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MONOPOLES ON ASYMPTOTICALLY 
EUCLIDEAN 3-MANIFOLDS 

ANDREAS FLOER 

ABSTRACT. We consider a generalization of Yang-Mills-Higgs the­
ory on Euclidean R 3 to connected sums of R,3 with compact closed 
3-manifolds. 

In this note, we describe progress in Yang-Mills-Higgs theory on 3-dimen-
sional Riemannian manifolds. In particular, we are interested in the set of 
minima of the Yang-Mills action 

(1) a (A,*) = f (\FA(x)\2 + \VA*{z)\2)dp(x)9 
JM 

where the "Higgs field" $ is a section of a metric vector bundle E over M 
and A is a linear connection on E preserving the metric. For simplicity, we 
will restrict ourselves to the case where E = ad(P) is the adjoint bundle of 
an SU2-principal bundle P over M. 

The functional 2t has been studied in great detail in the case where M is 
the Euclidean R3 , see [8]. We recall here briefly the main results: The length 
of the Higgs field $ of any finite action configuration c = (A, $) obtains 
in some sense an asymptotic value m(c) at infinity. For each m > 0, the 
space of finite action configurations c with m(c) = m decomposes into a 
family of components indexed by a "topological charge" fc. On each of these 
components, the minima of the action functional (1) can be shown to be 
solutions of the Bogomolny equation 

(2) b±(c) = V A $ T * F A = 0 

with the sign equal to the sign of fc. Since reversing the sign of $ changes 
the sign of fc while leaving 21 invariant, we can restrict ourselves to the case 
fc > 0 and write b = b+. The set of gauge equivalence classes of solutions 
of (2), also called monopoles, is a smooth manifold Mk of dimension 4fc. It 
can be described by means of algebraic geometry, see [7 and 3]. One usually 
considers the (4fc - l)-dimensional submanifolds Mm of monopoles [c] with 
fixed "mass" ra(c) = m. In fact, one can without loss of generality set m = 1, 
since a scaling involving a dilation of R 3 shows that Mm = M\ for all ra > 0. 

In order to generalize these ideas, we replace R 3 by an asymptotically 
flat manifold M, see [9]. This means that M is the connected sum of R3 

with a compact manifold, equipped with a metric which at the end of M 
is a perturbation of the Euclidean metric in a certain sense. Since in this 
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case, the methods of algebraic geometry do not apply any more, we pursue an 
entirely analytic approach. At first sight, an obstruction to applying standard 
methods of infinite-dimensional topology to this problem is the fact that due 
to the lack of decay conditions for finite action configurations (A, $) at the 
ends, the function b is not defined on a Banach space. However, it turns 
out that this difficulty is entirely due to the action of the gauge group. As 
we prove in [4], the space Qk of gauge equivalence classes of finite action 
configuration carries a natural Hilbert manifold structure, so that the gauge 
equivariant function b yields a smooth Fredholm section of a smooth bundle 
over Q. Its index can be determined to be 4k. 

Since m(c) is gauge invariant, Q foliates into 1-codimensional submanifolds 
Qm. Our main result is that certain parts of the zero set M™ of b on fiJJ1 

are regular, i.e., they are locally (4k — l)-dimensional smooth manifolds, and 
can be described in terms of the space of monopoles on Euclidean R3 and 
the topology of M. In particular, the homology of M enters at this point. 
For simplicity, we restrict ourselves here to the case k = 1 (see [5] for general 
charges). We can then define a real number R{[c}) measuring the "distance" 
of the monopole from the center of M. 

THEOREM. If M is an asymptotically flat manifold with H\(M,Z) = 0, 
then the set Mm = M™ of self-dual gauge equivalence classes in Qm = Q.™ is 
a smooth ^-dimensional manifold if either m(c) or R(c) are large enough. In 
particular, if m(c) is large enough, we have a diffeomorphism 

(3) z:Mm^M 

and for any mass m > 0 and r large enough a diffeomorphism 

(4) z: {[c] € Mm | R{c) > r} a R3 - Br. 

In both cases, z is defined by the unique zero of the Higgs field. Moreover, 
for m small enough, Mm contains a component diffeomorphic to R3 and a 
compact component K. 

The diffeomorphism (4) is constructed by a grafting procedure similar to 
the one used in [8] to construct multimonopole solutions on R3. We define 
approximately self-dual configurations on M from self-dual configurations on 
R3 by means of cutoff functions. These are then deformed into self-dual 
configurations using a variant of the implicit function theorem. The same 
method is used in the small mass limit. The diffeomorphism (3) is obtained 
by a limit argument using a scale invariance of the self-duality equation. 

Note that by transversality theory, a generic perturbation of the Fredholm 
section b yields a cobordism of M to R3 U K, which is product outside a 
compact set. The compact manifolds K are related to flat StVconnections 
on M, whose relation to the topology of homology 3-spheres has been recently 
investigated by Casson [1]. 

One can prove similar statements about the monopole spaces for higher 
charges. For example, each M™ contains for m small enough a component 
diffeomorphic to M^R 3 ) . Moreover, if # i (M, Z) is nonzero but finite, we 
can state a result similar to the above theorem with diffeomorphisms replaced 
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by coverings with covering group Hi (M, Z). If it contains a free part, then the 
maps in (3) and (4) are not surjective in general; see [5]. If M is any asymp­
totically flat manifold with nonnegative Ricci curvature, then the Fredholm 
section b is "manifestly" regular on each Mm. This yields f.e. an alternative 
proof of the following result: 

THEOREM (SEE [10 AND 6]). Every asymptotically Euclidean 3-raam-
fold with nonnegative Ricci curvature is diffeomorphic to R3 . 

Finally, we should note that generalizations of Euclidean Yang-Mills-Higgs 
theory have been pursued in a different direction by A. Chakrabarti [2], re­
placing R 3 by certain hyperbolic manifolds, and using essentially methods of 
algebraic geometry. 

The author wishes to thank C. Taubes for suggesting this problem to him 
and for his support during the research. 

REFERENCES 

1. C. Casson, Lectures given at the MSRI, Berkeley, Spring, 1985. 
2. A. Chakrabarti, Construction of hyperbolic monopoles, preprint, CNRS, 1982. 
3. S. K. Donaldson, Nahrn's equation and the classification of monopoles, Comm. 

Math. Phys. 96 (1984), 387-407. 
4. A. Floer, The configuration space of Yang-Mills-Higgs theory on asymptotically 

flat manifolds, Comm. Math. Phys. (to appear). 
5. , Monopoles on asymptotically flat manifolds, Comm. Math. Phys. (to appear). 
6. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 

17 (1982), 255-306. 
7. N. Hitchin, Monopoles and geodesies, Comm. Math. Phys. 83 (1982), 579-602. 
8. A. Jaffe and C. Taubes, Vortices and monopoles, Birkhâuser, Boston, 1980. 
9. T. Parker and C. Taubes, On Witten's proof of the positive energy conjecture, 

Comm. Math. Phys. 84 (1982), 223-238. 
10. R. Schoen and S. T. Yau, Complete three dimensional manifolds of positive Ricci 

curvature and scalar curvature, Seminar on Differential Geometry (S. T. Yau, éd.), Prince­
ton, N. J., 1982. 

D E P A R T M E N T OF MATHEMATICS, STATE UNIVERSITY OF N E W YORK AT S T O N Y 

BROOK, S T O N Y BROOK, N E W YORK 11794 

Current address: Courant Institute, New York University, 251 Mercer Street, New 
York, New York 10012 




