> oo. 

Moreover, if limsup/?(;c2)//?(;c) < 2, this ensures that ax(x) has the form 
A log x + o(P(x)) for some constant 4 . In this sense, and in a more exact 
sense in that same paper, ƒ is near to a logarithm. 

During the considerations of that paper the function A(a, b) = a(a) -
a(a/b) - a(b) was studied on the direct sum of four copies of IR*, the 
multiplicative group of the positive real numbers. It proved most natural to 
investigate the size of A(a, b) — A(av bx) in terms of the renormalized Haar 
measure fix on R * induced by taking the Lebesgue measure of the image under 
the map a •-> (loga)/logx. In particular this transforms the range 1 < n < x 
into the interval 0 < u < 1, a situation which is impUcitly reproduced in 
Kubilius' paper. 

Since the argument in my paper [7] was impUcitly concerned with bounding 
a resolvent operator in measure, cannot the determination of the spectrum of 
the discrete analogue of T say something about the impUcations for f(q) on 
prime powers q of a known value distribution of an additive function ƒ(«) on 
the integers n, at least in an L2 sense? Indeed it can, as I presently show. 

Another proof that y = 3/2 was given by Hildebrand [23]. In his paper he 
gives a kind of asymptotic formula for the analogue S(x) of T, 

(16) S(x) = n-'t \f(m)-n-'if(m) 

where xq= f(q), q < w, dealing at once with a general additive function. He 
introduces the polynomials pk(u), which are orthogonal over the interval 
0 < u < 1 with weight u. Thus upk(u) = ^k(u). He then estimates S(x) by 
reducing the problem to the minimization of an appropriate quadratic form, 
impUcitly constructing a spectral decomposition of f(q). As in the integral 
method above, the estimations do not lend themselves to the derivation of a 
sharp local bound for 5(x). I give a view of his result in [13, pp. 430-432]. 
Here I shall employ only the following lemma. 

LEMMA 3. Let y be the vector with q-coordinate 21/2\ogq/\ogn9 q < n. Then 
for any \i 

o/ x «/ x M2(! + o(l)) l\v\B{n)\ 

as n -* oo. 
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PROOF. Following Hildebrand we can obtain this directly, employing the 
good distribution into residue classes (modq) of the logarithmic function. 

Since we are essentially evaluating an inner product, the cross-terms typified 
by 

U = l^ixinlogny1 t \f(m)-n-1 £ f(m) logm - n~l £ logm 
m = l \ w = l / \ m = l I 

are the most interesting. Here logm is translated by its mean, so that the 
innermost average of ƒ may be omitted. Representing f(m) as the sum of the 
f(q) with q\\m9 and inverting the order of summation over m and q, gives U 
the alternative form 

q<n 

with 

m = l 
msO (mod q) 

log m - n l £ log m . 

The coefficients t\q may be estimated individually, either using several 
integrations by parts as in Hildebrand [23, pp. 163-165], or by applications of 
Stirling's approximation for n\. Altogether they satisfy 

Erf. « * * £ * * • 
q<n 6 

An appropriate application of the Cauchy-Schwarz inequality now yields 
U = tf(|/A|2?(«)/log«). The proof of Lemma 3 is readily completed. 

3. Reappraisal. Before reappraising these results it is convenient to make a 
few more remarks of a functional analytic nature. 

Let X be a complex Hubert space, with inner product [ , ]. Then we can 
identify X with its dual space X' by the map / which takes the vector x to the 
linear map 

u *-> [u9x]9 u G X. 

This map preserves norms but is not quite linear since, for a complex number 
a, J{ax) — aJ(x). 

Suppose further that 7 is a Hubert space, and let K be its identification 
with its dual space Y'. The adjoint of a linear map L: X -» y is then defined 
to be the map L*: Y -> X given by 

L* =j-*L'K9 

where L' is the map Y' -> X' dual to L. This ensures that 

[Lx, y] = [x,L*y] 

for all x in X, y in 7, where the inner products are defined on X and 7, 
respectively. Then (L*)* = L. 
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It is readily checked that for each x in X, ||Lx||2 = [x, L*Lx], so that 

| |L | | 2= sup \[x9L*Lx]\. 
ll*H-i 

Similarly, for each y in Y, ||L*y||2 = [y, LL*y\ from which 

| |L' | |2= sup \[y9LL*y]\. 
M - i 

The maps L*L and LL* are self-adjoint on the spaces X, Y respectively, 
and for a bounded operator L their spectra are contained in a bounded 
interval of nonnegative numbers. 

Let x denote a positive real number, x ̂  2. 
We allow the values of an additive function f(m) = Lq^mf(q) to be 

complex, and regard the f(q), q < x, as determining a vector in the complex 
space C5, where s denotes the number of prime powers q not exceeding x. It is 
convenient to topologize this space with the norm 

and to regard it as the space of functions on a set of s points. These functions 
are viewed as being of class L2 with respect to the measure du that assigns a 
weight q~l(l - qö1) to the point corresponding to the q\h coordinate. 

Likewise, C[x] will be topologized with the norm 

and viewed as an L2 space on a set of [x] points, with the frequency measure 
assigning a weight [x]~l to each point corresponding to an integer n not 
exceeding x. 

In this notation the Turân-Kubilius inequality (7) asserts that the map A2: 
L2(CS) -> L2(C[X]) given by 

(17) (A2f)(n)=f(n)-M(f), 

where 

(18) M ( / ) = i : / l p . ( 1 _ l ) 

and / runs through prime powers, has a norm bounded independently of x. 
The peculiar notation A2 is for future purposes. Determining the best constant 
in the Turân-Kubilius inequality is equivalent to finding the spectral radius of 

The dual operator A'2 is given by 

' nsO (mod q) 
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A direct computation shows that 

A*A2 = I- T+ Nx + N29 

where T is given by 

(19) (?ƒ)(«)= £ n ^ - f ) ' 
x/q<l<ix

 l \ l0l 

I continuing to denote a prime power, 

^ - - ^ • ( i ^ G H s l H ™ -l<x/q 

and the ^-coordinate of N2f is 

« Î E l/(/)l + ^EI/(/)|. 
(/ ,*)-1 

In particular, after a number of applications of the Cauchy-Schwarz inequality 
employing the upper bound s <: x/logx, ||JV2|| <: (loglog*/log.x)1/2. When 
aiming for the value of H-4M2II it is better to deal with A\A2 directly, thus 
avoiding the extra factor (loglogx)1/2. However, the form given here demon
strates clearly the similarity between the discrete operator T and the continu
ous operator T on the Hilbert space H = L2(0,1) of functions measurable with 
respect to u~ldu, given by 

h(v) 

L •do. v 

I shall continue to use the same notation for these operators, distinguishing 
between them by the adjectives discrete and continuous, or by Td9 Tc respec
tively. 

In practice the operator Nx may often be removed by considering Â2, a 
variant of A2 which is most simply defined through its adjoint. The operator 
A*:C[x]-*Cs given by 

(20> ^ ' - U A l - W r c , ! L «•-
n^x 

ns&0(modq) 
-ï E 

^ n<x 

has bounded norm, since it largely differs from A f by an operator the norm of 
whose effect may be directly estimated, using the Cauchy-Schwarz inequality, 
not to exceed 

•'1/2 - i \ 1 / 2 

\ (n,q)>l («,?)>! ' 

for each a in C w . Then the composition Â%A2 has a representation I - T + N 
where ||iV|| •« (loglogx/logx)1/2. 
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It is possible to give an explicit treatment of the notion that as x -> oo the 
discrete T approaches the continuous version of T. Let dp j = 1,..., s, be a 
basis for C5 comprised of unit eigenvectors of T, with corresponding eigenval
ues Vj so that \vj\ does not increase with j . By using the approximate 
eigenfunctions i//y(log^/logx) and Lemma 1 one obtains an estimate \vj - Xj\ 
<c cy(logx)~1/2 with some constant c > 1, uniformly in j \ x. Once again 

5 

£ vj = tracer2 = f(2) 4- 0(loglogjc/logjc). 

From this one readily deduces the estimate \vj - \j\ <c (loglog4x)~1/2, uni
formly for 1 < j < s, x > 2. 

We inject C5 into the Hilbert space L2(0,1) by 

D' tcjdj* icj+jiu). 

This map depends upon the choice of the eigenvectors dj when y » (logx)1/4, 
but since the corresponding eigenvalues are small, this has only a small effect 
upon T. If Ps is the projection of H onto the space spanned by the first s 
eigenf unctions ^(w), then for y in H we have 

\\TcPsy - DT.ZrVf - f ( \ ~ ",)V «ll^fOoglog^)"1. 

Moreover, \\TC - rcP,|| «: .s-1 <̂  x~l logx, and we see that 

H^TiX)-1 - rc|| « (loglog^)"1. 

In this sense we gain a quantitative representation of the convergence of Td to 
Tc. In practice it is sometimes sharper to mimic in L2(C5) a proof that is valid 
in H9 rather than invoke directly this last result. 

As an example in the application of the foregoing analysis I establish the 
following result, first proved by Ruzsa [37] using an altogether different 
method. 

THEOREM 4. 

F( / )xnûn( | \ | 2 + I,l-\f(q)-\loèq\
2) 

uniformly in f,x>2. 

Here V( ƒ ) is the same as 5(x) defined at (16) but with n replaced by [x], 
and u x v denotes that there are positive constants cv c2 so that cxu < v < c2w. 

PROOF. The upper bound follows readily from the Turân-Kubilius inequal
ity, if we note that 
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and that 

is bounded uniformly for x ^ 2. 
The lower bound for V( ƒ ) requires more effort. Adopting the philosophy: if 

operator <-> sufficiency, then dual of operator <-> necessity, we consider the com
position A\A2.\n fact 

| | ^ 2 / | | « n / ) + ( l o g x ) - 1 / 2 | | / | | . 

In view of our considerations in the reappraisal we have 

||(7 - T)f\\ « V(f) +(loglogx/logx)1 /2 

with the norms in Cs. 
It follows from Lemma 2 that with F = ( ƒ, dx), 

\\f-Fdx\\ « K(ƒ) +(loglogJc/log*)1/2 

where (as earher) ^ is the unit eigenvector of the discrete T corresponding to 
the eigenvalue vv 

Let \pj denote the function \pj(\ogq/logx) rescaled to have the norm 1. 
Since 

0--V)*,(gf)|«(Hx)-", 
we see from another application of Lemma 2 that 

• . (&) -<• . . ' . * <z (logx) -1/2 

Moreover, ||J1|| = 1 = H^H, so that in view of the general norm inequality 
I N I H | & | | | < l l a - * l l > we similarly derive | | ^ - dx\\ <z (logx)"1 /2 . Thus 
with F0 = ( ƒ, ^x) we have 

| | / - F 0 ^ | | « V(f) +( loglogx)- 1 / 2 | | / | | . 

If we replace ƒ in this inequality by ƒ - F0\pv then F0 is replaced by zero, 
and we obtain 

\\f-F0h\\^V(f-F0^). 

This puts us into a position to apply Lemma 3, and so deduce that 

* 2+ Lhf(q)-^ogq\2«V(f) 

w i t h A ^ v ^ / ^ X l o g x ) - 1 . 
For this argument to succeed it would be enough to know that the eigen

value vl9 which is near to 1, is bounded away from the rest of the spectrum of 
r , uniformly for all large values of x. For later reference we note that a bound 
||^. - dj\\ « : (logx)~1/2 holds for each fixed j . 
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I should add that I first applied to the study of additive (and multiplicative) 
arithmetic functions the above philosophy concerning duality and necessity in 
[5], 1972, and in connection with the Turân-Kubilius inequality. Duality 
between point and line is a central feature in projective geometry. There the 
philosophy is exemplified (possibly I repeat myself) by Desargues' theorem, 
whose dual is already its converse. At that time I consciously sought an 
alternative to the application of Kac's idea that being divisible by differing 
primes represented independent events, since I knew it to be not generally 
valid. Seen from this distance it is clear that a particular outcome of the above 
philosophy is that the notion of independence has been replaced by that of 
self-adjointness of an operator. 

Whilst this approach gives a unifying view of probabilistic number theory, 
many of the important theorems of that theory are susceptible to treatments 
derived from different motivations. This is not the case in the study of the 
differences of additive functions, where the use of functional analysis within 
the above philosophy leads to results which, at present, are the most precise 
and the widest in application. 

4. Differences of additive functions. An analogue of the Turân-Kubilius 
inequality for differences is readily obtained by interpolating M( ƒ ): 

E | / ( « + i ) - / ( « ) | 2 

rt + l<JC 

< 2 E | /(« + l ) - M ( / ) | 2 + 2 £ | / ( « ) - M ( / ) | 2 

« + 1<JC n + l^x 

«: xB{xf. 

Likewise we obtain the analogue of the upper bound in Theorem 4: 

x-1 E | / ( « + l ) - / ( « ) | 2 « x - 1 | \ | 2 + Zq-l\f(q)-\logq\
2, 

valid for each X. What about the lower bound? This is of particular interest 
when considering applications of arithmetic functions to the representation of 
rationals by products. For simplicity of exposition, and to show more clearly 
the dependence of localization upon the size of various parameters, I shall 
consider only the differences f(n 4- 1) — f(n). 

Let B: Cs -» C[x] be the operator given by 

(Bf)(n)=f(n-1)-M(f), 

with the convention that /(O) = 0. Thus B is bounded uniformly for x > 2. 
According to the philosophy employed in the previous section we consider the 
composition A%(A2 - B). Then 

\\Â*2(A2 - £ ) ƒ ! « \\(A2-B)f ||, 

where 

\\(A2- B)f\\= [[x]-1 Z \f(n) -f(n - l)\2) . 
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If we could somehow remove the operator A\B we should be in a position 
analogous to that of the previous section, reduced to a study of a discrete 
version of T. It is required that in some sense A\ (or A%) be orthogonal to B. 
Note that \\À$Bf ||2 is equal to 

|2 

Defining 

FT £ /(»)--(l--)rT I ƒ(») 
tt«l(mod<?) (« — 1,^) —1 

E(y,D,r)- I / ( « ) - T 7 ^ T ^ /(»> 
«ssr(modZ)) ( n , D ) = l 

for integers r, Z> > 0, and real y, I can prove 

THEOREM 5. For each fixed e > 0 

E • ( * ) max m a x | £ ( ^ ^ r ) | 2 < < ^ ^ ^ 

where 

Moreover, a similar result holds ifn = r (mod#) is replaced by n = r (mod#), 
and <t>(q)~l is replaced by q~l in the definition of E(y,q, r). If for integers d 
and c > 1 the outer summation is restricted to those q which are prime to c, then 
n = d (mod c) may be required in the sums defining E(y, q, r). 

Perhaps a result of this kind holds with x1/2~~e replaced by xl~\ or better. 
With q = 3, applications of the Cauchy-Schwarz and then the Turân-Kubilius 
inequalities yield 

\E{x,q,r)\2«x £ \f(n)-M(f)f + x £ \M(f)-f(n)\2 

« = A-(mod3) ( w - l , 3 ) - l 

^ * 2 I I / I | 2 , 
so that for one modulus the inequality saves about (log*) -1 . 

If we define 

F(y,D,r)- I i-_L-£i, 
pmr (modD) 

then the Bombieri-Vinogradov theorem [1] asserts that for each fixed cx > 0 
and appropriate c2 > 0 

]T max max\F(y, D,r)\<: x(logx)~c\ 
/ x ^ d o g j c ) - » ( r ' j D ) " 1 y < x 

Employing the Brun-Titchmarsh bound F(y9 Z>, r) <z y(<t>(D)logy)~l which, 
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given c0 > 0, is valid for (r, D) = 1, 2 < D < y c°, we may deduce from the 
Bombieri-Vinogradov theorem that 

(21) £ <J>(D) max max|F(^,D,r) |2 <z x2(\ogx)~Cl~\ 

In Theorem 5 the primes p are replaced by an arbitrary additive function 
f(n), and this demands a qualitative change in the argument. The traditional 
applications of the Large Sieve to the study of primes in arithmetic pro
gressions employ at some stage an L1 argument. Here we must work in an L2 

sense from the outset, and so be careful with our estimates of the spectra of the 
underlying operators. 

Let 

n&d (mod c) n^d (mod c) 
ns&r (modk) (n,/c) = l 

where c, A: are positive integers, d9 r are integers, and a, 7 are positive real 
numbers. In Chapter 7 of [13] I proved, as Theorem (7.1), that for each a in the 
interval 1/2 < a < 1 

(22) E (p-lïinaxl^U^OI^f^+G^Ei^, 
( Z N c ) - l 

uniformly for all additive functions ƒ(«), for all x > 2 and Q > 1, with ju a 
certain function of a. The presence of the conditions involving c, J is 
unimportant here. For Q a small enough power of x, the first factor in this 
upper bound is <: x1_a(logjc)~1. In comparison with the inequality (21) 
derived from the Bombieri-Vinogradov theorem we have saved only log* 
rather than an essentially arbitrary power (logx)Cl+1. In this generality, 
however, (22) is best possible. I proved in the same volume that, for the above 
range of values of Q, nontrivial additive functions exist, defined on the interval 
[1, x]9 so that the inequality at (22) goes in the other direction. 

My argument employed an integral representation for Ex(y9q9r)9 by Di-
richlet series, to split the sum involving Ex into two pieces. One piece was 
estimated somewhat directly, and the other piece through its dual. An elabora
tion of this procedure may be applied to obtain the above theorem. It proves 
convenient to replace a by a complex variable s9 and to work with Re(^) near 
to 1/2. 

We see that we have control over only the first xl/2~e of the coordinates of 
À\Bf\ in terms of the measure du roughly half of them. Thus we obtain 
(23) 

(E.J(i-i)lA.)-(W(.)l,r«M,-WI + ^ ^ , 
iq<x" (log*) 

for each fixed 8 < 1/2. 
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Several variants of this inequality occur in Chapter 8 of [13], under the title 
'The Loop'. If f(n + 1) - f(n) is small, then a (weighted) estimate for the size 
of f(q)2 over the range q < x gives a better (implicit) estimate for f(q)2 over 
the range q < xl/2~e. In that volume the functional inequality is solved by 
considering the L1 form of it, giving it a continuous form (not surprisingly 
involving the measure u~ldu), and obtaining an approximate differential 
equation. The solution of this differential equation gives the form of the first 
eigenfunction of T. 

5. Approximate functional equations. For motivation we return to the exam
ple at (15), and assume that in the sense described there 

P(x)-\f(n)-a(x)) 
obeys the weak law of large numbers. It is a consequence of this assumption 
that for every positive v 

(24) £ ' - - > < > , x - * o o , 

where the summation is confined to those primes p for which 

\f(p)-a(x) + a(x/p)\>v/i(x). 

Moreover, the function a(x) can be shown not to vary violently as x increases. 
Using only these facts together with weak information concerning the 

distribution of prime numbers, we can prove the existence of functions co(x), 
e = e(x\ so that as x -* oo we have e(x) -> 0, whilst the approximate 
functional equation 

(25) a(ab) = a(a) + ct(b) + o(p(x)) 

holds uniformly for all pairs xe < a < b < x1/e, with the possible exception of 
a set E of pairs for which fx2E < e(x). Here /x2 is the product measure on the 
direct sum of two copies of R*, induced by the Haar measure nv Detailed 
proofs of these assertions may be found in my original 1975 paper [7], or 
Chapters 13 and 14 of the book [11]. 

With respect to the measure du from §3, we may regard (24) as an in-
measure version of (23). Of course, the summation in (23) extends only over 
q < x1/2~e rather than q < x, but this is compensated by the fact that the 
inequality is in mean-square form, and a(x) is given explicitly: 

« ( * ) - E - ( i - - ) / ( ? ) • 

In particular, this gives us some control over the growth rate of a(x). We hope 
for an L2 approximate functional equation, whose solution we can essentially 
determine. In view of the form of (25), a(x) should in some sense be near to a 
logarithm. 

In the event it is convenient to work in an L1 sense. 
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THEOREM 6. For 0 < y < S < 1 and a(x) as defined above, let 

(26) *(*)- E ±\f(q)-a(x) + a(x/q)\. 
xy<q<x8 H 

Then for each pair of positive numbers e, B, there is a positive constant c so 
that 

a(t) = G(x) logt - 7}(x) + 0(Y(x)), 

with 

Y(x)= sup 6(w)+(logx)-BZ, ttip±+ max q-l\f(q)\, 
x c<w<x q^x " xc<q<x 

holds uniformly for xe < / < x, and all x sufficiently large in terms of y, Ô, e, B. 

The functions G, t\ are Lebesgue measurable, and the constant c depends at 
most upon e, y, and 8. It is possible to reduce the explicit dependence of the 
error term upon the values f{q). 

LEMMA 7. In the notation of Theorem 7, there is a constant d so that 

El/kii«(max | / (^|+ sup *(HOW)' 

for all x > 2. 

I give here only a lightning sketch of these results, which I first exposed in 
the spring of 1980. Full details of the necessary arguments may be found in 
Chapter 9 of my book [13]. 

After subtraction, (26) implies that for any fixed k > 1 

(27) E \\a(z) - a(z/q) - a(w) + a(w/q) | « Y(xk) 
xy<q^xs q 

uniformly for x < w < z < xk. In particular, as was the case in the above 
treatment of the law of large numbers, the individual f(q) disappear. The 
operator T with (Tf)(q) = a(x) - a(x/q) was initially defined on the space 
C5, where s = s(x) denotes the number of prime powers q not exceeding x. 
With the step to (27) we widen the study of T to a patch of neighboring spaces 
C5(w), x < w < xk. Note that in the usual metric on the line, x and xk are far 
apart for large x. In the metric on IR * given by 

1 logt/ _ logf 
[log* logxj 

they are at a distance k - 1, bounded independently of x ( > 2), and so close. 
With A(x, y) defined to be a(x) - a(x/y) - a(y), as in the paragraph 

following (15), we give (27) a continuous form: 

(*' \A(z,u) - A(w,w) |— « LY(xk) 
Jxy u 

with L = logx, uniformly for x < w < z < xk. 

p(u,v) = 
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Let a = 1 - 8 + 82, b = 82/(2a). Suppose that / > ab, and 0 < T < 1. 
Then 

jj \A(w9u)-A(w,v)\^<<L>Y(x°) 

holds uniformly for xab < us < xl. Here the domain D of integration is given 
by xö(1-T) < v < xa, U^1"1") < wu/w < üfe, a form which betrays the integral to 
be on U * e R *, rather than the two-dimensional real plane. 

We continue to measure the rate at which A(H>, U) varies with w, w, by 
proving that 

/ / / | A ( « , » ) - A ( » . » ) | ^ ï « i ' y ( x ' ) 

uniformly for x < z < x*, the integral being over the region 

x6(1~T) < u < **, jca(1~T) < t; < xa, Ü^1"7) < UÜ/W < vb. 

For T sufficiently small in terms of y, 8, this region is nonempty. It may be 
more readily visualized by subjecting each of the variables to the transforma
tion y •-» log y /log x. 

Employing this triple integral, a function X(x) may be defined so that 

uniformly for x < z < xk. 
These results are obtained by splitting the integrals into a few pieces, and 

making appropriate changes of variable. It is not difficult to deduce from (28) 
that for each zx (> 1 and) not exceeding a certain power of x, the function 
a(z) — a{z/zx) is essentially constant over the interval x < z < xk. This is an 
analogue of the approximate functional equation (25). 

Moreover, it follows from (26) that 

£ l ( l -^) ( / (^) -A(x ,^) + a(^))«ö(x) 

uniformly for xy < t < x8. This equation, too, may be put into a continuous 
form so that, together with (28) in the case z = x, it gives 

a(,) ~ II rt£idu = F(x)+x(x) loglog'+ 0(y(x)) 

with K = 8(1 - 8r/9). Here the function F(x) can be given explicitly. 
Denoting the integral by / we note that the left-hand side of this approxi

mate differential equation has the form 

demonstrating an integrating factor. We can essentially solve the equation. 
This leads to the desired representation for a(t) over the range xK < / < x8 

and its validity over the longer range xe < t < x may be obtained from (28). 
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Suppose now that for 0 < y < S < 1 

*(*)- E \\f(q)-(Tf){q)\\ 
xy<q^xs H 

where T is defined on Cs, as earlier. An application of the Cauchy-Schwarz 
inequality, together with an estimate from elementary number theory, shows 
that the function 0(x) defined in Theorem 6 is «: ^{x)l/1. With the corre
sponding representation of a(t) to hand we readily derive 

THEOREM 8. For suitable G(x), c, and any fixed B 
2 

I \\f{q)-G{x)\o%q\
2^ sup ^w)+{\o%xy

BZ^^-
xy<q<xs H x c<w<x q^x ** 

uniformly f or all f, andx > 2. 

This may be compared with the inequality 
2 

Z \\f{q)-H{x)\o%q\2^\\f-TftH\o%x)-l/2Z lJ^~ 
<7<x ^ q<x V 

obtained by employing the spectral decomposition of C5 with respect to T. The 
method of approximate functional equations involves some loss of precision, 
but as a general method is very flexible. Not only does it immediately apply to 
norms other than the mean-square norm considered here; at a deeper level, the 
interpolating points q may be replaced by others, provided they are reasonably 
well distributed. This may, of course, change the measure such as u~l du in the 
resulting continuous version of the approximate functional equation. Progress 
may then be hoped for if there is a corresponding exact functional equation 
whose solutions can be usefully classified. 

In our present circumstances the role of the exact functional equation is 
played by a(ab) = a(a) + a(b) on the positive reals, which is Cauchy's 
equation on R*. 

Studies of versions of Cauchy's equation and of the equation g(x + y) = 
g(x)g(y\ which are to hold on the line, but only approximately with respect 
to some measure, may be found in Elliott [14,15]. Each case has an associated 
approximate differential equation. 

Define 

« o o - «up (^n/(«)- / («- i ) i 2 ) 1 / 2 . 
xc<iy<ix \ y n<y J 

It follows from our half-norm inequality (23) and Theorem 8 that for any fixed 
0 < e < S < 1/2, and suitable c, 
(29) 

2 

E \\f{q)-K\ogq\
2^»(x^)2 + L-\\o%Lf E [ î ^ . 

xe<q<x ^ q<xV8 * 
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Here K denotes G(x1/S). If we introduce the inner product 

on the space of complex tuples, one coordinate for each prime power q in the 
interval xe < q < x, and the corresponding norm \f\x = [ƒ, f]l/2 > 0, then, 
with K0\ log |i = [ ƒ, log], we have 

\f-K)og\l=\f- K0log\2 + \K- K0\
2\log\l 

We shall apply this device of translating so that a certain inner product 
vanishes, several times in the remainder of this section. As an application here, 
we see that the inequality (29) is valid with K replaced by K0, so that without 
loss of generality 

\Kf«L-2 £ I/ill]! 
xe<q^x 4 

may be assumed. 
To remove the condition q > xe in (29), let g2 coincide with ƒ - K log on 

the prime powers q in xe < q < x9 and be zero otherwise. Define g2 = ƒ -
K log - gv Then by the Turân-Kubilius inequaUty 

\\(A2-B)g2\\
2«\\g2\\

2«o 

with a denoting the upper bound at (29). Since \\(A2 - i?)log|| ^ x~l we have 

\\{A2- B)(f- K\og)( «\\(A2- B)ff + x-W2, 

and in view of our bound for the size of K 

\\{A2-B)gl\\
2^o. 

The inequality (23) is now applied to gx rather than ƒ : 

Since e < 1 - 5, {Tgx)(q) = 0 for each q < xfi. The sum on the left-hand side 
of this inequaUty is \\gi\\2

9 and we obtain the analogue of (29) for the range 
q < xe. 

Define 

with Tj(.x)||log||2 = ( ƒ, log) on Cs. In the inequaUty (29) we omit the condition 
q > x\ and replace ƒ b y / - T)(xl/s)\og: 

| | / - ( * + i,(*1/4))log||2 
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The inner product argument allows us to replace K + r\(xl/8) by r}(x), to 
derive 

(30) p(x) « <o(*1/5) + L - ^ l o g L p t * 1 / * ) + x-c\V(x1^8) |. 

This gives an iterative scheme for the improvement of bounds on || ƒ ||, but 
such a scheme needs an initial bound. In the present circumstances this is 
provided by the following result (from Elliott [10]). 

LEMMA 9. 

E \f(n) |2 « xlogx E n-'\ f(n) - f(n - 1) \\ 

A short inductive proof of this result appears in the above reference. A 
consideration of the general difference f (an + b)—f(cn + d), which is more 
complicated and involves the application of Kloosterman sums, is made in 
Chapter 3 of my book [13]. 

Since the function M0(f) = [x]_ 1Zw < x f(n) satisfies 

|M0( /)!2«x-1I | /(n) |2
) 

we can assert that 

* - 1 £ I / ( " ) - M0(f)\
2 « log* £ n-x\ ƒ(«) - f(n - 1) |2 « p(x) log*, 

say. Together with Ruzsa's theorem (Theorem 4 of §3) this guarantees a X such 
that 

| \ | 2 + | | / - \ l o g | | 2 ^ 0 ( x ) l o g j c . 

In particular 

(31) p(x)2 « p(x) log*, || ƒ f « p(x)(\ogx)\ 

Applied to the inequality (30) these last give 

f>(x) « o>(x1/8) + i S ^ / ^ l o g l o g x . 

It is apparent that the factor log log x could be expensive, since it gives an 
increasing weight to the small differences f(n)-f(n - 1). To overcome this, 
three iterations of (30) are helpful: 

p ( x ) « £ l^^)J~1
0{xvnJ]2^È£)\{xi^) 

where 0(y) = co(y) + y~c8\T)(y)\. Bearing in mind the bounds (31) we obtain, 
in particular, 

r \ ( \ , (loglogx)3 v l / ( " W ( " " 1 ) 1 p ( x ) « sup o>(y) + v * B ) E 'y V ; „ —\ • 
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With TJ = r)(x) we have 

* _ 1 h | 2 « \\(A2 - B h l o g f « | | ( ^ 2 - B)(f- T,log)||2 + <o(x)2 

«: p(x) + o)(x) , 

having applied the Turân-Kubilius inequality for the last time in this section. 
Altogether we have established the following new result: 

THEOREM 10. For any fixed c > 8 the inequality 

q<x1\ 4ol 

« sup y-lZ\f{n)-f{n-\)\\ 

with Tj||log||2 = (/,log), holds for all additive functions, and real x > 2. 

With more care the supremum in the statement of Theorem 10 may be taken 
over a range ; c J < j ; < j c c f o r a positive d, independent of ƒ. The first step is to 
obtain a constant d, possibly larger than c, so that the inequality is valid with 
the supremum over xl/d < y < xd. 

With a squeeze perhaps only two iterations of (30) might be needed, thus 
reducing the condition c > 8 in the theorem to c > 4. 

The more general differences of additive functions mentioned earlier may be 
similarly treated, save that at present a larger value of c is needed. 

6. Other norms. There are analogues of the Turân-Kubilius and related 
inequalities which involve norms other than L2. As a background example 
consider the inequality 

(32) £ l ( i - - L ) 
q%9\ 9ol 

where a > 1, and / denotes a prime power. In order to study a continuous 
analogue we view the operator T as being defined on the space La with respect 
to the measure u'1 du onO < u < 1. A straightforward application of Holder's 
inequality shows, that, into La, T is bounded, indeed compact. 

The map T is one-to-one, but its image in La contains only continuous 
functions, and so doesn't cover the whole of La. Thus 0 is the sole member of 
its continuous spectrum. 

The dual space of La may be identified with Lft', a"1 + (a ' ) " 1 = 1> a n d t n e 

dual operator 7" is formally the same as T. Moreover, since T is compact, T 
and T' have the same spectra, even down to the finite multiplicity of each 
eigenvalue. Thus, without loss of generality we may confine ourselves to the 
cases a > 2. This is convenient, since we can then drop down to L2. 

In fact u~l du does not give a finite measure to the whole interval (0,1). It is 
advantageous to consider the functions ƒ of Lö(0,1) restricted to the interval 
8 < u < 1 - 8, and so belonging to L2(8,1 - 8), 0 < 8 < 1/2.1 shall denote 
a typical restricted function by fv 

/(?)- I / ( / ) 

x/q<l^x 
l - < e " 
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On L 2 ( S , 1 - 8 ) the operator 

G: h ~ f1-'h(u) &• 

is self-adjoint, and we may employ the means used earlier when 8 = 0. The 
eigenfunctions of G once again satisfy the differential equations (11), but they 
can no longer be a set of polynomials orthogonal with respect to the measure 
u~1du, and a simple explicit representation for them does not seem forthcom
ing. Instead we think of 8 as small, and of L2(8, 1 - 5) as an approximation 
toL2(0,l). 

Let g be a unit eigenfunction of Ton La(091), with associated eigenvalue X. 
Then on the interval 8 < u < 1 we have 

Tg=Tgl+f g(„)f. 
We see that in L2(0,1) 

Js \J1-S V \ U Ji_g U 

Bearing in mind that on L"(0,1), ||g,J| < 1, we may majorize \Tgx\ by means of 
Holder's inequality, and obtain for the last of these integrals the upper bound 
28(logl/S)2/a'. Similarly 

* | < ( - l o g ( l - « ) ) < " I g(«0 _ 
1 - * V 

and the penultimate integral is not more than (2S)2/a' log 1/8. Altogether 

l|r*i-x*ill«*«c 

for some positive constant c. Moreover, since g is not almost surely zero, 
IIgill > c0> 0 holds in L2(0,1) for all sufficiently small 8. 

It now follows from the spectral decomposition of L2(0,1) with respect to T, 
that for some eigenvalue X7 = ( - l ) y ~V _ 1 w e n a v e \X - Xj\ <£ 8c/2> the 
implied constant depending at most upon a. Letting 8 -> 0+ we see that X 
belongs to the closure of the spectrum of T on L2(0,1), and so to that 
spectrum itself. Moreover, the polynomials ypj(u) belong to L*(0,1) for every 
a > 0, and are still eigenfunctions of T. Thus, disregarding multiplicities, the 
spectrum of Ton La, a > 1, is the same as that of Ton L2. 

In fact every eigenvalue of T is still simple. For example, when a > 1 we 
can define the map 

Tx:f^Tf-U,tMi, 
where the inner product ( ƒ, i/̂ ) is taken in L2(0,1). Since \pl belongs to every 
Z/(0,1), Tx is well defined. Tx is (again) compact and formally self-dual. The 
above argument shows that its spectrum is that of T with the eigenvalue 1 
omitted, so that its spectral radius is 1/2. Suppose now that g is an eigenvalue 
of T with corresponding eigenvalue 1, and fix an integer k so that \\Ti\\ < 3/4. 
Then a simple check shows that T*g = g ~ ( g , ^1)̂ 1» fr°m which 
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Apart from its normalization, g is uniquely determined. In particular the 
eigenvalue 1 is simple. 

We are now in a positive to 'solve' the inequality (32). It may be viewed as 
|| ƒ — Tf\\ < e, where T is given by the map (19), and the space is Cs with the 
norm 

Since T is bounded, \\Tjf - TJ+1f\\ «: e for each positive j9 and after several 
applications of the triangle inequality, || ƒ - Tkf\\ <z e for each positive k. 

It is readily proved by induction that 

T1
kf=Tkf-vl{Tk-lf,d1)dl 

where, as earHer, dx is the first eigenfunction of T in L2(€5) and 7\ is the 
operator 

Of course d1 is still an eigenfunction of T, but its norm in La may possibly 

grow with x. Then we have 

\\{l - Tk)f - v^T^f^d^d^ z. 

Denoting by Rx the resolvent of I - T*9 and noting that R^\) = dl9 we 
obtain the solution 

| / - i ' i ( r * - 1 / , < / 1 ) r f i | « e . 

with one caveat; we need a bound for the norm of the resolvent which does not 
depend upon x. 

In the present circumstances we do not have a space on which to exhibit any 
approximation to the continuous T by its discrete analogues. Since La is not a 
Hubert space, there is no spectral decomposition with respect to T available, 
and although the spectral radius of Tx may be expected to approach 1/2, the 
number of iterations k needed to ensure \\T£\\ < 3/4 may grow with x. I shall 
show that effectively it does not. 

It is convenient to introduce the operator Sx: f->Tf— (ƒ, $i)$i , to be 
used as an approximation to Tv So far we only know this approximation to be 
true in L2(C5). 

We write Sx in the form 

/^ r h(u,v)f(v)dü, 
where h(u, v) = ô(w, v) - s(u)s(v) with ô(w, v) = 1 if uv > x, and = 0 
otherwise; s(q) is the ^-coordinate of \pv Then S* may be represented by a 
kernel p(u,v) given by (reading right to left) 

ƒ h(u>uk-i)duk-i '" ƒ h(u2,u1)h(ul9u)dul. 
J2 J2 
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An application of Holder's inequality yields the bound 

\\sïf<j*fa[f*\p(u9v)\*iïy\ 
For each fixed v, p(u,v) = T^~l{h{-9v))9 and we now approximate to the 
continuous Tv We note that after the substitution T: U -> (logw)/logx the 
unit square [0, l ] 2 can be divided by straight-line segments into finitely many 
pieces (depending upon A:) on each of which integrands such as p(ru,rv) are 
continuous. By enclosing these Unes in strips of width (logx)~1/2, and remov
ing similar end-strips 1 - (logx)~1/2 < TU < 1, 1 - (logx)~1/2 < TV < 1, we 
can ensure that on the remainder p(ru, TV) has continuous partial derivatives 
in ru, TV, uniformly bounded by a power of log*. This enables the relevant 
parts of the various integrals to be replaced by continuous analogues. The 
contribution remaining which corresponds to the removed strips is anyway 
small, since the integrands themselves are bounded by a power of log log x. For 
example, \h(u9 v)\ < 3 uniformly in w, u, so that p(w, v) «: (loglogx)*"1. 

In this way we obtain (extending a previous notation) 

<»> i*r<£*(£i«-w-..>)r*r*.<i). 
where t(w9 s) = 1 — 2sw if s + w > 1, and = — 2sw otherwise. This argu
ment could not be carried out for the discrete operator Tv since we have no 
information concerning the individual coordinates of the eigenfunction dv 

If g(z) denotes the function T^c~
2{t(-9 w)), then 

r*-1^-,*))(«) = T g(') T - 2u f s^ dz-
Jl-u z J0 

Applications of the Cauchy-Schwarz inequality give 

||g||2(/log(l - «) + a^") 

as an upper bound for these expressions, where || ||2 denotes the norm on 
L2(0,1). Since Tlc has a spectral radius 1/2 on that space, 

\\gh^2-^\\t(.,w)\\2. 

A direct calculation shows that this last norm is «: /log(l — w) + w, and we 
see that the innermost integral in the bound at (33) does not exceed a constant 
multiple of 

2~*(/log(l -u) +u)"'. 

This in turn leads to a bound 

for all x > 2. An important feature of this result is that the constant c0 is 
absolute. Given 0 < e < \ we may choose k large enough that the bound does 
not exceed (\ + e ) \ 
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By considering the powers of Sx k at a time, we can obtain a constant c so 
that \\S?\\ < c(i + *)w holds for all m > 1. For |A| > i + 2e the resolvent 
operators (XI — S^'1 are then bounded, with norms not exceeding c/e. 

Returning to our initial hypothesis (32), we write it in the form 

and deduce that 

(34) | / - ( / , W ( / - S i ) " ^ i | < : e . 

A direct computation shows that HS^H = 117$! - î H <c (logx)~1/a, and 
since 

(35) X(XI - S)'1 - I = X(A7 - S ) - 1 S , 

we also have 

However, we cannot simplify (34) further without some information concern
ing the inner product ( ƒ, $x). 

The (first) eigenvalue vx of the discrete 7 is only known to be near to 1, but 
it will exceed 3/4 for all sufficiently large x. Then 

(vxI - Sjd, - (vj - T)dx +(d»Mi> 

so that 

This not only shows (once again) that the eigenvalue vx of 7 on Z/*(CS) is 
simple, but also, since (dv^x) may be computed in L2(CS), that dx is 
bounded in La(Cs), independently of x. Another appHcation of (35), and we 
obtain 

(36) K - $ J « (log*)"5 , 8 = min(l/2, l / « ) , 

of the same form as a result in §3, but with a different norm. This enables us to 
show that 7\ and Ŝ  are genuinely close. 

In fact 

By Holder's inequality 

K/^i-rfi)l<ll/U^i-rfilU 
where the second of these norms, considered on L°'(C5), is <^ (logx)~a, 
a = min(l /2 ,1/a ' ) - I n t n i s manner we see that for a suitable 5 

^ - ^ « ( l o g x ) - 8 . 

The resolvents (I - T{)~1 are now seen to be bounded for each positive j . 
In particular, we may write the hypothesis (32) in the form 

l l / - 7 - i / - " i ( / ^ i ) ^ i l l < e , 
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and deduce the aesthetically more pleasing 
(37) \\f-Pi(f,d1)dl\\^e. 

We may continue with this analysis, introducing the operator 

i - i 

As for Sv and with a similar meaning, we prove that asymptotically the 
spectral radius of Sj is not more than \/(j + 1). For \\\> fi> \/(j + 1) the 
resolvents (XI - Sj)~l have norms bounded in terms of /? and j , uniformly 
for x sufficiently large. 

Further direct calculation shows that if i #y, (^, \pj) «: (\ogx)~8 for some 
positive constant 8 not depending upon J, j or x (> 2). This enables us to 
show that IISŷ H <̂  (log*)"0 for 1 < i <y, and in view of (35) that 

uniformly for 1 < i < j , \X\> ft, x > 2. Hence we obtain a representation 

d,- i,K(dM(^-Sj)~% 
r - 1 

vahd for 1 < i < j ; that the ||dt\\ are bounded uniformly in x\ and that 

Mi- EM^Ui 
r - l 

(logx)~ 

Here the approximation vt -Xt<^ (logx)"1/2 has been applied. 
Since the operator T is bounded we may apply it k - 1 times to the 

function inside this norm, and so obtain 

V%- i x*(4,$r)dU(iog*r*, 
I r - l II 

for k = 1,2,..., j . These j inequahties may be treated in the manner of linear 
equations, using Cramer's rule. The coefficient matrix (X*), 1 < /, k <y, has a 
van der Monde determinant, not zero because the X, are distinct and nonzero. 
Thus we obtain 
(38) y, - *,|| <z (log*)"4, (dM *• (log*)"' 
for each fixed i ¥= r. 

Defining the operator Tj by 

/ ~ 1 / - £',(ƒ, 4M, 
i - 1 

we can prove that \\Tj - Sj\\ «: (logx)~ô for some positive constant S which is 
independent of j> and of x ( > 2). 

As a version of Lemma 2 for the operator Ton La(Cs) we have 

LEMMA 11. Assume that for some eigenvalue Vj of the discrete operator T we 
have \\Tg - Vjg\\ = e. Then 

|g-(g,^K||<<e, (SMUA** firi+j. 
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PROOF. I give only a sketch, since the method is the same as that employed 
in the estimation of the dt. With r^j and w( ƒ ) = I^= 1 ^ ( / , dt)di9 we write 
the hypothesis in the form 

l(vjI-T,)g-w(g)l=e. 

The resolvent operator (vjl - Tr)~
l is bounded, and Trw(g) = 0, so that 

i - l 
«: e. 

Since T is bounded, operating on the function estimated in this norm yields 
r II 

«-1 II 

for each fixed k, 1 < fc < r — 1. EUmination now gives the desired result. 
Some form of this argument can be applied when e = \\Tg - Xg\\ and X isn't 

an eigenvalue of T. Looking even farther back I give a version of Lemma 1. 

LEMMA 12. Let fi > 0. For any |X| > j8 and function g in La(Cs) there is an 
eigenvalue vt ofTso that 

h-*lblM|r*-Xg||, 
the implied constant depending only upon fi and a. 

PROOF. This follows the proof of Lemma 11. One reaches an estimate 

011*11* Hi*-Ag||, 
where D is the van der Monde determinant deu>/), 0 < / < r, 1 <y < r + 1, 
with v0 = X, and r chosen so that /? > l / ( r + 1). This determinant satisfies 

\D\ 1>, n (r,->j) > y n | A - ^ | 
7 = 1 

for some positive y depending at most upon r, and so fi. If some term in the 
last product is less than l /4r , then all the other terms are at least as large as 
l / 4 r . This gives the desired bound. 

Altogether the operators T, Tt behave on La(Cs) much as they do on 
L2(C*>. 

7. Intersection spaces. Let La be a space of ju-measurable functions, with 
corresponding norm 

• - ( / " f 
d\i 

i / « 

With a view to apphcations to the study of T, it is appropriate to consider the 
spaces La n L& with norm || ƒ \\a + || ƒ H ,̂ and their duals. More exactly, if Y 
denotes the space of /x-measurable functions ƒ for which || ƒ ||a and || ƒ Ĥ  are 
both defined (finite), then La n L& is the completion of Y with respect to the 
norm ||/| | t t + | | / | | , . 
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a + H/H,, 1< j8 < a. LEMMA 13. Let S be the space La n Lp with norm 
Let y in S' be given by 

ƒ-* ƒ fgdp> 

where ||g||a/ + ||g||^ is finite. Suppose that the norm of y is at most TJ. Then 

ƒ l*r* + ƒ h\a'dA <12^V 
rlsKl / V\8\>ri ) 

Moreover, for any value of i\ the majorized expression is an upper bound for the 
norm ofy. 

PROOF. Consider the function 

g + (Re(g) i fRe (g )> r , / 4 , 
\ 0 otherwise. 

Then ƒ•-» ƒ fg+d\i gives a map on S considered as a real space of real 
functions, with norm at most ||j>||. For, defining 

/+= 
ƒ i f R c ( g ) > i , / 4 , 

10 otherwise, 

and writing N for ||_y||, we see that for real f 'xa La C\ L& 

ƒ gf+dti\ = \f f+gdfi <*ll/+ll<*ll/l|. 
For a complex space S we may similarly treat if, for ƒ purely imaginary, and 
obtain an analogous result with 2 AT in place of N. 

If we set ƒ = g+~\ then we have by Holder's inequality (in an equality case) 

Here 

and 

so that 

ffg+dlxUN{\\f\\a+\\fh). 

if ««•-!) \ v ' / i j r 1 + a , / / , ' i i „«y/» 

i / « 

= (/ig+r"i)^]"""=iig+nr, 

\\gX<N(\\gX'a+(^r1+aVP)\g+\C/p). 
If the first of the two terms in the majorant exceeds i||g+ | |£, then 

( / 
|g + | " r f / i | " <2JV. 
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Otherwise 

i i*+ i ;<^/4)- i + ' / i ru+ i : / 

which leads to a similar upper bound, but with %^'/a'N in place of 2N. 
By considering the function 

g = = / - R e ( g ) i fRe(g)< -H/4 , 
\ 0 otherwise, 

and the analogues of g+, g_ involving the imaginary part of g, and noting that 
when \g\ > y 

| g | < 4 m a x ( | g + | , | g _ | , | ( f e ) + U ( * ) - l ) , 
we obtain the bound 

f \gfdf] " <ior"N. 
J\g\>v I 

The integrals involving the condition \g\ < t\ may be likewise reduced to the 
case when g is real, and typically satisfies 0 < g < TJ. In this case one sets 
ƒ = g^"1, and applies Holder's inequality as an equality, to obtain 

iig||£<Mii/li«+u/ll/0-
Since a(/J' - 1) > 0', we have 

\\f\i<(^'-i)-ng\\ï)l/a. 
From these we readily derive the bound 

\Vft' 
(ƒ I*!"*) 

and the first assertion of the lemma is justified. 
The second assertion may be justified by expressing g as the sum of the two 

functions, according to whether \g\ < i\ or not, and applying to the corre
sponding functional on S the appropriate form of Holder's inequality. 

Consider now the space V', where V = La n Z/ has norm ||/||a 4-1| ƒ Ĥ  
with respect to the measure u~ldu on the interval 0 < u < 1. The above 
lemma shows that V' is not in general the space La' n Lfi'. We continue with 
the study of this space. 

LEMMA 14. To each functional y in (La n Z/)', 1 < /? < a, there corresponds 
a function g so that y has a representation 

/ - ƒ fg
di + j fg

di> 
where the function 

V\g\<c " / \J\g\>c « / 

satisfies t(\\y\\) < 24*'/°'|| >>||. 

file:///gfdf
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Moreover, any function g for which t{c) is finite f or some positive c defines a 
functional on La n L^, with a norm not exceeding t(c). 

PROOF. Let y be a functional on V, with norm N. If 0 < 8 < 1, and we 
extend the functions on (8,1) by having them assume the value zero on the 
remaining interval 0 < u < 8, then y induces a functional on La(8,1) Pi 
Z/(8,1) with norm at most N. 

Since w"1 du assigns a finite measure to the interval (8, 1), L^(8,1) may be 
viewed as a subspace of Z/*(8,1), and an application of Holder's inequality 
shows that 

IfhKlfM-***)1-""0-
Moreover, the polynomials on (8,1) belong to both Z/(8,1) and La(8,1), and 
are dense in the latter. Then y induces a functional on La(891), where it has a 
representation 

,du 

the function g being essentially determined on (8,1). By varying 8 we define a 
function g on the whole unit interval 0 < u < 1. 

For any function ƒ on 0 < u < 1 define 

, - { 
The functional 

where 

ft." 

= / / i f « < n < l , 
0 i f 0 < w < 8 . 

Jx U 

g if |g| < w, n an integer, 
0 otherwise, 

is bounded on V, and of norm at most N. Indeed, if 6n = 1 when \g\ < n, and 
is zero otherwise, then in the usual notation 

du 

so that 

J0 U 

\(f,z)\^N\\fA\\<N\\f\\. 

Clearly (g„)ô belongs to Z/*(0,1) and 1/(0,1), and we apply our previous 
lemma to obtain 

[i: 
la.l<* 

with y = 12^'/"'. 
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The sets En of points on which |g| < «, w = 1,2,..., form an increasing 
nest. For any r > iV, and all n ^ r, 

/ j \ l / f i ' ( j \ l / a ' 

In { >p' du \ Ac1 i i«' «w 

We obtain the bound on t(N\ and so the first part of the lemma, by applying 
Fatou's lemma as n -+ oo, the dominated convergence theorem as r -> oo, and 
again Fatou's lemma, as S -» 0+. Thus 

<ƒ,,) = Hm <ƒ.,,>- B m J ^ f - / ^ . 
The second part of Lemma 14 is straightforward. 
With this integral representation to hand we can once again prove that T is 

formally self-dual. If the functional y corresponds to g, then T'y corresponds 
to Tg. Since we already know that T is compact on La, L& and so on 
La n Lfi, by a theorem of Schauder T' (and so T) is compact on (La n L*)'. 
A similar argument is valid for Tv 

The operator T is compact when viewed on each of the spaces La, La O L^, 
(La n L^Y, and has the same spectrum. 

We note that there is a natural injection 

(39) La' Pi Lfi' - (L« n 1 / ) ' 

which takes g in the first space to the functional 
X n r dU 

J0 U 

Here (as we have implicitly before in this section) we regard g in La n L&' to 
be the limit of functions gm which are measurable and have finite || ||a, and 
|| ||^/, and define y to be the limit as m -> oo of the functional 

J0 U 

Since || j>|| < ||g||«' + Hgll̂ » this injection does not increase norms. 
Lemma 13 remains valid, so we may construct analogues of these results 

using discrete spaces L* with respect to the measure du. 

8. High-Moment Inequalities. We return to the study of high-moment 
analogues of the Turân-Kubilius inequality. The first examples may be found 
in Elliott [12]: 

,1/a 

(40) 

(x-lL\f(n)-M(f)\a) 

\1/2 / \ 1 

Zrl\f{q)f) + E «-1!/(«)!" 
I^X / V tf<X I 

v 1/2 / ^ 1 / a 

+ E < 

if a > 2, and a similar inequality, but with the final term removed, when 
0 < a < 2. I remark that Ruzsa [38] later showed that a wide class of 
upper-bound inequalities satisfied by sums of the random variables Y have 
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analogues involving additive arithmetic functions. These I shall not examine 
here. 

When 1 < a < 2, the upper bound most naturally given by my original 
proof method is 

/ 

(41) 
V|/(<7)!<£ 

q<x 
\Rq)\>D 

\l/a 

i+ L 7 1 - f 
q<x 

\f{q)\>D 

valid for every positive D. 
Consider now f(q) as belonging to the space (L2 n L*')\ 1 < a < 2, where 

L^ denotes a space of functions on the prime powers not exceeding x9 with 
measure du. If || || denotes the norm on this dual space, then with D — \\ f || we 
see from Lemma 13 that 

^ « \ «0/ \V|>D ƒ 

where yx is a constant depending only upon a. Another apphcation of that 
lemma shows that the expression of (41) is not more than ex|| ƒ || for some 
constant cx depending at most upon a. Moreover, except possibly for the value 
of cl9 this bound is of a correct form. 

We see that for 1 < a < 2 it is natural to view the operator Aa, given by 

(Aaf)(n)=f(n)-M(f), 
as being on (L2 n La)' with du, and into La with respect to the frequency 
measure on the integers up to x. The content of the ath high-moment version 
of the Turân-Kubilius inequality is then that Aa has a norm which is bounded 
uniformly for all x. 

For arithmetic functions which depend structurally upon their values at the 
prime powers, the awkwardness of dealing with their a-powers, 1 < a < 2, is 
somewhat explained by their being naturally members of the space (L2 n La)\ 
rather than La, with respect to du. 

We can view A a as a bounded operator in three circumstances. 

a: (L2 Pi La')' -> L", 

b: L2-*La, 
c: L2C\La-+ La, 

1 < a < 2, 

1 < a < 2, 

a > 2. 

The natural analogue of the operator A%A2 which occurs in §3 is nowyfa,;4a. 
For 1 < a < 2 we obtain the composition 

(L2 n z/)' A L* - (z/)' ̂ > (L2 n z/)' 
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where =* denotes the standard isomorphism between La and the dual space 
of La\ and c' denotes the dual of the map Aa in the form c. 

This gives 

| | i ^ a - / + r | | « ( i o g x ) - 5 

for some positive 8, and the discrete version of T, but with an underlying norm 
different from that of La considered in §6. However, the results of that section 
apply. 

For any y > 0 we may choose k large enough that both yr//| |a < iïll ƒ L 
and \\Tff ||2 < iïll ƒ II2 f°r ^ / in ^a> L2 respectively (which here is of course 
all ƒ ). Then in terms of the norm on L2 n La or of the norm on (L2 n L"')' 

|i?/|<|r1*/l. + irI*/|a<Yll/|. 
The mechanics of §6 proceed, and given that \\Tf — f\\ = e we may still 
conclude that the estimate (37) is valid, save that the norms are to be 
interpreted in the space (L2 n L"')', and the implied constant may depend on 
a. With dx the first eigenfunction of T, and F = ( ƒ, dx\ we have 

(42) Wf-Fd.W ^\\Aa{f-Fd,)\\ ^\\f-Fdx\\, 

the outer norms being in (L2 Pi La')' with respect to du, 1 < a < 2, and the 
center norm being in La with respect to the frequency measure on the integers 
up to x. 

If a > 2, we can form two chains of compositions: 

(43) L2C)La^La~ (La'Y ^ L2, 

and a similar chain with the last map replaced by 

(44) (L"')' ^ (L2 n L«)" = L2n L\ 

the last step by the standard isometric embedding of a space into its second 
dual. In this case the spaces have the same dimension, so may be identified. 
Thus A'a,\ L

a' ->L2DL« is bounded. 
Altogether, for a > 2 we may view A'a,Aa, and so T, as being a bounded 

operator on L2 n La into itself. In particular, we may obtain the analogue of 
the inequahties (42), the outer norms now being in the space L2 n La with 
respect to du. 

For a general comparison, we introduce the notation 

Bfi(f,x)=(zJJi^\ , Dfi(f,x;A)=^Zjf(n)-Afy\ 

A0(f,x)= T.&P-, A1(f,x>,\,c)-\]ogx+ £ &f-, 
q^x " q^x V 

where f\(q)=f(q)-h log4. Furthermore, set 

\ 0 otherwise, 

file:////Tff
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and 

/ x " c ( « ) - / ° i f |A(« ) l<c , 
\/x(tf) otherwise. 

Then we have the following two theorems of Hildebrand [22]: 

THEOREM 15. For each {real) additive function ƒ, and real x > 1, there are 
numbers X0, c0 > 0 (possibly depending upon f9x)so that for every ft > 0 awd 

(45) 

Dp(f,x; A)x\\0\ +\A-A1(f,x; \0,c0)\ + B^fi^x) + *,(ƒ£,«,,*), 

f/ie implied constants only depending upon B. 

This appears as Theorem 1 in Hildebrand's paper. As Theorem 1* he gives 

THEOREM 16. 

Dfi(f,x; ^ ) x min(|A| +M -A,U,x; \,c)\^ B2{f{tC,x)+Bfi{f{[c,x)), 

w/iere c = D/g( ƒ, x; A). Moreover, if B > 2, then 

Dfi(f,x;A)>i vmn(\\\ +\A - A0(f,x)\ + B2(fx,x) + Bfi(fx,x)). 

These results generalize the estimate 

* _ 1 I l/(») - ^ o ( / . * ) | 2 - ? ^ ( ^ + B2{fx,x)) 

of Ruzsa, which we derived as Theorem 4 in §3, and improve to the same 
depth my earher high-moment inequalities (40). According to a remark of 
Ruzsa, lot ft > 2 similar results were obtained by Manstaviüus. An essential 
ingredient of Hildebrand's proofs, which do not involve functional analysis, is 
Ruzsa's bound [36] 

ô ( x ) « ( m i n ( \ 2 + Zp-lM}Ah(p)\2) 

for the concentration function 

Q(x) = sup x"1 £ 1-
y «<x 

y<f(n)<y + l 

This last estimate Ruzsa obtained by combining ideas from the theory of 
probability with the full panoply of Halasz' method [20] for the quantitative 
Fourier inversion of Dirichlet series which have Euler products. 

In view of its heavy dependence upon duality, when not combined with the 
method of approximate functional equations the functional analytic method 
given in the present paper applies to the cases ft > 1. However, it gives insight 
into the meaning of Hildebrand's theorems, and extends them to complex-
valued functions. 

- 1 / 2 
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For all /? > 1 the inequality (45) holds with \ 0 formally replaced by *//, 
defined by 

The value of \//logx is essentially V^(/, ^i) . The first step is to note the 
representation 

(* - K) I «f'Oog*)2 = I q~%(q) iog«. 

In this case we may replace Ax(f, x; A0>
co) by -^oC/»*)- Furthermore, if 

1 < /? < 2, then in the notation of the map 

^ : (L2 n Z / ' ) ' -> L ' , 

fortunately not with /} = 1!, we have 

h»(/)H*i+ii/-*i°gii. 
The lower bound for the left-hand norm comes from (34) and Hildebrand's 
inequality (45), and the upper bound from our earlier bounding of the norm of 
Ap, noting that by the triangle inequality 

ll/ll < ||/-*]0g||+ll*log||, 
the last being readily estimated. In this presentation the number c0 has 
disappeared. In view of Lemma 13, 

||/~^iog||x^2(/;}C,x) + ^(/;;c,x) 

with c = || ƒ — \p log|| which, however explicit it might be, still depends upon /?. 
For /? > 2 the inequalities involving the truncated functions fjc and f£c 

cannot be derived directly from the norm on (L2 n Z / ' ) ' in this manner, but 
they do not lie any deeper than those derived from results on L2 n ZA Thus, 
our functional analytic treatment gives (42), with /? in place of a. If we use g 
to denote ƒ - Fdv and D to denote \\Ap( ƒ - Fd^)% then in particular 

V\g\>D I \ J\g\<» I 

from which a little manipulation gives 

D«\\g\\2+lf \gfdu) . 

Moreover, 

l < b < | / D-*\g\* f 1</K< f ( D'2\g\2du\ «:1 
J\g\>D \J I 

file:///gfdu
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from another application of (42). After an application of Holder's inequality 

( \ 1/2 / \ l/P 

ƒ |g|2rfW « ƒ |g|^W , 
J\g\>D I \J\g\>£> I 

and 

/ \ l / 2 / \ V P 

£ « ƒ |g|2^ + ƒ I g M • 
For the study of additive functions in an La sense, with a > 1, the 

functional analytic method thus gives a flexible alternative to the application 
of Halâsz' method in the theory of Dirichlet series. Since it yields upper 
bounds for sums of the type E^q)^Fs(^q^>eDl/q it may conveniently be 
combined with the method of finite probability models [11, Chapter 3]. It 
brings a motivation to the study of differences of additive functions, such as 
f(n + ! ) - ƒ ( « ) . Here the corresponding Dirichlet series would have the form 

£ g ( n + l )g(«)n-
« = 1 

where g(n) is the complex-valued multiplicative function exp(/*ƒ(«)), t real. 
This series has no Euler product, and Halâsz' method cannot be applied. We 
have no analogue of Ruzsa's concentration function estimate, although with 
the f(n) in the definition of Q(x) replaced by f(n + 1) - ƒ ( « ) , such an 
estimate is very likely valid. For the study of differences in power mean, at 
present only the application of the operators Aa and their duals, together with 
the method of approximate functional equations, is available. 

As indicated in §5, approximate functional equations may be used to study 
the operator T on the 'spaces' La with a < 1; in fact right down to a result in 
measure. 

Besides this, the operators A'a, are of interest for themselves. As an example: 

THEOREM 17. If 1 < a < 2, the inequality 

l 

q<x 
~ H an 1 I " E an 

n = 0 (mod q) 

« \ l / « 

/ 

+ ( ]C / / similar summand with a = l) 

- [\ ? K i f 
holds for all complex numbers an, 1 < n < x. Here the first summation is to be 
over those prime powers qfor which 

« s O (mod q) 
n<,x I 

1/a 
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and the second summation " is to be over those qfor which the opposite inequality 
is satisfied. When a > 2 a similar main inequality obtains, but with the summa
tion conditions ' and " removed. 

These results are very useful in the study of additive or multiplicative 
arithmetic functions when raised to powers a > 1. 

As x -> oo, the spectral radius of A'a>Aa is 3/2 4- o(l). This generalizes the 
best-constant result for a = 2 of Kubilius [28, 29]. In that case ||j4fi42|| 
coincides with the spectral radius. For a > 1, a ¥= 2, ||.4^4J| need not do 
so, but it will be asymptotically at least as large as 3/2. Thus \\A2\\ = 
(1 + o(l))v^72 as x -> oo, but we know only (1 + o(l))^3/2 < \\Aa\\ <: 1 in 
the general case. 

It is now clear where the logarithms in the study of additive arithmetic 
functions come from—the first eigenspace of the operator T. 
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