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POTENTIAL THEORY FOR THE SCHRODINGER EQUATION 

M. CRANSTON, E. FABES, AND Z. ZHAO 

Recently there has been a wave of results [2, 4, 5, 11, 15, 16, 17], on 
what is now referred to as the conditional gauge theorem. These works were 
inspired by [1 and 6]. We prove this result in greater generality than before 
and derive interesting new consequences. Let 

be a uniformly elliptic operator whose coefficients are bounded measurable 
functions on a bounded Lipschitz domain D Ç Rd. Define the Kato class Kd 
as the class of functions on D such that 

limsup / , | 7 ( ^ 2 dy = 0. 

Our approach is to prove results about the operator L = A + V by using 
known results for A and studying the probabilistic quantity, the conditional 
gauge. 

In order to introduce the conditional gauge let p(t, x, y) be the Green func­
tion for the parabolic equation A — djdt on D x (0, oo). Let (Xt, Px) be the 
diffusion, killed at the exit time TD = inf{£ > 0:Xt G J9}, whose transition 
density is p(t,x,y). The analysis involves the diffusion Xt conditioned on 
its exit position. This conditioned diffusion, see [10], has transition density 
pz(t,x,y) = KA{X)Z)~1p(t,Xiy)KA(y,z), where KA is the kernel function 
for A on D, x,y G Z>, z G dD. We shall write P*() = PX(-\XTD = z) 
and e^(£) = exp{/0 V(x3)ds}. The so-called gauge is the function on £>, 
F(l ;x) = Ex[ev{rD)\ and the conditional gauge is defined o n D x dD by 
F(l ;x ,z) = ££[ev(T£>)]. Theorem 1 was first proven in [12] when A — A, V 
is bounded and dD is C2 , later when A = A, V G Kd and dD is C1 , 1 in [16] 
and recently when A = A, V G Lp for some p > d/2 and dD is Lipschitz in 
[13]. Our main result is the following. 

THEOREM 1. Suppose the uniformly elliptic 

A = £ ^ ( M * ) 5 ? ) 

has bounded measurable coefficients, V G Kd, and D Ç Rd is bounded and 
Lipschitz. Then F(l;x) < oo for some x G D iff there is a positive constant c 
such that c - 1 < F( l ; x, z) < c, (x, z) G D x dD. 
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SKETCH FOR PROOF OF THEOREM 1. The proof follows [16] and requires 
a Green function-kernel function estimate. Let then G A be the Green function 
for A and the domain D. What is required are 

(a) 

for some positive constant c and x,y € D, z € dD, and 
(b) Ez

xrD < oo, x e D, z e 3D. 
The first involves repeated use of known estimates on G A in terms of the 
Newtonian potential, an inequality due to Carleson, the boundary Harnack 
principle, and Harnack chain arguments, all of which are valid for A by [3]. 
The second follows easily from (a). 

One may also condition Xt to converge to an interior point y £ D at the 
finite path life-time T. Then by proving (a), with all KA'S replaced with GU's 
and letting z € D, we have 

THEOREM 2. F(l]x) < oo for some x € D if and only if there exists a 
positive constant c such that for all x,y € D 

c-1<F(l;x,y)=Ey[ev(T)}<c. 

The next result involves the harmonic measures WA and WL> 

THEOREM 3. Suppose F( l ; x) < oo for some x G D. Then if L = A + V 
(1) wl(dz) = F(l;x,z)w%(dz), (x,z) EDxdD, 
(2) GL{x,y) = F (1 ;X , Î / )GA(X, Î / ) , x,yeD. 

PROOF. We discuss (1). With some work it can be shown that the 
Feynman-Kac formula holds. That is, the solution to the Dirichlet problem 
Lu = 0 on D, u = f on dD is 

Ex[f(XTD)ev(rD))= f f(z)F(l;z9z)w%(dz) = [ f(z)w*L(dz). 
JdD JdD 

Thus F( l ; x, z)w%(dz) = wx
L(dz). Equation (2) follows as in [17]. G 

REMARK. If F{l-,x) < oo one gets that WA and WL are simultaneously 
Ap-weights. [8 and 10] give conditions on A implying WA is an Ap-weight 
relative to surface area. 

We mention some consequences of Theorems 1 and 3 without proof. In 
general, when the gauge is finite, potential-theoretic results that hold for A 
and depend on bounds for WA and G A will also hold for L = A + V. Theorem 
4 was also proven in [4]. 

THEOREM 4 (HARNACK'S INEQUALITY). Assume F(l;x) < oo for some 
x G D. There exist positive constants r*o and c such that if r < ro and 
B(XQ, 2r) C D, then for every positive solution to Lu = 0 in D we have 

u(x) < cu(y), x,y€ B(x0, r). 

REMARK. Harnack's inequality holds for A by [14]. 
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THEOREM 5 (BOUNDARY HARNACK PRINCIPLE). Assume F(l;x) < oo 
for some x E D. There exist positive constants ro and c such that if r < ro 
and z G dD then whenever Lu = Lv = 0 in D, and u, v are positive and 
vanish continuously on dD fl B(z, 2r), we have 

-{x) < c - ( y ) , x,y€B{z,r)nD. 
v v 

REMARK. The boundary Harnack principle holds for A by [3]. 

THEOREM 6 (COMPARISON OF SOLUTIONS FOR A AND L). Suppose 
F(l ;x) < oo for some x G D. There exist positive constants ro and c such 
that for any z G dD and r < ro if u and ƒ are positive solutions Lu = 0, 
Af = 0 on D and vanish continuously on dD fl B(z, 2r) then 

THEOREM 7 (MARTIN REPRESENTATION). If F(1;X) < oo for some 
x G D then the Martin boundary for L on D is dD and every positive solution 
to Lu = 0 in D has the representation 

u(x) = / KL(x,z)fi(dz) 
JdD 

where KL(X,Z) = (F(1;X,Z)/F(1',XO,Z))KA(X,Z) and KA{XO,Z) = 1. 

THEOREM 8 (REGULARITY OF BOUNDARY POINTS). SupposeF(l;x) < 
oo for some x G D. Then z G 3D is regular for L whenever it is regular 
for A. 

REMARK. This uses (2) of Theorem 3. By results of [13] z G dD is regular 
for A if and only if it is regular for A. Thus when F( l ; x) < oo, A and L have 
the same regular points. 
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