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A WEAK RAMANUJAN CONJECTURE FOR GENERIC 
CUSPIDAL SPECTRUM OF QUASI-SPLIT GROUPS 
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The strong form of the Ramanujan conjecture for a quasi-split reductive 
group had predicted that all the components of a cusp form are tempered 
(cf. [5, 13]). But, examples of Kurokawa (cf. [11]) and Howe and Piatetski-
Shapiro [5] have shown that this is not true in general. In fact, even for PSP4 
there are cusp forms which already defy the conjecture. Consequently, in [11] 
Langlands predicted that an automorphic representation fails to be tempered 
only if it lifts to an anomalous representation of some GL(n). 

On a quasi-split group, one may consider the class of cusp forms which 
as representations can be realized on spaces of functions which transform on 
the left according to a generic character of the unipotent radical of a Borel 
subgroup (i.e., the ones with Whittaker models). We call such automorphic 
representations generic. None of the nontempered automorphic representa­
tions constructed so far are generic. In what follows, we shall produce some 
evidence towards the validity of the strong Ramanujan conjecture for generic 
automorphic forms (Theorems 1 and 2, and Corollary 2). In fact, in Corol­
lary 2, we obtain a uniform bound for the Hecke eigenvalues of generic cusp 
forms on many absolutely simple quasi-split groups over number fields. It also 
provides us with a new proof of the best available estimate for the Fourier 
coefficients of Maass wave forms (Corollary 4). Detailed proofs will appear 
elsewhere. 

Let G be a quasi-split group over a number field F. Set G = G ( A F ) . Let 
P be a maximal F-parabolic subgroup of G. Write P = MN and let P, M, 
and N be the corresponding groups of adelic points. Let v be a place of F and 
denote by GV,PV,MV, and Nv the corresponding local groups of ^-rational 
points. Let a be a cusp form on M and write a = Ç$v(Jv, a restricted tensor 
product of representations of the local groups Gv (cf. [3]). 
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Let U be the unipotent radical of a Borel subgroup of G such that U D 
N. A character x — ®vX^ °f U ( A F ) is called generic if, for every v, the 
restriction of Xv to every root space in Uv generated by a simple root is 
nontrivial. The representation av is then called x^-generic, if it can be realized 
on a space of functions W on Gv satisfying 

W(ug) = Xv(u)W(g) (u eUv, g e Gv). 

We shall say a is x-generic if each ov is x^-generic (cf. [15], for example). 
Finally, we say a is generic, if it is generic with respect to some x-

Let a be the unique reduced F-root of the split component A of the center 
of M in N and denote by pp half the sum of the F-roots generating N. Then 
a = (pp)a)~1pp belongs to the complex dual of the real Lie algebra a of 
A. Let C be the field of complex numbers. We shall now identify C with a 
subspace of the complex dual of a by identifying s G C with sa. Then for 
each v, s becomes an element in the complex dual of the real Lie algebra av 

of the split torus in the center of M as a group over Fv. 
From [16], for every v there exists a homomorphism Hpv from Mv into av> 

Denote by 

ƒ(«,<*,)= Ind av®q{v,HPv()\ 

the representation of Gv induced from crv and s, where qv is the cardinality 
of the residue class field of Fv. 

Let A(s,av) be the standard intertwining operator attached to 7(s,av) 
(cf. [15, 16]). Moreover, given a cusp form a on M, let M(S,<J) be the 
constant term of the Eisenstein series defined by o (cf. [8]). Then M{s,a) = 
<g)vA(s,av). 

We use S to denote a finite set of places of F, including the archimedean 
ones, such that for v £ S, G,<rv, and Xv are all unramified (cf. [2]). 

Let LM be the L-group of M (cf. [2, 10]). It is a complex Lie group. Given 
a finite-dimensional complex representation r of L M, let rv be its restriction 
to LMV, the L-group of M as a group over Fv. 

For a finite place v of F with v £ 5, let L(s,rv,av) be the Langlands 
L-function attached to rv and <JV (cf. [2, 10]). Here s is a complex number. 
Then the Euler product 

Ls(s,r,a) = Y\ L(s,rv,av) 
v(£S 

always converges absolutely for Re(s) large enough [10]. 
There exist m finite-dimensional representations ri)...,rm of LM such 

that (cf. [9, 15]) 
m 

(1) M{s,a)f^^A{s,av)fv^^fV']\Ls{is,h^)/Ls{l + is,ri^), 
veS v(£S i=l 

where ƒ = (&vfv, fv G 7(5,(7,,), and for every v £ S, fv is the G(Ov)-fixed 
function, normalized by fv(ev) = 1. Here f; is the contragredient of r;. The 
representations r{ are all irreducible. The significance of these L-functions is 
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that all the automorphic L-functions studied so far are among them. We then 
prove: 

THEOREM 1. Suppose a is generic and cuspidal. 
(a) Assume ra = 1. Then for Re(s) > 2, the L-function Ls(s , r i ,a) is 

absolutely convergent. 
(b) Suppose m > 1. Assume further that the restriction of a to the center of 

M is trivial. Then for Re(s) > 2, the L-functions Ls(s, n, a) are all absolutely 
convergent, i = 1 , . . . , ra. 

This is a consequence of the following result. 

THEOREM 2. Suppose a is cuspidal and generic. 
(a) Assume ra = 1. Then for each finite v G S, A(s,av) is holomorphic 

for Re(s) > 1. 
(b) Suppose m > 1. Assume further that the restriction of a to the center 

of M is trivial. Then for each finite v G S, A(s,av) is holomorphic for 
Re{s) > 1. 

REMARK 1. When G = G L n + r , M = GL n x GL r , ra = 1, and Theorem 2 
becomes Proposition 2.2 of [6], whose proof is based on a classification theorem 
for generic representations of GL n which is a fairly deep result of Bernstein 
and Zelevinski [1, 17] (cf. [7]), and certain properties of local Rankin-Selberg 
L-functions [7]. 

REMARK 2. The assumption that a is trivial on the center of M (when 
ra > 1) is made so that the necessary induction can be established in general 
(Lemma 1). However there are many cases with ra > 1 for which the assump­
tion is not necessary. This is due to our better understanding of L<s(«s,n,a), 
i = 2 , . . . , ra, in these special cases (cf. Corollary 2). 

REMARK 3. If a is trivial on the center of M, then Theorem 1 is still true 
if M is replaced by its adjoint group M,p: M —•> M, since then a may be 
extended to a representation ö of M ( A F ) satisfying 

Ls{s, r»,a) = Ls{s, n • Lp,â), 

i — 1 , . . . ,ra. 

COROLLARY 1. Suppose a is cuspidal and generic. 
(a) Assume m = 1. Then for Re(s) > 1, the poles of the corresponding 

Eisenstein series depend only on the poles ofÇZ)v=00A(s,av) and Ls{s,ri,a). 
(b) Suppose ra > 1. Assume further that the restriction of a to the center of 

M is trivial. Then for Re(s) > 1, the poles of the corresponding Eisenstein se­
ries depend only on the poles ofÇ$v=loo A(s, av) and fli=1 Ls(is, fi, a). More­
over, for Re(s) > 1, the dependence on the L-functions reduces to L(s(5,fi,ör). 

COROLLARY 2. Let G be either GL(n), U(n,n), U(n + l ,n), SP(2n) ; 

SO(ra, n), m = n, n+l, n+2, their groups of similitudes, their adjoint groups 
and those of split groups of types EQ and E? over a number field F. Let a = 
® v a v be a \-generic cusp form on G = G(A^). At each place v of F where 
o~v,Xv, and G are all unramified, let tv be the element in LT° representing 

file:///-generic
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the corresponding semisimple conjugacy class in LGV. Finally, let n be a 
weight for the restriction of the standard representation (first fundamental 
representation) ofLG to LG°. Then \fJ>(tv)\ < Qv, where qv is the cardinality 
of the residue class field of Fv. 

REMARK 1. The strong Ramanujan Conjecture is equivalent to |/i(^)| 
< 1. 

REMARK 2. When G = GL n , the proof of Theorem 2 (see Lemma 3 
below) applied to GL<2n with Levi factor M = GL n x GL n and representation 
o (g) o of M, will immediately imply that |/x(fcu)| < Qv • This is Corollary 2.5 
of [7]. 

SKETCH OF THE PROOF OF THEOREM 2. Under the assumptionm part 
(b), we may consider the L-functions as those for the adjoint group M of M. 
Let p: M —» M be the corresponding projection. 

In the following lemma we shall assume that G has neither a factor of type 
2A2ki nor a factor of type F4, if the part of M in this factor is generated by 
{ai,«3,0:4} (ai and c*2 are long). In these two cases the necessary lemmas 
can be verified directly. 

LEMMA 1. Fix i, 2 < i < m. There exist a quasi-split connected reductive 
F-group Gi, unramified outside S, a maximal F-parabolic subgroup with a Levi 
factor Mi C G; whose adjoint group M^ embeds into M by a F-rational map 
j : M^ —> M such that if r[,..., r'm. are the corresponding representations of 
LMi, then 

U-Lp = r[ • Lpi • Lj, 

where pi : M^ —• M^ is the natural projection. Moreover rrti < m. 

COROLLARY 3 (OF LEMMA 1). Let M be the adjoint group ofM. Fix 
a generic cusp form on M(A^). Then every L-function Ls(s,ri,o~), i = 
1, . . . , m, extends to a meromorphic function of s on C satisfying a standard 
functional equation. 

REMARK. It is the subject of a forthcoming paper that for a large class of 
these partial L-functions, local factors at the ramified places can be defined in 
such a way that each resulting L-function extends to a meromorphic function 
of s with possibly only a finite number of poles in the entire complex plane. 
The factors at the archimedean places are the Artin factors defined by the 
Langlands' local class field theory at such places. 

Up to a finite number of factors (which can be made nonzero), every non-
constant Fourier coefficient of the Eisenstein series (cf. [14, 15]) is equal to 

m 

J ^ L s ( l + is , fv,a) - 1 , 
2 = 1 

and consequently, for Re(s) > 0, 
ra 

J j L s ( l + i8,fi,<7) 
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has only a finite number of zeros which are all on the real axis. Now, by 
Lemma 1 and induction we in fact have: 

LEMMA 2. For Re(s) > 1, Ls(s,ri,a) and the quotient 

L5(s,f;,a)/Ls(l + s,fi,cr) 

both have only a finite number of poles and zeros, 1 < i < m. 

PROOF OF THEOREM 2. By Lemma 2 and relation (1), we conclude that 
except for a finite number of real poles, M(s,a)f and (%)vGs A(s,av)fv have 
the same poles when Re(s) > 1. Fix v G S , V < oo. For every w £ S, w ^ v, 
w < oo, we can choose fw such that A(s,crw)fw becomes a nonzero constant 
independent of s. Now, suppose for some s, with Re(s) > 1, A(s,av) has a 
pole. For each such pole and each w — oo, choose fw such that A(s,aw)fw ^ 
0. The operator A(s,av), being a rational function of q~3, will then have 
infinitely many poles parallel to the imaginary axis. Consequently, M(s,a)f 
must also have infinitely many such poles. This is a contradiction to the 
finiteness of poles for M(s,a) when Re(s) > 0. 

To prove Theorem 1, we need the following lemma. 

LEMMA 3. Suppose v is unramified. Then for Re(s) > 1, each L(s, f̂ v, av) 
is holomorphic, 1 < i < m. 

To conclude we shall now give a new proof of the following result (cf. [12] 
for the original proof; it is also due to Serre). It no longer requires the use of 
Rankin products; nor of Landau's Lemma. 

COROLLARY 4. Let n be a nonmonomial cuspidal representation of 
PGL2(A^). At each unramified v, let tv = diag(av,o;~1) be the correspond­
ing semisimple conjugacy class in SL2(C). Then qv <\av\ < qj . 

PROOF. We only need to apply Lemma 3 to a split group of type F4 
(example 4.1.6 of [15]) with M generated by {ai, 0:2, «4} (OJI and OL<I are long), 
and (7 = II (g) 7T, where II is the Gelbart-Jacquet [4] lift of IT to PGL2(Air). 
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