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MICHAELS PROBLEM AND 
THE POINCARÉ-FATOU-BIEBERBACH PHENOMENON 

P. G. DIXON AND J. ESTERLE 

1. Introduction. Let A be a Fréchet algebra, i.e. a complete, metrizable 
topological algebra whose topology is defined by an increasing family (qn) of 
submultiplicative seminorms. It is still not known whether characters on A are 
necessarily continuous. This is the classical "problem of Michael" raised in 
1952 by Michael in [73]. The starting point of this paper is a new approach to 
this problem. We show in Theorem 3.3 that if discontinuous characters do exist 
on some Fréchet algebras, then for every system (Cp%Fn)n>v where (pn) is a 
sequence of nonnegative integers and where Fn: CPn+1 -» CPn is entire for 
every n > 1, there exists a sequence (zn) in Yln>iCPn such that zn = Fn(zn+l) 
(n > 1). In particular, if it were possible to construct for some p > 1 a 
sequence (Fn) of entire functions from Cp into itself such that 
0n>1(F1 o . . . o Fn)(C

p) = 0 then the answer to Michael's problem would be 
positive, i.e., all characters on Fréchet algebras would be continuous. It follows 
of course from the big Picard theorem that no such sequence exists for p = 1, 
but if p > 2 it is well known that there exists a one-to-one entire function 
F: Cp -> Cp, whose jacobian identically equals 1 but whose range is not dense 
in Cp. Such a function was constructed by Bieberbach in [11] for p = 2 (see 
also the very clear exposition of Bieberbach's construction presented by Stehlé 
in [101], where the argument is extended to all p > 2). Another example of a 
nondegenerate entire function from C2 into itself whose range is not dense was 
given previously by Fatou in [46] (but, despite some claims of the contrary, 
Fatou's function is not one-to-one, see §6). In fact this phenomenon was 
explicitly pointed out by Poincaré in [85, p. 333] forty years before Bieberbach. 
All these constructions rely on the theory of normal forms for local analytic 
automorphisms with a repulsive fixed point, and suggest that if p > 2 a 
sequence (Fn) with C\n>i(Fl° • • • o Fn)(C

p) = 0 might exist. We were not 
able to decide whether this is true or not, but we give here a new method to 
construct these "Bieberbach functions". This leads to new examples of one-to-
one entire functions over C2, of jacobian 1, whose range is not dense, given in 
§8. We use these functions to construct strange nondegenerate entire functions 
from C2 into itself. 
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On the one hand, we show that for every e > 0 there exists a function F over 
C2, whose jacobian never vanishes, whose range is contained in the union of 
the two polycylinders {(zl5 z2) e C21 \zx\ < e} and {(zx, z2) e C21 \z2\ < e}. 
Since of course it is possible to arrange that F'(0) = /, this shows how much 
Bloch's theorem fails for functions of two complex variables. It is even possible 
to arrange that suplmindzj, \z2\}: (zl9z2) e F(C2)9 \(zl9 z2)\ = R} -> 0 as 
R -> oo and to arrange for the volume of the intersection of F(C2) with one of 
these polycylinders to be finite. It is also possible to arrange the range of F to 
avoid a neighborhood of the set X = {(zl5 z2) e C2: zx • z2 = 0). 

In the other direction, we show that for every e > 0 there exists an entire 
function G: C2 -> C2 such that G(C2) does not intersect the poly disc of radius 
1 centered at the origin but contains the complement of the polydisc of radius 
1 + e centered at the origin. These examples seem to be quite new. We also 
point out that if F is Bieberbach's original function (or one of Sadullaev's 
related functions [93]) then there exists a bounded subset B of C2 such that 
( f ° H)(C2) n 2? =£ 0 for every nonconstant entire mapping H\ C2 -» C2 (a 
similar property holds for the function F whose range is contained in the 
union of two small polycylinders described above). Of course if F is one of the 
above functions, we have (0 <> F)(C2) O Z)(0,1) = 0 for some suitable affine 
automorphism 0 of C2. But if one tries to construct by induction a sequence 
(Fn) of entire mappings from C2 into itself such that (Fx <> • • • <> Fn)(C

2) n 
D(0, n) = 0 (n > 1), to take Fx = ® ° F would be really a bad start. 

In fact, if (7: C 7 7 - » ^ is a one-to-one holomorphic mapping, and if 
a e Fr(G(Cp)) then G~l(V) is unbounded for every neighborhood F of a. We 
were not able to get enough control on inverse images of bounded sets to 
obtain one-to-one functions G: C2 -> C2 with nondense range such that for 
every bounded subset B of C2 there exists a one-to-one (or even a noncon­
stant) holomorphic mapping HB: C2 -> C2 such that HB(C2) n G~l(B) = 0 . 
Some rather precise information is nevertheless obtained in §8 in the case of a 
function G whose range avoids the set {(zuz2) G C2 |Rez1 > £, Rez2 > E}. 
Outside a "critical zone" which is a union of thin vertical and horizontal tubes, 
G1 acts like real horizontal and vertical translations, whose magnitude is 
bounded on bounded sets, and some qualitative information on the inverse 
images of bounded sets is obtained. 

We now give a brief outline of the paper. §§2 and 3 are the ones related to 
Michael's problem. Clayton and Schottenloher [26, 94] gave examples of 
commutative Fréchet algebras A which are " universal" for this problem, in the 
sense that if there exist discontinuous characters on some commutative Fréchet 
algebra there must exist some on A. We give in §2 a very simple construction 
of such an algebra <f, which is "universal" for the general case, in the sense 
that if there exists a discontinuous character on some Fréchet algebra, com­
mutative or not, there must exist a discontinuous character on S. 

In §3 we establish the connection between Michael's problem and projective 
systems of entire functions of several complex variables described above. The 
proof uses the fact that if ƒ: Cp -> C is an entire function, then 
Xlf(al9...9ap)]=f[x(a1),...,x(ap)] for every family (al9...,ap) of ele­
ments of A and for every character x, continuous or not, on A, and a trick 
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based upon the Mittag-Leffler theorem on projective limits of complete metriz-
able spaces, a usual tool in recent developments in Banach algebra theory (see 
for example [42, 43, 45,114]). When A is commutative, the fact that characters 
commute with entire functions is an immediate consequence of a fundamental 
result of Arens [8], which shows that characters are continuous on commutative 
Fréchet algebras polynomially (or rationally) generated by a finite number of 
elements. Note that this result of Arens, which is the only consistent general 
partial result about Michael's problem (using the Remmert-Narasimhan-Bi-
shop embedding theorem, it is possible to deduce from Arens's theorem that 
the only characters on &(U\ the algebra of holomorphic functions on a Stein 
manifold, are point evaluations) was based itself upon the Mittag-Leffler 
theorem. 

The remainder of the paper is devoted to the study of the range of 
nondegenerate, or one-to-one, entire functions from Cp into itself. In §4 we 
observe that the convex hull of the range of such a function must equal Cp, 
and we collect some information. For example, the range of F cannot avoid 
more than p complex hyperplanes (Green [50]). This follows from Borel-
Nevanlinna theory [14,75] (see also Ahlfors [2]). Also, if F is one-to-one, 
CP\F(CP) has to be unbounded and the convex hull of a connected tube 
contained in F(CP) cannot equal Cp unless F is onto (this follows from 
Hartogs' theorem and from a related extension theorem for tubes). We also 
mention an interesting result of Sibony and Pit-Mann Wong [98] which shows 
that if an entire function F\ Cp -> Cp grows sufficiently slowly then the range 
of F is dense (it is also shown in [98] that there exists for every e > 0 
one-to-one entire functions over Cp (p > 2) of jacobian 1, which are of 
exponential type e but have nondense range). 

In §5 we investigate sequences (0„) of analytic automorphisms onC^ which 
converge uniformly on compact sets to an entire function F. If F is nondegen­
erate (which is indeed the case if the jacobian of 0„ is identically equal to 1 for 
each n) then F is one-to-one, F(CP) is a Runge domain, 0„_1(z) converges to 
F~l(z) uniformly on compact subsets of F(CP) and l©"1^)! -> oo uni­
formly on CP\F(CP). These observations are related to well-known (and 
well-forgotten) results of H. Cartan [23, Lemme 5]. H. Cartan used Kronecker 
integrals, but it is possible to deduce these facts from Cauchy's inequalities and 
from the fixed point theorem [44]. Related results show that if a sequence (Fn) 
of entire functions from C p into itself converges to the identity map uniformly 
on compact sets then every compact subset of Cp is eventually contained in 
Fn(C

p). This contradicts a minor statement in [98, Proposition 1.1]. 
In §6 we describe the classical method of constructing an entire function 

from Cp into itself whose range is not dense. If 0 is the germ of a local 
automorphism with repulsive fixed point at the origin, then it follows from the 
theory of "normal forms" that there exists a polynomial automorphism B of 
Cp, with B~n(z) -> Of or every z e CP, and a germ of a local automorphism 

n —* oo 

F at the origin satisfying 0 <> F = F ° B. If there exists an open subset U of Cp 

containing the origin such that 0 is defined and analytic over U and such that 
®(U) c U, then F extends to an entire function, and F(CP) is the set of all 



130 P. G. DIXON AND J. ESTERLE 

z e U such that z = &n(zn)(n > 1) for some sequence zn satisfying zn -> 0. 

If 0 is an analytic automorphism of Cp then F(CP) = {z e 
C^IÖ'^Cz) -* 0), and F is one-to-one. So if 0 has another repulsive fixed 

point, F(CP) is not dense in Cp. This observation was made explicitly by 
Poincaré in 1890 [85, p. 333] in a paper where the functional equation 
0 ° F = F ° ©'(0) was solved in the case where 0 is a birational map satisfying 
0(0) = 0, 0'(O) = kl with \k\ > 1; more general functional equations were 
studied by Picard [82, 83] but, despite a claim of Picard in his 1904 paper [83], 
it is not possible in general to solve the functional equation 0 o J F = F < ' 0'(O) if 
0 is a repulsive fixed point for 0, because some "relations" of the form 
\x = A^1 ' ' ' ^m

P
p with mi ^ 0 , . . . , mp > 0, m1 4- • • • +mp > 2 may occur 

between the eigenvalues A1?..., Xp of F'(0) at 0. A general precise form for the 
"normal form" B of 0 was given by Reich in 1969 [87, 88], but Reich's work 
overlaps a previous work of Sternberg [102], and also overlaps the 1897 thesis 
of Leau [67], where the formal aspect is treated in full detail and where the 
analytic aspect is treated with a technical extra hypothesis. If p = 1, no 
"relations" may occur with a repulsive fixed point, and the corresponding 
functional equation, called Schroder equation, was entirely solved in 1882 by 
Koenigs [62]. We also point out in §6 the connection between the 
Jordan-Chevalley decomposition theorem in algebraic groups and the formal 
aspect of the theory. 

The theory of normal forms for local invertible mappings has a well-known 
connection with the theory of normal forms for some differential equations 
which present a singularity at the origin. In this topic the seminal paper is 
Poincare's thesis [84], and the difficulty caused by "resonances", the counter­
part of the "relations" mentioned above, was circumvented by Dulac [37]. 
References to recent works about local invertible mappings with fixed points 
which are neither attractive nor repulsive, and about the corresponding case 
for differential equations and holomorphic flows, are given in §6 (see in 
particular the talks given by Malgrange [68] and Martinet [70] at the Bourbaki 
seminar, and Siegel's basic paper [99]). 

The above considerations about functional equations lead to a "dynamical" 
characterization of open subsets U of Cp which contain the range of a 
nondegenerate entire mapping G: Cp -> Cp. A necessary and sufficient condi­
tion is the existence of an analytic mapping 0 : U -> U which possesses a 
repulsive fixed point in U. In order for U to be biholomorphically equivalent to 
C p it is necessary and sufficient that there exists an analytic automorphism 0 
of U such that 0~"(z) -> a for every z e U9 where a is some (repulsive) 

fixed point of 0 in U (the latter statement is a special case of a theorem of 
Kato [60]). We give some simple ways to construct examples of infinite 
sequences of one-to-one entire functions on C2 with disjoint ranges, including 
an unpublished example of W. Rudin (the first such example is due to Kodaira 
[61]). Also we present an unpublished very short argument of W. Rudin which 
gives a method of solving the functional equation F°G = G ° ^'(0) in a 
special case which suffices for most applications. Some elementary computa­
tions giving information about the range of Bieberbach's original example and 
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Sadullaev's related functions [93] are presented and we show that Fatou's 
original example is not one-to-one. 

The range of Bieberbach's original function is the set 

( z G Cp\&-"(z) -* o), 
I. n-*oo ) 

where 0 is a polynomial automorphism, and the range of Fatou's function is 
the set ( z e Cp I <Vn(z) -> 0), where ^ is a rational map. After the work of 

Julia [58] before 1920, the study of iteration of polynomial and rational maps 
has recently undergone a renewal of interest, especially in dimension 1, see the 
talk by Douady [35] at the Bourbaki seminar for references. The boundary of 
sets of the above forms is in general very complicated. 

In §7 we establish a (folklore) result which shows that for every sequence 
(Fn) of nondegenerate entire functions from Cp into itself there exists an entire 
function G with (G ° FY <> • • • o Fn)(C

p) = Cp (n > 1). This result does not 
give any information about the sequence ((F1 <> • • • o Fn)(C

p))n>l9 since G is 
not one-to-one, but we obtain as a corollary the fact, due to Gauthier-Ngô Van 
Que [49], that onto functions are dense in Jf (Cp, Cp). We show also that there 
exists a sequence (Fn) of "Bieberbach functions" (i.e., entire mappings Cp -> 
Cp which are uniform limits on compact sets of analytic automorphisms of 
jacobian 1) such that C\n>i(Fl° ••• o Fn)(C

p) has empty interior and such 
that F r ^ C ' ) ) c Fr((F;<> F2)(C')) c • • • c Fr((Fx o . . . o Fn)(C

p)) 
We also deduce from the computations of §6 the unpleasant properties of 
Bieberbach's original example (and of Sadullaev's examples) mentioned at the 
beginning of the introduction, which imply that there exist Bieberbach 

functions G such that f l n > 1 {G ° Fx ° • • • ° Fn)(C
2) =£ 0 for every sequence 

(Fn) of entire mappings C2 -> C2. 
In §8 we use an idea suggested by the results of §5 to obtain a new method 

of constructing "Bieberbach functions". The idea consists in producing a 
sequence (@w) of analytic automorphisms of C2 of jacobian 1 which converges 
uniformly on compact sets to a function F, but which is such that 
|0n"1(z)| -> oo for every element z of a suitable set A. Then A n F(C2) = 0 

(Bieberbach's original example, Sadullaev's examples and Kodaira's example 
can be obtained this way, see §6). The key to obtaining the sequence of 
automorphisms we need is given by Arakelian's theorem [6] about uniform 
approximation by entire functions on some unbounded closed subsets V of C 
(which extends Roth's theorem [90]). 

This leads to the construction of the functions described above, and we 
outline at the end of the section an "Arakelian game" which can be played to 
construct other Bieberbach functions along the same lines. 

Another interest in this method is that it points out the fact that these 
Bieberbach functions are not an isolated pathological phenomenon. The phe­
nomenon is that the group of analytic automorphisms of jacobian 1 is not 
closed in Jf?(Cp, Cp) when p > 2. This point of view is to be related with the 
theory of " Cohen elements" in separable commutative Banach algebras A with 
bounded approximate identities [42, 86, 114]. These elements, which of course 
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are not invertible, are limits in a strong sense of invertible elements of A © Ce. 
They form a set which was rich enough to give a key for the second author's 
construction of discontinuous homomorphisms from ^(K) [42] (about discon­
tinuous homomorphisms from ^(K) see also Dales' construction [29]). 

In other terms, Bieberbach functions come from the fact that there exist 
analytic automorphisms of C p which are close to the identity on large compact 
sets but perform very large deformations somewhere. A similar phenomenon 
was used by Skoda [100] to construct a counterexample to a long-standing 
conjecture of Serre. 

The idea of a connection between Bieberbach functions and the continuity 
of characters on topological algebras first arose in [32], where the first author 
constructed a complete locally convex algebra with unbounded characters. This 
construction used, crucially, the fact that an analogue of Picard's theorem 
holds for polynomial mappings Cp -> Cp. The existence of the Poincaré-
Fatou-Bieberbach phenomenon is the most obvious obstacle to the extension 
of this technique to L.M.C. algebras (the existence of unbounded characters on 
complete L.M.C. algebras is equivalent to the existence of discontinuous 
characters on Fréchet algebras; see Dixon and Fremlin [33] and Akkar [3]). An 
intermediate problem is the existence of discontinuous characters on complete 
metrizable locally convex algebras. Here the fact that mappings Cp -> Cp with 
slow growth must have dense range (Sibony and Wong [98]) might remove one 
of the obstacles to constructing a discontinuous character. 

There was also a known indirect relation between Bieberbach functions and 
Arakelian's theorem. It follows from the Remmert-Narasimhan-Bishop embed­
ding theorem for Stein manifolds that there exist proper embeddings from the 
open unit disc into C3, but the question of the existence of such a proper 
embedding into C2, raised by Hitotomatu [55], remained open for a while. It 
was solved by Nishino [78], who used the fact that the range of the original 
example of Bieberbach is a Runge domain (readers who are not fluent in 
Japanese are referred to Stehlé's paper [101]). But Arakelian's theorem is a 
known useful tool to obtain embedding theorems (see [4,64] for proper 
embeddings of punctured discs and annuli into C2). 

The authors, who are not experts in the theory of analytic functions of 
several complex variables, hope that this paper will help to attract the attention 
of specialists in this field to the Poincaré-Fatou-Bieberbach phenomenon. The 
obstructions to the construction of a sequence (Fn) of analytic mappings 
C -* C ' such that nn>1(F1 ° • • • o Fn) (C

p) = 0 are related to problems of 
polynomially convex hulls. Also, probabilistic methods might be useful to 
disprove, if possible, the existence of such a sequence (see the proofs of the 
little and big Picard theorems based upon Brownian motion, [30,31]), and it 
would be interesting to relate this problem and the partial results obtained here 
to recent results in value distribution theory [51, 52, 53]. 

The authors wish to thank E. Amar, H. G. Dales, R. Gay, C. O. Kiselman, 
W. Rudin, H. Skoda, J. Wermer, W. Zame and many others for valuable 
discussions and we wish to thank W. Rudin, who kindly allowed us to use his 
unpublished work [91] here (see §6). We have also to give warm thanks to 
P. Gauthier, who suggested the use of Arakelian's theorem after hearing in 
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Montreal an elementary weak version of some of the results of §8 [44], and 
pointed out many interesting references. 

Last, but not least, we wish to thank Mrs. Clairand, who does not speak 
English, for her careful typing of the manuscript. 

2. Test algebras. Recall that a Fréchet algebra is a metrizable complete 
algebra whose topology is defined by an increasing family (qm)m >x of submul­
tiplicative seminorms (this means that qm(xy) < qm(x)qm(y) for x, y ^ A, 
m > 1). We denote by 2 the algebra of all formal power series in infinitely 
many noncommuting variables Xv..., Xn,... with complex coefficients, 
equipped with the formal product of series. Each element ƒ of 2 can be 
written in the form ƒ = E ( / ) € AX ( / )X

( / ), where A is the set of all finite subsets 
(i) = (/*!,..., ik) of N. Here X™ = Xh • • • Xik and KOI = k for each element 
( 0 = (*!,..., ik) of A (we denote the empty set by (0) and set |(0)| = 0 so that 
e = X(0) is the unit element of 2). 

Set ^ = { / = L ( 0 e A X ( / ) ^ ) G 2 | ^ ( / ) = E ( 0 e A | \ ( 0 |mK0l< + «, for 

each m > 1}. Then ê is a Fréchet algebra with respect to the (increasing) 
sequence ( pm)m > x of submultiplicative seminorms. 

PROPOSITION 2.1. If there exists a discontinuous character on some Fréchet 
algebra, then there exists a discontinuous character on S\ 

PROOF. A standard elementary result on Fréchet linear spaces shows that a 
linear form ƒ on a Fréchet linear space (E,(qm)m>1)is continuous if and only 
if supn>l\f(an)\ < + oo for each bounded sequence (an) of elements of E (i.e., 
for each sequence (an) of elements of E such that sup r t>1gm(an) < 4- oo for 
each m > 1). 

If there exists a discontinuous character x on a Fréchet algebra A then there 
exists a bounded sequence (an)n>l of elements of A such that 
liminfw_^00|x(a„)| = +oo. We may assume that A is unital (if not x can be 
extended to A © Ce). Consider the map 

<p: ê^ A 

I *(o*(0-> I *<o*(0 

( i ) e A ( i ) e A 

where a{0) = e, a ( 0 = ûy • • • at if (/) = (iv . . . , /^). The growth condition on 
the coefficients X(z) ensures that the above map is well defined, since the 
sequence (an)n>l is bounded and <p is clearly a continuous algebra homomor-
phism from S into A. 

Set ^ = x ° <P- Then 

liminf 1 ^ ( ^ ) 1 = liminf | x ( « J I = +oo. 
„-^•00 • ' ' n->oo l v w / l 

Since pm(Xn) = m (m > 1, « > 1), the sequence (Xn)n>l is bounded in ê and 
^ is discontinuous on S. 

REMARK 2.2. Denote by A and Ü the commutative analogues of 2 and S. 
Using a similar argument, we see that if there exists a discontinuous character 
on any commutative Fréchet algebra A, then there exists a discontinuous 
character on the commutative Fréchet algebra Ü. The map x~* (x(Xn))n>i 
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defines a bijection between the set of all continuous characters of ê (or of Q) 
and the set /°° of all bounded sequences of complex numbers. We will not go 
here into further study of the set of continuous characters of these algebras. 

3. Michael's problem and entire functions of several complex variables. In the 
sequel we denote by Jf?(U9 C

q) the set of all holomorphic functions 
ƒ: U -> Cq

9 where U is an open subset of Cp. Each element ƒ of Jf(U9 Cq) can 
of course be written in the form ƒ = ( f l 9 . . . , ƒ ), where f{. U -> C is holomor­
phic for each / < q. 

Each g e jf(Cp
9 C) has a power series expansion 

i1>0,...,/|,>0 

where the coefficients ay / are complex numbers and where 

£ la, ,- | .R^+-+V < +00 
i 1 > 0 , . . . , / / , > 0 

for each # > 0. So the series 

is convergent in 4̂ for every family (a 1 ? . . . , a ) of p elements of a unital 
Fréchet algebra A. We denote the sum of this series by g(al9...9ap). If 
ƒ = (/i , • . . ,ƒ , ) e ^ ( C ' , C * ) , we set 

f(al9...9ap) = (fl{al9...9ap)9...9fq(al9...9ap)). 

The map ( a l 9 . . . , a ) -> / ( a l 5 . . . , a ) is clearly a continuous map from Ap 

into ^ for each ƒ e jf(Cp, Cq). If the unital Fréchet algebra A is commuta­
tive a theorem of Arens [8, Theorem 7.1] shows that the restriction of any 
character of A to the closed unital subalgebra B of A generated by (al9..., ap) 
is continuous, so that x(f(<*i> • • •> a

P)) = /(x(öi)>- • • > X(^)) f° r e a c n / G 

^f(Cp ,C), for each family (04,. . . , a) of p elements of A and for each 
character, continuous or not, on A. 

To deal with the noncommutative case we need to introduce some algebras 
of noncommutative formal power series. 

Fix p > 1 and denote by A^ the set of all finite families (il9..., ik) of 
elements of the set (1 , . . . , / ?} , including the empty family denoted by (0). Set 
|(0)| = 0, \(il9...9ik)\ = k and consider the algebra 2^ of all formal power 
series in p noncommuting variables Xl9..., Xp with complex coefficients 
equipped with the formal product of series. Each ƒ e 2^ can be written in the 
f o r m / = L ( 0 e A / ( , , X < ' > . 

Here X(l) = Xt • • • Xt for each element (/') = (il9..., ik) of A^ and the 
coefficients X(/) are complex numbers. Set 

Pm(f) = H l^(/)lm'(/)l < + 0 ° for each m > 1 
(OeA, 
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Then êp is a unital Fréchet algebra with respect to the increasing sequence 
(Pm)m>i°f submultiplicative seminorms. Note that êp is a closed subalgebra 
of the Fréchet algebra ê introduced in the previous section. 

PROPOSITION 3.1. All characters x on the Fréchet algebra ê are continuous 
and defined for every element f — E ( / ) G A X(i)X

(z) of êp by the formula 

x(/) = t Kifi0* 
where A«> = x ( ^ ) ' ' * x(*i.) for each (i) = (iv . . . , / , ) e A, (with A<°> = 1). 

PROOF. Consider a character x on g . The series £ ( / ) e A
 A(/)^( /) converges 

in C for each element ƒ = E( / ) € A X(/)X
(/) of ^,. Denote its sum by cp( ƒ ). The 

map <p: ƒ -> (p( ƒ ) is clearly a continuous character on ê 
A routine induction over k shows that for each monomial X(/) = X • • • X 

we have 

*< '>=(* , , - x U » > W + ••• +{\ ~ x(Xlt)e)Y<l)ik + <p(X")e, 

where Y(i)J e # and 

pm{YinJ<\x(Xli)---x{Xlj_l)\m
k-J (1 <y < k, m > 1). 

Set p = 1 + m a x ^ ^ |x(^i)|. We obtain 
k 

Y< Pm{\i),j) ^ ™k ürn>P-
7 = 1 

Now consider any element ƒ = L ( / ) e A X(/)X
(/) of <^. For every (/) e A^ and 

every m > p w e h a v e 

A - « > = . ( J f 1 - X ( ^ i ) e ) Z ( 0 i l + ••• + ( A , - x ( A p ) e ) z ( | . ) > / , + V(A-<'))e, 

where Z 0 K , e Sp, pm(Z(i)j) < ml(°l (1 < y « p). So the series E ( l ) e A,*<oz<o,y 
converges to an element fjoi Sp for 7' = 1 , . . . , p and we obtain 

/= £(JO-X(*>)/7+*>(/)*. 

So x( ƒ ) = <P( ƒ ) for each ƒ G gpy hence x = <P and the proposition is proved. 

COROLLARY 3.2. Le/ A be a unital Fréchet algebra. Then x[f(av - ->a
P)] = 

ƒ [X(*i), • • • > X(^) ] /ör «KA ƒ e Jf(C^, C), for each finite family (al9 ...,ap) 
ofp elements of A and for each character x, continuous or not, on A. 

PROOF. Let 

f(zu...,zp)= £ «/x,...,,/i1 ••' ZPP 

be the power series expansion of ƒ. Set 

/ = E %.....• xtl • • • *>• 
i 1 > 0 , . . . , i , > 0 

Then ƒ G «Ç Fix a^ . . . , ap G A and for each (*') = ( j ' 1 ; . . . , i^) G Ap set 
a(,) = ah ••• aik. The map * : E ( , ) e A / ( , ) I ( ' ' ) ^ E ( 0 e A / ( 0 û ( / ) is a con­
tinuous algebra homomorphism from S into A. It follows from the prop­
osition that ( x ° f ) ( E ( 0 e A ^ ( j ) I < " ) = E ( 0 e A , \ o A < 0 . w h e r e A( , ) = 
(X ° *)(* , , ) • • • (x • *)(* , , ) for each element (i) = ( /^ . . . , / ,) of A,. 
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We obtain 

x[/(«i ,-- . ,«,)]=x[*(/) l 

£ «/„ . .„^(öi ) ' 1 ••• x(<*pYp 

and the corollary is proved. 
Let (En) be a countable family of complete metrizable topological spaces. 

Assume that for every n ^ 1 a map 0W: En + 1 -* En is given. The set 
limproj(£„,©„) is the set of all elements (xn)n>l of the cartesian product 
Yln>l En satisfying xn = 0w(xw + i) (n > !)• Denote by ^ the first coordinate 
projection (xn)n>l -* xx on n w > 1 £ w . The classical Mittag- Lef fier theorem 
shows that if 0W is continuous and if @„(En+1) is dense in En for every n > 1, 
then 771(limproj(^,@A/)) is dense in £x. See for example Arens [8, Theorem 
2.4] or [43, Theorem 2.14] for a proof. People interested in the French way of 
making obscure what is naturally clear are referred to the version given by 
Bourbaki in [16, Chapter 2, §3, Theorem 1], Using the Mittag-Lef fier theorem 
and Corollary 3.2, we now obtain the following result. 

THEOREM 3.3. Assume that there exists a discontinuous character on some 
Fréchet algebra A, commutative or not. Then lim proj(C/?", Fn) ¥= 0 for every 
projective system (Cp%Fn)n>l9 where Fn: C

Pnii -> CPn is entire for each n > 1. 

PROOF. We may assume that A is unital. Set m = Kerx, where x is a 
discontinuous character on A, and if a = (av . . . , a) G A P set xP(a) = 

(X(ûi)> • • • * X (*,))• Set qx = 0 and qn = / > ! + • • • +pn. x for n > 2. Denote 
by En the cartesian product APn X mq" where 4̂ is equipped with the given 
topology and where m is equipped with the discrete topology. Note that m is 
homeomorphic to a complete metrizable space so that En is a complete 
metrizable space for every n > 1. 

Now consider for every n > 1 the map 

(a,xl9...,xqn¥i) -> (Fn(a) + (xqn + l,...,xqn^), xu...9xqn). 

Since qn + l = qn + pn, the above map is well defined. Since m ^ 1 is equipped 
with the discrete topology and since Fn\ APnil -> APn is continuous, we see 
that 0W is continuous. But mPn is dense in Ap\ so that 0„[{tf} X m^ f l ] is 
dense in En for each n ^ 1 and each a G APn (1. It follows from the Mittag-
Leffler theorem that limproj(£/7,0A7) # 0 . Let (un)n>l be an element of 
limproj(£„,©„). We have un = (an,Vn) where aM G AP% Vn G m^ and it 
follows from the definition of 0W that an- Fn(an+l) G m^" for every w > 1. 
Then xPn(

a
n)

 = XPn(^n(an + i)) (n > I). It follows from Corollary 3.2 that 
XPn(F„(a'n + i)) = Fn(xPn¥X(an + l)) and if we set Zn = x ,„(*„) (« > 1) we see 
that (Zn)n>l e limpro^C^", Fn). This proves the theorem. 
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COROLLARY 3.4. Assume that there exists for some p a sequence (Fn)n>l of 
entire functions from Cp into itself such that C\n>iF1<> ••• ° Fn(C

p) = 0 . Then 
all characters on Fréchet algebras are continuous. 

PROOF. Set pn = p for every w > 1. Then 7rl(\improj(Cp% Fn)) c. 
f\ >i Fx ° • • • ° FW(C/'), and the corollary follows from the theorem. 

It follows easily from the big Picard theorem that ^(limprojXC, ƒ„)) equals 
either C or C \ { a ) , where ( a ) is a singleton, for every sequence (ƒ„) of 
nonconstant entire functions on C (and if the sequence (ƒ„) contains a 
constant function the above set reduces to a singleton but is still nonempty). 
But the existence of a sequence (Fn) satisfying the condition of Corollary 3.4 
seems to be an open problem for every p > 2. The search for such a sequence 
was the motivation of the work presented in the following sections. 

4. Properties of the range of nondegenerate entire functions from Cp into 
Cp. Throughout the remainder of the paper we will denote by J$?(U, Cp) the 
set of all holomorphic functions F: U -> Cp where U is an open subset of Cm 

(m > 1, p > 1). If U is an open subset of Cp a function F e J$?(U, Cp) is said 
to be degenerate if its jacobian J(F) vanishes everywhere. 

In the following theorem, we collect some results concerning the range of 
nondegenerate entire mappings from Cp into itself. These results either are 
well known or follow easily from standard results of the theory of analytic 
functions of several complex variables. 

THEOREM 4.1. Let F: Cp -> Cp be a nondegenerate entire mapping. 
(1) The convex hull of F(CP) equals Cp, and for every z e Cp there exist 

Mi> • • • » U2P
 e Cp and ^i > 0 , . . . , \2p > 0 such that 

z=£\iF(ui), £ \ , = 1, J(F){u,)*0 {i = l,...,2p). 

(2) F(CP) omits at most p distinct hyperplanes. 
If, further, F is one-to-one, then the following properties hold. 

(3) F(CP) is pseudoconvex. 
(4) The volume of F(CP) is infinite. 
(5) If Cp\ F(Cp) is bounded, then Fis onto, 
(6) If F(CP) contains an open connected tube whose convex hull equals Cp, 

then F is onto. 

PROOF. Write ƒ = (fl9..., fp), and set U = {u G CP \ J(F)(u) ¥= 0). Since 
F is nondegenerate, U is dense in Cp, and it follows from [54, Chapter 1, §C, 
Corollary 4] that U is connected. Also it follows from the standard open 
mapping theorem [54, Chapter 1, §B, Theorem 7] that F(U) is open, so that its 
convex hull V is open too. If V ^ Cp = R2p, there would exist a real 
hyperplane H of R2p such that H n V= 0 [15, Chapter II, §5, Theorem 1]. 
So there would exist a real linear form L ¥= 0 on R2p such that (L ° F)(U) is 
bounded from above. Since U is dense in Cp, the pluriharmonic function L ° F 
would be bounded from above on Cp, hence constant. So F(CP) would be 
contained in a real hyperplane, which contradicts the fact that F(U) is open. 
We thus see that the convex hull Voî F(U) equals C^. 
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Since F(U) is connected, it follows from [15, Chapter II, §2, exercise 9] that 
for every z e V = Cp there exists uv...9 v2p ^ F(U) and Xx > 0 , . . . , X2p > 0 
such that L2p

x X,. = 1, z = L2p
l X,.«;,.. This proves (1). 

Assertion (2) is well known, and follows almost immediately from a classical 
result of Borel; Borel proved in 1897 [14] that if expgx + • • • + expgk = 0, 
where gi,...,gk are entire functions over C, then gi — gj is constant for some 
/ # j . Borel's theorem extends trivially to entire functions from Cq into C, and 
it is easy to deduce from this extension of Borel's theorem the fact that if the 
range of an entire mapping G: Cq -* Cp omits p + 1 distinct hyperplanes, 
then G{Cq) is contained in a hyperplane. We refer to Nishino [79] for details. 
In fact assertion (2) seems to have been rediscovered many times (including by 
the authors when p = 2). It seems that it was explicitly stated for the first time 
by Green [50], in terms of analytic mappings G: Cq -> Pp(C). Green proved 
also in [50] that any analytic mapping G: Cq -> ^ ( C ) which omits 2p 4- 1 
hyperplanes in general position is constant, which solved a problem raised by 
Chern [24] and Wu [109], but this result, which follows also from Borel's 
theorem, appears to have been obtained in 1944 by Dufresnoy [36]. Borel's 
theorem was extended by H. Cartan in 1928, in a paper [22] where he studied 
holomorphic maps from a punctured disc into Pn(C), see [109, 110] for details 
and comments about the connections between these results and Ahlfors theory 
[2]. 

Now assume that F is one-to-one. Then F 1: F(CP) -> Cp is an analytic 
mapping. We write F 1 = ( g l 5 . . . , g ). Then the function <p: u -> 
suploglg^w)! is plurisubharmonic over F(CP). For a e R, set Wa = {u e 
F(Cp)\cp(u)^a}. Then Wa = F ( A J (A e R), where Aa = {(zl9..., zp) G 
C^ I sup I z,. I < ea}. So Wa is compact for every a G R, and the fact that i^C*) 
is pseudoconvex follows from [56, Theorem 2.6.7]. This proves (3). 

Now denote by m the Lebesgue measure on Cp = R2p. If £2 is an open 
subset of Cp we have fF^dm = fü\J(F)(z)\2dm, since the jacobian of 
F: R2p -> R2p is the square of the modulus of the jacobian of F considered as a 
function from Cp into Cp. Hence jf^cp^dm = fRiP\J(F)(z)\2dm. But it fol­
lows from the subharmonicity of \J(F)\ that / ( F ) = 0 if jfR2P\J(F)(z)\2dm 
were finite, which is impossible. So m(F(Cp)) = + 00, and (4) holds. 

Note that the obvious change of variables given above shows that analytic 
maps from Cp into Cp of jacobian identically equal to 1 are volume preserv­
ing. 

Now assume that Cp\ F(CP) is bounded. Then F~l is defined and analytic 
over Cp \ A, where A is some polydisc. It follows then from a basic theorem of 
Hartogs [56, Theorem 2.3.2] that the functions gl9..., gp possess analytic 
extensions to the whole of Cp. So F~l possesses an analytic extension G to C^ 
and F o G is the identity map, so that F is onto. This proves (5). 

Similarly, if F(CP) contains an open connected tube L, it follows from [56, 
Theorem 2.5.10] that F" 1 possesses an analytic extension to the convex hull V 
of L. So F is onto if V = Cp, which proves (6). 

Some interesting information is obtained in a recent paper of Nishimura 
[77], where the author exhibits a one-to-one entire mapping G: C^ -> Cp such 
that G(CP) * H(CP) for every one-to-one entire mapping H: Cp -> C^ 
whose jacobian is constant. In this paper, the author mentions an unpublished 
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result of Ueda which shows that the interior of CP\F(CP) is pseudoconvex 
for every one-to-one entire mapping F: Cp -* Cp, a result much deeper than 
assertion (3). In another paper [76], Nishimura exhibited a one-to-one entire 
mapping F: C2 -* C2 whose range avoids a neighborhood of a complex line 
(see §6), but the existence of one-to-one entire mappings from C2 into itself 
whose ranges avoid two distinct complex lines seems to be an open problem 
[77]. When p = 1, assertion (2) reduces to the little Picard theorem, and the 
big Picard theorem also can be obtained by using Borel's theory [14]. 

Nevanlinna's theory [75] gives much more precise information about the 
distribution of values of entire functions of one complex variable, and Borel's 
theorem about sums of exponentials can be refined by Nevanlinna's methods, 
based upon the lemma of the logarithmic derivative (see also [75]). These 
methods can be extended to the study of analytic mappings Cq -> C^, see 
Vitter [106]. In the same circle of ideas, value distribution theory gives some 
classes of sets, much more general than the union of p + 1 distinct hyper-
planes, which meet the range of any nondegenerate entire mapping Cp -> Cp 

(see Carlson and Griffiths [21], Griffiths [51], Gruman [52]). 
Sibony and Pit-Mann Wong showed in [98] that for each e > 0 there exists 

an entire, one-to-one mapping Fe: C
2 -» C2 of jacobian 1 such that F£(C

2) is 
not dense in C2 and such that |Fe(w)| < ceexp(|w|e) for every u e C2, where ce 

is a positive constant (we set \(zv..., zp)\ = s u p ^ ^ z j for each element 
z = ( z l 5 . . . , z ) of Cp). In the other direction they showed that if a nondegen­
erate entire mapping F = (fl9..., fp) from Cp into itself satisfies |/)(w)| < 
exp(c/[log|w|]1+e') (\u\ > 1, / = 1 , . . . , p - 1), where cv..., cp_l are nonnega-
tive constants and where el,...,ep_1 are positive constants such that e1 

+ • • • + £p-1 < 1, then Cp\ F(CP) is of Lebesgue measure 0. 
A slightly stronger condition implies that Cp\ F(CP) has T-capacity zero in 

the sense of Ronkin [89]; see also [98, Remark 2.4] (on the other hand a minor 
assertion of [98, Proposition 1.1] is not correct; see the comments at the end of 
the next section). We have not heard about any other growth condition on an 
entire mapping F: Cp -> Cp which ensures that the range of F is dense in C^. 
There are even very hard open problems about polynomial maps <p: Cp -» C^ 
whose jacobian nowhere vanishes. It is known that C^ \ (p(Cp) is an algebraic 
variety of codimension at least two [49, Theorem 1] and that <p is onto if 
p = 2, d°q> < 100 (see Moh [74]), or if d °<p < 2 for any p (Wang [108]), but it 
is still unknown for all p > 2, despite various claims of the contrary, whether 
<p has to be onto. See the discussion of this problem, often called the jacobian 
conjecture, given by Bass, Connell and Wright in [10]. 

If F: Cp -> Cp is a one-to-one entire mapping, then F(CP) is indeed 
diffeomorphic to Cp and pseudoconvex. There exist open pseudoconvex sub­
sets U of Cp which are diffeomorphic to e77 and which do not possess any 
nonconstant bounded analytic functions, which are not biholomorphically 
equivalent to Cp\ see Diederich and Sibony [34]. 

On the other hand "strictly parabolic manifolds" are biholomorphically 
equivalent to Cp, so that open subsets of Cp biholomorphically equivalent to 
Cp can be characterized by means of the Monge-Ampère equation, see the 
recent papers of Burns [18] and Stoll [104] for further information. 
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5. Uniform convergence on compact sets of injective holomorphic maps. We 
set |(z1? z 2 , . . . , zp)\ = supj^lz,! for every element (z l 5 . . . , zp) of Cp, and if U 
is an open subset of Cp and V an open subset of C7, we denote by au the 
topology of uniform convergence on compact subsets of U on the set 3^(U, V) 
of all holomorphic functions from U into V. Note that if W is an open subset 
of Cr the composition of maps is a continuous map from (Jf(V, W),ov) X 
(Jf(U, V\ ov) into (Jf(U, W), av). 

In particular if F„ -> F and if \u„ - u\ -> 0 then |F„(iO - F(M) | -> 0. 
« -> oo « -> oo 

If AT is a compact subset of an open subset U of C77 we set 11̂ 11̂  = 
supu€£K\F(u)\ for every i7 e ^ ( t / , C ^ ) . In order to state the next result with 
the generality we need we have to introduce the following notion. 

DEFINITION 5.1. Denote by Sp the set of all pairs (F,U), where U is an 
open subset of e77 and F: U -» Cp an analytic function. We will say that a 
sequence (F' Un)n>l of elements of S converges uniformly on compact sets 
to an element (F,U) of êp, and we will write (Fn, Un) -> (i7, U) if for every 
compact subset K of U the following conditions are satisfied. 

(1) There exists an integer n(K) such that K c Un for every n ^ n{K). 
(2) The sequence (\\Fn - F\\K)n>n(K) converges to 0. 
A well-known theorem [13, Chapter 8, Theorem 9] shows that if U is a 

a 

connected open subset of Cp, and if (Fn, U) -» (i7, U), where all the functions 
Fn are one-to-one, then either F is one-to-one or F is degenerate. Also H. 
Car tan showed in [23, Lemma 5] in the case where p = 2 that if 

a 

(Fn,U) -> (I,U), where / is the identity map, then Fn |!£ is eventually 
one-to-one for every compact subset K of U and that L is eventually 
contained in Fn{U) for every compact subset L of £/. The following theorem is 
a (certainly well-known) extension of these results. 

THEOREM 5.2. Let (Fn,Un)n>1 be a sequence of elements of $p and let 
(ƒ%£ƒ)£<ƒ. where U is connected, such that (Fn9Un) ^ (F,U). If Fn is 
one-to-one over Un for every n > 1 and if F is nondegenerate then F is one-to-one 
and 

{FH-\Fm(Um))HljF-\F(U)). 

PROOF. It follows from a standard result mentioned above that F\W is 
one-to-one for every relatively compact open connected subset W of U, so that 
F is one-to-one over U, since U is arcwise connected. Also it follows from [13, 
Chapter 8, Theorem 7] that J(F)(a) # 0 for every a e U. Fix b G F(U) and 
let Qh be an open neighborhood of F~l(b) which is relatively compact in U. 
Then Qh c Un eventually and it follows from [13, Chapter 3, Theorem 3] that 
there exists an integer n(b) and an open neighborhood V(b) of b in F(U) 
such that V(b) c Fn(Qb) for every n > n(b). Let L be a compact subset of 
F(U). We can find a finite family bl9...,bk of elements of L such that 
L c K(Z>!) U • • • U V(bk) so that L c Fn(Qbi U • • • U B^) c Fn(Un) for ev­
ery « > «(£) , where fl(L) = max(«(/?1),..., n(bk)). 

Note that Bfr U • • • U Qb is a relatively compact subset of U so that 
Un>n{L)F~l(L) is bounded. Now let W be an open relatively compact subset 
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of F(U). There exists_an integer m and an open relatively compact subset £2 of 
U containing F~l(W) such that Œ c Un for every n > m and such that 

Set Gn = F„|Q, i/„ = i^-1!^ (/i > m), G = F|B, # = F " 1 ^ . The family 
(Hn)n>m is normal. Let (//„ ),>x be any subsequence of the sequence (Hn)n>m 

which is o w convergent, and denote by 0 its limit. Then 

$ G / ( ^ , 1 Î ) , Hn -> <ï>, Grt -> G 
' / —> oo ' /' —• oo 

so that 

G„ °#„ -* G o $ . 
' ' 1 - * 00 

S o G ° $ is the identity map on W, which means that O = H = F~l \ W. Since 
Jf?(W,Cp) is homeomorphic to a metric space, this suffices to show that 

Hn -> H, and the sequence (\\F~l — F~l\\L)n>m converges to zero for every 

compact subset L of W. Since each compact subset of F(U) possesses an open 
relatively compact neighborhood in F(U), the theorem follows. 

Denote by Auu^C^) the group of all analytic isomorphisms of Cp onto itself. 
We see in particular that the map 0 -» 0" 1 is a-continuous on AutfX^). Note 
that Au^C^) is homeomorphic to a complete metrizable group; to see this use 
the distance ô (0 l 5 0 2 ) = d (0 1 , 0 2 ) + d(0f \ ©2-1) where d is a distance defi­
ning the a-topology on JP(CP, Cp) for which Jt?(Cp

9 C
p) is complete. 

The following corollary suggests a new method of constructing entire 
one-to-one functions from Cp into itself with nondense range. 

COROLLARY 5.3. Let (0„) r t>i be a sequence of elements of \\xi{Qp) and let 
F e / f C ^ . C n such that 0„ -> F. If F is nondegenerate, we have the 

" n -> oo 

following properties. 
(1) F is one-to-one. 
(2) F(CP) is a Runge domain. 
(3) 0W

-1(Z) converges uniformly to F~l(z) over compact subsets of F(CP). 
(4) l e - ^ z ) ! ^ oo uniformly over CP\F(CP). 

PROOF. Assertions (1) and (3) follow directly from the theorem. So the 
sequence (F°®n

_1) converges uniformly to the identity map over compact 

subsets of F(Cp). Set U = F(CP) and let ƒ e jf(U, C). Then ƒ ° F <> Ö;1
 w ^ ƒ• 

Since /o jpo©" 1 is entire for every n > 1, F(CP) is a Runge domain [56, 
Definition 2.7.1]. Now assume that there exists R > 0 such that for some 
strictly increasing family (nt) of integers we have |0w"1(zw )| < R (i > 1) where 
z„ e CP\F(CP) for every /. Taking a suitable subsequence if necessary, we 
may assume that 6~*(z„ ) -> i ~* °° fi for some /? e Cp. But then z„. = 
0W (0w

_1(zn )) -> F(/2), which is impossible since CP\F(CP) is closed, be-
' ' ' i -* oo 

cause F is one-to-one. So |0~1(z)| -> oo uniformly over CP\F(CP), which 

concludes the proof. 
a 

It is also possible to show that if (Fn, Un) -> (F,U) and if F is one-to-one, 

then Fn | K is eventually one-to-one for every compact subset K of U. This 
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follows from the fact that if (Fn,Un) -> (F,U) then any a e U such that 

J(F)(a) =£ 0 possesses a neighborhood Va such that F\V is eventually 
o 

one-to-one. Also if (Fn,Un)-> (F,U), if F is nondegenerate, and if U is 
connected, then every compact subset L of F(U) is eventually contained in 
Fn(Un) (this follows from an argument used in the proof of Theorem 5.2). The 
above results can be proved using Kronecker integrals, as in Cartan's proof of 
[23, Lemma 5], but it is also possible to establish them just using Cauchy's 
inequalities and standard consequences of the fixed point theorem, see [44, §4]. 

Note in particular that if a sequence (Fn) of elements of Jf?(Cp, Cp) 
converges uniformly to the identity map on compact sets then there exists for 
every u e CP an integer n(u) such that u e Fn(C

p) for every n ^ n(u). This 
contradicts an assertion of Sibony and Pit-Mann Wong [98, Proposition 1.1] in 
which they produce such a sequence (Fn) whose range avoids a neighborhood 
of (1,1) for each n. 

6. Functional equations, dynamical systems and entire functions with non-
dense range. In this section we will use the classical method to construct 
nondegenerate entire functions from Cp into itself with nondense range. Such 
functions were constructed by Fatou [46] and then independently by Bieber-
bach [11], and Bieberbach's example is a one-to-one function of jacobian 
identically equal to 1. But the credit for this discovery should go to Poincaré, 
who explicitly pointed out this phenomenon in his 1890 paper [85, p. 339] 
(without exhibiting a specific example), more than 40 years before Bieberbach. 
The key to all these constructions is a theorem about normal forms for local 
analytic automorphisms with repulsive fixed point. By local analytic automor­
phism we mean the germ F of an analytic Cp-valued map at a point a e Cp 

satisfying J(F)(a) =t 0. 
If F(a) = a, then a is a fixed point for F and the fixed point a is called 

repulsive if the eigenvalues Xx, . . . , Xp of the differential F'(a) of F at a satisfy 
inf^^X,! > 1. We have the following theorem. 

THEOREM 6.1. Let F be the germ of an analytic automorphism at a e CP and 
assume that a is a repulsive fixed point for F. Then there exist a polynomial 
automorphism B of Cp such that 

B(a) = a, Bn ^ a 
n-*oo 

and a local automorphism G of Cp at a such that G (a) = a satisfying the 
relation F o G = G ° B. 

This result is an immediate consequence of Reich's papers [87, 88] about 
normal forms for local analytic automorphisms with repulsive fixed point at 
the origin. 

It is straightforward to check that the polynomial "normal form" B given by 
Reich in [88] satisfies B~n{z) -> Of or every z e Cp, the convergence being 

n—* oo 

uniform on compact subsets of C^. If the eigenvalues X l 9 . . . ,X have no 
"relations", i.e., if for / < /?, nv..., np > 0, nx + • • • +np > 2 we have 
X, # X"1 • • • X^, then we can take B = F"(0), or we can take B to be a Jordan 
form of F'(0). 
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COROLLARY 6.2. Let U be an open subset of Cp and assume that there exists 
an analytic function F: U -> U which possesses a repulsive fixed point a in U. 
Then there exists an entire function G: Cp -> U, with J(G)(a) # 0, G (a) = a 
satisfying the functional equation F°G = G° B, where B is a polynomial auto-

a 

morphism of Cp such that B n -> a. Moreover 
G(Cp) = {z e £/|z = F w (wJ (/i > 1) for some 

sequence (un) c Uwithun -+ a>. 

PROOF. Let G be the germ at a of an analytic automorphism with fixed 
point at a given by Theorem 6.1. In terms of germs of analytic automorphisms 
at a, we have the identity F°G° B~l = G. Let V be an open neighborhood of 
a contained in the domain of G such that G(V) c U, B~l(V) c V and such 
tha t (FoGo J g- 1 ) (z )= G(z)(z e F). 

Set K„ = Bn(V). Then F n o G ° Bn is defined and analytic over Vn. Now let 
A' be a compact subset of Cp. There exists an integer nK such that B~n(K)c 
V, hence K <z Vn for every « > n K. If « > n K we have 

F ^ o G o r ^ z ) = ^ [ [ f oGor^ r ^z ) ] ] 
= poGor"(z) (z G 4 

Hence (Fn °G ° B~n,Vn) trivially a-converges to an analytic extension of G to 
the whole of Cp. We may denote this extension by G, and G(CP) c U. Since 
F[G(z)]= G[B(z)] (z e B-\V))9 the functional equation F O G = G ° J 5 

holds. Hence Fn o G = G o Bn (n > 1). If u = G(z) for some z e C*\ then 

u = ( G o 5 " ) [ r " ( z ) ] = F M [G[5" n (z ) ] ] , 

so that u = F"(xw) (n > 1), where jcn = G[B~n(z)] -> a. Conversely if 
« —> oo 

« = F"(x„) (n > 1), where x„ -* a, then x„ e G(V) for some «, so that 

x„ = (G o 5-")(ƒ„), where ƒ„ e V J a n d 

ti = (F"oGoB-")(y„) = <?(ƒ,) G G ( C ' ) . 

This concludes the proof of the corollary. 
COROLLARY 6.3. Let U be an open subset of Cp. There exists a nondegenerate 

{resp. with nonvanishing jacobian, resp. one-to-one) entire function G: Cp -> U 
if and only if there exists an analytic (resp. with nonvanishing jacobian, resp. 
one-to-one) function F: U -> U which possesses a repulsive fixed point in U. 

PROOF. Assume that such a mapping G: Cp -> U does exist, and let ft e CP 

such that /(G)(j8) # 0. Set a = G(fl). There exists an affine automorphism 0 
of C ' such that 0 ( a ) = p, 0 ' = 2[G'(£)]-X. Set F = G o 01 £ƒ. Then F(U) c 
(7, F(a) = a, ^ ' ( a ) = 27, where I is the identity map on Cp

9 and a is a 
repulsive fixed point for U. Clearly, F has nonvanishing jacobian (resp. is 
one-to-one) if G is such that the condition is necessary. 

Conversely assume that such a function F: U -> U exists. The function G 
given by Corollary 6.2 is an entire function over Cp whose range is contained 
in (7, and J(G)(a) # 0 so that G is nondegenerate. We have Fn ° G ° Bn = G, 
and / (G) never vanishes on some neighborhood W of a. Let z ^ Cp. Then 
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B~"(z) e W for some n > 1 so that 
J(G)(z) = J(F»)[GoB-n(z)]J(G)[B-»(z)]J[B-n](z) * 0 

if J( F ) never vanishes over U. Also G \ 12 is one-to-one for some neighborhood 
12 of a, and if G(zx) = G(z2) then J T ^ ) G 12, £-"(z2) e 12 for some 
n>l, hence ( ^ " ( z ^ ) = G{Bn{z2)\ B'"^) = B~n(z2\ zx = z2 if F is 
one-to-one over £ƒ. This concludes the proof of Corollary 6.3. 

Corollary 6.3 gives a "dynamical" characterization of open subsets of Cp 

which contain the range of a nondegenerate entire function from Cp into itself. 
Such a statement was not in print, as far as the authors are aware. 

The following corollary gives a characterization of open subsets of C p which 
are biholomorphically equivalent to Cp. It is a special case of a more general 
result of Kato [60], which deals with complex spaces instead of open subsets of 
Cp. We nevertheless give a proof, because Kato's argument involves a refer­
ence (reference [2] in [60]) which seems inaccurate. 

COROLLARY 6.4. Let U be an open subset of Cp. Then there exists a 
one-to-one entire function G: Cp -> Cp such that G(CP) = U if and only if there 
exists an analytic automorphism 0 of U which possesses a fixed point a e U for 
which @~n(z) —> a for every z e U. 

n—» oo 

PROOF. If such a one-to-one entire function G exists, then U is biholomor­
phically equivalent to C p and such an analytic automorphism 0 exists for each 
a e U. Now assume that there exists an analytic automorphism 0 of U 
satisfying the above condition for some a e U. Then a is a repulsive fixed 
point for 0 . Let G be the entire function on C^ given by Corollary 6.2. Then 
G is one-to-one, and z = 0"[0_/ I(z)] (n > 1), where 0~"(z) -> a for every 

n—>oo 

z e £ƒ, so that G(CP) = U. This proves the corollary. 
We now wish to prove a weak form of Theorem 6.1, which is sufficient to 

solve the functional equation F°G = G ° ̂ '(0) in the cases which arise in the 
constructions of Fatou [46], Bieberbach [11], Sadullaev [93], and Kodaira [61]. 
The idea of getting G as the uniform limit on compact sets of the sequence 
Fn °[F'(0)]~n is certainly not new (see the discussion at the end of this section) 
but the proof given below, which was communicated to the authors by W. 
Rudin [91], is much shorter than all the proofs that we found in the literature 
(see for example Stehlé [101]). 

THEOREM 6.5. Let F be the germ of an inuertible analytic map at the origin on 
CP. Assume that F(0) = 0 and that the eigenvalues X1?..., Xp of F'(0) satisfy 
1 < |Ài| < • < lA Î, \X\\ > \Xp\. Then the sequence (F'(0)n o F~n)n>l con­
verges uniformly on a neighborhood 12 of the origin to an analytic map 
H: 12 -> Cp satisfying 7/(0) = 0, H'(0) = /, (F'(0)° H o F~l\z) = H(z) (z G 
12). 

PROOF. Fix two real numbers /x and v satisfying 1 < v < |X1|, ju > |X |, 
liv~2 < 1. It follows from the theory of Jordan forms that there exists for every 
e > 0 a basis (el9..., ep) of Cp such that F'iOXeJ = Xxev F(0)(e?f.) = Xtet + 
elel_l with |£f| < e (/ > 2). It follows from this observation that there exists a 
norm || • || over Cp such that ||F(0)|| < /x, ||[^"(O)]"1!! < V1. Denote by S the 
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open unit ball of (Cp, || • ||). There exists r > 0 such that ||^^-1(^)|| < v~l\\z\\ 
for every z e rS. 

Set 12 = rS and denote by ê the space of all bounded analytic mappings 
<p: 12 -> Cp satisfying cp(0) = 0, <p'(0) = /. Then ê is a complete metric space 
with respect to the norm ||<p|| = suprefl||<p(z)||, and it follows from the chain 
rule that F(0)° cp ° F - 1 G <ƒ for every <p G ê (the mapping F(0)° <p " F " 1 is 
well defined on 12 since F~\ti) c 12). Set 0(<p) = F(0)° <p o F1 (cp e <f ). 

Fix <p1? <p2 G <f. If ||z0|| = r, the function £ -> (tp^Zo) - <p2(£z0))/£
 i s 

defined and analytic on the open unit disc of the complex plane and vanishes 
at the origin. It follows from the Schwartz lemma that 

iki(fco) -v 2 ( fco) il <m2ii<Pi-<p2u d « i < i ) , 
so that 

| | ( P l (z ) - (p 2 (z ) | | < JLO-1|cp!-(p21| ( z e ! 2 ) . 

Hence ||e(q>i) - 0(^)11 < Iin0)||^2 | |c>i " <P2II < M^2||<Pi ~ <P2II for every 
<pl5 cp2 e ^. Since /AJ> 2 < 1, it follows from the usual fixed point theorem that 
the equation 0(<p) = cp has a unique solution H in ê. Moreover 

||[F'(o)]-oVoF--H||=||e-(ç)-H||fi^ooo 
for every ( p G ^ . Since / e <ƒ, this achieves the proof of the theorem. 

COROLLARY 6.6. Le/ [/ 6e #« open subset of Cp containing the origin and let 
F: U -» U be an analytic mapping such that F(0) = 0. If the eigenvalues 
(\l9 ...,\p) of F(0) satisfy 1 < |XX| < < IX Î, \XX\2 > \\p\, then the se­
quence (Fn °[F'(0)]~n)n>1 converges uniformly on compact subsets of Cp to an 
entire mapping G: Cp -^ U such that G(0) = 0, G'(0) = I, F o G = G <> F(0), 
and G(CP) = ( z e £ƒ |z = Fn(un) (n > 1) for some sequence (un) c U with 
un - 0}. 

n - > oo 

PROOF. Let 12 and H be as in Theorem 6.5, and set V = 7/(12). Then 

{[F'(0)]noF-n,Q) ^ ( # , 1 2 ) , 

so that H is one-to-one, and it follows from Theorem 5.2 that 

( F - o [ F ( 0 ) ] - , Q j A ( f f - i , K ) , 

where 12w = [F(0)]W[F""(12)] (n > 1). Let Ü: be a compact subset of Cp. 
There exists k > 1 such that [F'(0)]~k(K) c K, so that the sequence 
(i7" °[F'(0)]~n~k)n>l is uniformly convergent over K. So the sequence 
^pn + k o[F'(Q)]~n~k)n>l is also uniformly convergent oyer K and the sequence 
(F" °[F(0)]~") converges uniformly over compact subsets of Cp to an entire 
mapping G: C ' -> 1/ such that G | F = H1. So G(0) = 0, G'(0) = ƒ. The last 
assertion follows from the same arguments as in Corollary 6.2. 

We now describe Fatou's example. In Fatou's case we consider the entire 
function F: (*, y) -» (y, 2x + 4xy - 3j>2). This function has (0,0) and (-1, -1) 
as repulsive fixed points (the eigenvalues of F(0) at (0,0) and (-1, -1) are 
respectively ± y/l and 1 ± /). There exists a nondegenerate entire function G 
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whose range is the set of all Z G C 2 such that z = Fn(zn) (n > 1) where 
z -* (0,0). Moreover G can be arranged to satisfy the functional equation 

n —» oo 

F o G = G o B, where B is the linear map (*$ -ft)- The function F is not 
one-to-one, since F(t, - \) = (- \, - J) (t G C), but the "inverse map" F~l is 
defined for u =£ - \ by the formula F~l(u, v) = (v + 3w2/(2 + 4w), u). There 
exists a neighborhood V of ( -1 , -1) stable under F~l such that 
F~w(z) -> (-1,-1) (z G F), and since F~n(z) is the unique element zn of 

n—» oo 

C2 such that Fn(zn) = z for z G F, we have G(C2) n F = 0 , so that G(C2) 
is not dense in C2. 

We now check that, despite some claims of the contrary, Fatou's function G 
is not one-to-one, and that we even have J(G)(z) = 0 for some z G C2. Set 
W = {(x, ƒ) G R2 |x > 0, j > 0). Clearly, F~\W) c W. U z = (x, y) G C2 

set F""(z) = (x„, >>M) (« ^ 1). If z = (x, >>) G W we have either x > 2^ /3 , 
hence xx < 3x/4, or x < 2jy/3, hence xx < j / 2 . So \F~l(z)\ < |z| and xx < 
3|z | /4(z G PF). Hence 

3lF-H^)l 3|z| 3[z[ 
x 2 <; ^ ^ 4 ' ^2 — ^î ^ 4 

so that |F" 2 (z ) | < 3|z|/4 and F""(z) -+ (0,0) for every z <E W. Now if 

z = (x, ƒ) G R2 with x > 0, y > -3x2 then F_ 1(z) G JF, so that 
F~n(z) -> 0. In particular if v = - \, x > l / i /6 then F~"(z) -> 0, and 

n-*oo «->oo 

hence z G G(C2). 
Also G satisfies the functional equation F ° G = G ° 5, where 5 is the linear 

map (x, y) -> (^2"x, - \/2}0- For / > 0 set z, = (1 + t, - ^) so that z, = G(ut) 
for some w, G C2. We have (- 1, - f ) = F(zt) = G(B(ut)), so that G is not 
one-to-one since B(ut) =£ # ( w / ) if f, /' > 0, / # /'. Moreover J(F)(zt) = 0, so 
that J(G)(B(ut)) = 0 for every f > 0. 

Bieberbach's example [11], described by Bochner and Martin [13, Chapter 3] 
and by Stehlé [101] uses the map F: (x, y) -> (w, v) where w = 4x + 2j>5 — 
5y2, Ü = Ay + 2w5 - 5M2. 

This map is clearly an analytic automorphism of C2, the inverse map being 
the map (w, v) -> (x, y) where x = (w - 2^ 5 + 5y2)/4, y = (v - 2u5 + 
5w2)/4. We have F(0,0) = (0,0), F( l , l ) = (1,1), F(0,0) = (J S) = F ' (M) . 
So there exist two entire one-to-one functions GY and G2 such that 

G1(C2) = { z G C 2 | F - ( z ) n - o o ( 0 , 0 ) } , 

G2(c2) = ( z E C 2 | r " W ^ ( U ) ) . 

So Gi(C2) n G2(C2) = 0 and, since GX(C2) and G2(C2) are open, neither 
GX(C2) nor G2(C2) is dense in C2. In fact GX(C2) and G2(C2) contain 
respectively a neighborhood of (0,0) and a neighborhood of (1,1), since these 
points are attractive fixed points for F~l. The above function Gv normalized 
to satisfy Gx(0) = /, and FiG^z)) = Gx(4z) (z G C2), is the original example 
of Bieberbach. 
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As suggested by computer pictures, the range of the function Gx is rather 
"small". In fact, consider more generally a map Fkj of the form (x, y) -^> (u, v) 
with u = kx + j{y), u = ky + 7*( w), where 7 is a polynomial. If y(0) = ƒ (0) = 0 
then FkJ(0,0) = (0,0), FkJ(0,0) = (g g) so that (0,0) is a repulsive fixed 
point for i^ • if \k\ > 1. Clearly, Fkj is an automorphism of C2 and so there 
exists an entire one-to-one function GkJ such that GkJ(C

2) = {z e 
C2\FkJ(z) -* (0,0)}. The above function Gx has this form with k = 4, 

7*(X) = 2X5 — 5X2. The following proposition shows in particular that 
Gx(C2)c {(K,ü)e C 2 | |w| >max(2,|ü|)) n {(M,Ü) e C 2 | |e; - lu5 + 5w2| < 
4max(2, |w|)}. 

PROPOSITION 6.7. Assume that \k\ > 1 and j(0) = / ( 0 ) = 0, J0/' > 2. Le/ 
AT > 0 èe JWCA rtar \j(z)\ > (k + \)\z\ (\z\ ^ K). Then 

(i) \u\ < max(A:, \v\) for every (w, v) e GkJ(C
2). 

(ii) |u — j(u)\ < kmax(\u\, K) for every (u,v) e GkJ(C
2). 

PROOF. Fk
lj is the map (u,v) -> (x, y), where x = &_1(w — j(y)), y = 

k~\v -j(u)j. 
(i) If \u\ > K and |u| > |u| then |y(w)| > (k + l)\u\, so 

\y\>k-l{\j(u)\-\v\)>k-l(\j(u)\-\u\)>\u\ 

and so \y\ ^ |w| > AT. The same argument then gives |x| > |_y| and \y\ > K. 
Thus, by induction, all the points FkJ(u, v) = (xn, yn) satisfy \xn\ > \yn\ > AT. 
Therefore (w, 17) € G^ /C 2 ) . 

(ii)If \v -j(u)\ > A:max{|w|, AT} then 

|^ | = k~l\v ~ j{u) I > max(|w|, AT), 

hence, as above, |JC| > \y\ > AT. So Fk~
lj(u, v) £ Gk 7(C2) and hence (w, y) £ 

G*,,(C2). 
Note that the above proposition enables us to use the polynomial automor­

phism 

F = F2,x>: (x, y) -* (lx + y\ 2y + (2x + y1)2). 

Then (0,0) is a repulsive fixed point for F, with F'(0,0) = Co 2)- But t n e °ther 
fixed points are (-1, -1), (-e2i"/3

9e
ifr/3), (-e~2in/3

9e'iw/3) and at these points 
the eigenvalues of F' are 4 + / IT so that these points are neither attractive 
nor repulsive. Nevertheless it follows from the proposition that 

G2 ,*2(C2)Ç {(U,V)<EC2\ | n |<max(3 , | Ü | ) } 

n{(u,u) e C 2 | 117 - u2\< 2max(|w|,3)}. 

In particular \v\ < 15 if \u\ < 3 and \u\ < \v\ < 2\u\ + \u\2 if \u\ > 3. Sadul-
laev gives in [93] examples of entire mappings C2 -> C2 whose ranges avoid 
large sets. His mappings Gf satisfy the functional equations Ff°Gf= Gf° A, 
where Ff is the automorphism (x, y) -» (y, a2x + ƒ(>>)), where A = (g _°fl), 
|a| > 1, and where ƒ is an entire function over C satisfying /(0) = /'(0) = 0. 
Here A is the diagonal form of Ff(0) = (°ai J). Since /y2 is the map (x, ^) -> 
(a2x + ƒ(^), a2>> + / (a 2 x + ƒ(>>))) and since (F/)'(0) = (02 J)(^ J) = «2/, 



%
' 

Il
 

Ö
" 

• J
ilt

 
-/

 •
 

"•
jS

E
F

' "
iif

 
'1

 

,i 

1 

iiS
iiii

iiii
iiii

iiii
liii

iiii
iik

 

B
ie

be
rb

ac
h'

s 
fu

nc
tio

n.
 P

la
ne

 z
2 

=
 8

, 
z x

 
re

al
 h

or
iz

on
ta

lly
, 

z x
 

im
ag

in
ar

y 
ve

rt
ic

al
ly

. 
Sh

ow
s 

fr
ac

ta
l-

lik
e 

bo
un

da
ry

 
an

d 
il­

lu
st

ra
te

s 
Pr

op
os

iti
on

 6
.7

(i
i)

. 

iij
fli

 ill
üi

lii
i 

i|il!
iijji

ii|j|
jiiil

iijjj
ii 

iiiji
ji l

iiili
if jj

!ij|
 j|

ljj
$j

i||
j|l

li|
!jj

jij
j§

 
i 

ili
lll

lll
i'!

 

! 
lil

iis
lil

ili
lil

i 
ji|i

||i|
||l|

|jii
|iii

i|i|
 

!!!
;L|

|ii!
;ll|

iii|
il||

||l|
 I 

lll
lll

lli
ïjl

lil
ill

lil
lll 

iiiii
il ii

!!!!
!!ii!

! !i
ii!i!

!!j!
!i!i!

iiii!
ij: 

iliii
 i

! l
!!li

ii:!
!ill

iiH
ii||||i!>

,|!||||
"!il

|||iii!|i|1™ 

j||i
j|:|

!J|
i;ii

|iij
iji;

jiji
ii|i

i|;|
j^ 

JS
iii

ffl
lil

lil
 

iHH
MillH

lIiilH
llflHl

iilîlîJ
lBlllil

PlIiîï
llîlihi

iUïB
lii1 » 

jiii
iill

iill
ijll

llli
P

'11
'' 

lll
lli

lll
 

Jil
l Ji

ll 1
11 

.iii
iiii

iiii
iu

ul
ip

iijl
lj 

Hi
' lijil

'' 
If''

 

V
V

M
H

H
 

''"
"ii

illl
illl

llf
flf

illl
ijll

llf
f 

''̂
Ilil

Ilil
itil

Ilil
llIP

' 

x >
 

o w
 

r 

B
ie

be
rb

ac
h'

s 
fu

nc
tio

n.
 

Pl
an

e 
Im

z 1
 =

 0
 =

 I
m

z 2
; 

R
ea

l 
z x

 

ho
ri

zo
nt

al
ly

, 
R

ea
l 

z 2
 v

er
tic

al
ly

. 
Se

e 
P

ro
po

si
ti

on
 6

.7
(i

i)
. 

Ê
 



150 P. G. DIXON AND J. ESTERLE 

Sadullaev functions, which satisfy as well the functional equation Ff
2 °Gf = 

Gf° A2, are more related to Bieberbach's original example than to Fatou's, and 
the above maps Gkj are of the same type as Sadullaev's, with k = a2, j = ƒ. 
When ƒ is a monomial of degree > 2, Sadullaev obtains estimates which show 
that his functions Gf have a range which avoids some large sets. Sadullaev's 
functions are one-to-one and are uniform limits on compact sets of automor­
phisms with constant jacobian (the constant is not one, but this can be changed 
by a trivial normalization). 

The two one-to-one entire functions Gx and G2 which appeared in the above 
description of Bieberbach's construction satisfy G^C2) Pi G2(C2) = 0 . Now 
set Hn = G" ° G2 (n > 1). Since Gx and G2 are one-to-one, the functions Hn 

are one-to-one and Hn(C
2) n Hm(C2) = 0 for n, m > 1, n ¥= m. Another 

way to obtain an infinite sequence of one-to-one entire functions with disjoint 
ranges was communicated to the authors by W. Rudin [91]; we present a 
special case of his construction. Let (<xn) be a discrete sequence of complex 
numbers. It follows from standard interpolation results [27, exercise 5, p. 209] 
that there exists an entire function ƒ over C such that ƒ ( - \an) = a„, 
ƒ ' ( - fan) = 0 {n > 1). Consider the map F: (x, y) -> (2x + f(x 4- y), -2y + 
f(x 4- y)). Then F e Aut(C2), and J(F) = -4. 

Also F(-a„, a„ /3 )= (-a„,a„/3), F(-a„,aM /3) = (2 _°2) (* > 1). It fol­
lows then from Corollary 6.6 that there exists a sequence (Gn)n>lof one-to-one 
mappings C2 -» C2 such that 

Gn(C2) = [z G C2\F-\z)r^ ( -a n , a n /3 )} 

so that G„(C2) n Gm(C2) = 0 for « # m. 
Another interesting method for producing an infinite sequence of one-to-one 

entire functions from C2 into itself with disjoint ranges is given by Kodaira in 
[61]. Kodaira considers the automorphism F of C2 given by the formula 

F(x, y) = (ay +(a — l)(sinx — x) , x) 

where \a\ > 1. 
Then (2kIT, 2kTT) is a repulsive fixed point for F for every k e Z, and 

F'(2k7T, 2km) = (f g). Denote by T the map (x, y) -> (x 4- 2TT, ƒ + 2TT). 
Then F ° T = r <> F. Kodaira's function G: C2 -> C2 satisfies the functional 
equation F <> G = G ° F'(0), G(0) = 0, G'(0) = / and G(C2) = (z G 
C2 | Jp-w(z) -> 0). For each A: G Z, we have 

(r*oG)(C2) = {z G ^ K F - . T ^ K Z ) ^ ^ 0} 

= j z e C 2 | ( T - l . r " ) ( z ) ^ 0 J 

= {zeC 2 | F - " ( z ) n r o o (2A: W , 2Â: W )} . 

So the sequence (T / c°G)A : G Z isa sequence of entire one-to-one mappings over 
C2 with disjoint ranges. 

Another way to obtain a sequence of pairwise disjoint open subsets of C2 

biholomorphically equivalent to C2 is to consider a map F: (x, y) -> (w, v) 
where « = 2x + f(y), v = 2y 4- g(w). Let (a„) and (/?n) be two discrete 
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sequences of complex numbers. There exist two entire functions ƒ and g over 
C such that ƒ(&) = -an, ƒ '(&) = 0, g(an) = -ft,, g\an) = 0 (n > 1). Then 
F(an,/3n) = (an,Pn), F'(an, ft,) = 2 / and it follows again from Corollary 6.6 
that there exists a sequence (Gp) of one-to-one entire mappings C2 -> C2 such 
that Gp(C

2) = (z G C V ^ z ) ^ (a, , ft,)}, so that Gp(C
2) n G^(C2) = 0 

for p ± q. The square of the automorphism used by Kodaira has a form 
similar to F9 and a similar remark holds, via a linear change of variables, for 
the square of the automorphism used by Rudin. We leave the details to the 
reader. 

The above constructions associate to each automorphism F on Cp which 
possesses a repulsive fixed point a a one-to-one entire function G o n C ^ such 
that G(Cp) = (z G Cp\F~n(z) -+ a}. In his recent paper [76] Nishimura 

considers analytic automorphisms F of Cp (in fact automorphisms of complex 
analytic manifolds) which possess a sub variety Y of Cp which is pointwise 
fixed by F and is repulsive for F (Nishimura works in the "attractive" case but 
his results trivially transfer to the "repulsive" case). He then solves a functional 
equation similar to the equation F°G = G ° 5 , under some additional hy­
potheses, where B is the automorphism of the fiber normal to Y induced by F. 
This allows him to obtain an entire one-to-one function G o n C ^ whose range 
contains a neighborhood of Y (namely, the elements of C p whose sequences of 
iterates through F1 converge to elements of Y). If, further, F possesses a 
repulsive fixed point a outside 7, the range of G avoids a neighborhood of a 
and applying Corollary 6.2 to F and a we obtain a one-to-one entire function 
H on Cp whose range avoids a neighborhood of Y. D. Couty gave in [28] 
computations about automorphisms of C2 satisfying these two conditions. This 
leads, for example, to the existence of an entire one-to-one function on C2 

whose range avoids the set {(w, D ) G C 2 | \UV\ < 1, \v\ < 1/2}. 

We took Reich's results [88] as the key to all the results of the beginning of 
this section. In fact the functional equation F°G = G° B, where F is a local 
automorphism with fixed point at a for some a e Cp and B is a "normal 
form" for F, has a very long history. Assume for convenience that a = 
(0 , . . . , 0), denoting this by 0, and let \l9...,\p be the eigenvalues of F'(0) 
with \XX\ < • • • < IX Î. For q > 1 denote by irq(F) the Taylor expansion of F 
at 0 taken up to the #th order. If |XX| > 1, |Xi|^+1 > \Xp\ then the sequence 
(Fn 0('nq(F))~n)n>1 converges uniformly on some neighborhood of the origin 
to the germ of an analytic automorphism G, which satisfies G(0) = 0, G'(0) = ƒ, 
F o G = G o vq(F). If iXil2 > \\p\ we can take q = 1 and wq(F) = F(0). In 
this case, if F is entire, the sequence (Fn o(F'(0))"w) converges uniformly on 
compact subsets of C7* to an entire function G satisfying F ° G = G°F'(0), 
G(0) = 0, G'(0) = I (Corollary 6.6). In Bieberbach's construction we have 
J(F) = 16 = det F(0), so that the automorphism Fn °[F'(0)]~n has jacobian 
1 for every n > 1 and Bieberbach's function is a one-to-one function of 
jacobian 1. Kodaira and Sadullaev's functions can also be obtained this way 
(via an obvious renormalization in Sadullaev's case). This way of solving the 
equation F°G = G ° F'(0) was rediscovered by the authors, and, indepen­
dently, by W. Rudin, but this idea is not new at all. M. Koenigs used it in 1882 
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in his beautiful thesis [62] to solve Schroder's equation f[g(z)] = g(az), where 
/(O) = 0, / '(0) = a, when \a\ > 1, and Schroder's equation is exactly the 
equation F° G = G <> F'(0) in dimension 1 (Schroder's equation, introduced by 
Schroder in [95, 96] is related to the well-known Abel's equation introduced by 
Abel in [1]). This method was used by Sternberg in 1958 [102] to solve the 
functional equation F°G = G° ^q{F) (under the conditions |XX| > 1, |A1 |^ , + 1 

> |X |), ten years before Reich's papers. Poincaré studied in his 1890 paper 
[85] the functional equation F ° G = G ° F'(0) in the case where F is a rational 
map on Cp with rational inverse such that F(0) = 0, F(0) = kl, \k\ > 1. His 
method, "méthode des séries majorantes", gives in fact a local solution G if F 
is any local automorphism at 0 (in p complex variables) satisfying F(0) = 0, 
F'(0) = kl, \k\ > 1 (as mentioned above, this construction led Poincaré to 
discover in the same paper the existence of nondegenerate entire functions on 
Cp with nondense range). Calculations similar to Poincaré's were repeated by 
Bieberbach [11] and Stehlé [101] to solve the same functional equations. 

E. Picard studied some related functional equations in several papers [80, 81, 
82, 83]. In the first two he was interested in obtaining functions satisfying some 
"addition properties" with respect to a birational map Cp -> Cp, which are the 
/^-dimensional analogues of the solutions of Abel's equation. 

In [82, 83] he studied the functional equation F ° G = G < > F'(0) when F(0) 
is diagonalizable and when 0 is a repulsive fixed point for F. Unfortunately, 
his 1904 paper is not entirely correct. The subtle successive approximation 
method described in [83] works only if the eigenvalues \v...,\p of F'(Q) 
satisfy X. * X̂ 1 • • • X^ for 1 < i < />, nl9..., n > 0, nx + • • • +n > 2. In 
fact, if the above condition is not satisfied, i.e., if there is a "relation" between 
the eigenvalues, then no solution of the functional equation F°G = G ° F'(0) 
exists in general, even if we look only for "formal solutions" G, i.e., "solutions" 
given by series which might be divergent. This case was first treated by Leau in 
his magnificent 1897 thesis [67]. In the case where relations between X1?..., Xp 

do exist (with 1 < \XX\ < • • • < IX Î), he gets a formal solution of the func­
tional equation f ° G = G° B, where B is a polynomial automorphism of C7* 
which differs from Reich's normal form only by the fact that the linear part of 
B is given in a triangular form instead of in the Jordan form given by Reich 
[88]. Under a technical hypothesis he shows also that his formal solutions are 
actually the germs of analytic maps at the origin. Lattes gave in 1911 a 
complete solution when p = 2 [65] (but the most difficult case is already 
contained in Leau's paper). Sternberg's 1957 paper [102] solves the general 
case, giving a normal form similar to Leau's, which is slightly less precise than 
Reich's. 

If 0 is not repulsive for F, it is still possible to give a "formal normal form" 
which reduces to F'(0) when no relations between X1?..., X occur. In fact F 
can be uniquely written in the form F = S °T = T° S, where S is "formally 
diagonalizable" and T has a unipotent linear part. This fact can be deduced 
from the Jordan-Chevalley decomposition [57, Theorem 15.3] in algebraic 
groups, since the group g of formal maps F satisfying F(0) = 0, /(F)(0) ¥= 0 
can be written as a projective limit of algebraic groups. The normal form, 
which might not be a polynomial when infinitely many relations occur, is then 
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obtained by writing the diagonalizable factor S in a diagonal form Sl9 by a 
formal change of variables. The corresponding form 7\ of T has to commute 
with the diagonal map Sv This means that 7\ is linear if no relations between 
the eigenvalues of F'(0) occur, and that 7\ is a polynomial if there are only 
finitely many relations, which is always the case if 1 < |XX| < • • • < \Xp\. We 
thus obtain a formal normal form B = Sl°T1 for F, and a formal mapping G 
satisfying F <> G = G ° B. If F is the germ of an analytic automorphism with 
repulsive fixed point then it is possible to show that the series defining G 
actually converge over some neighborhood of the origin in Cp. Siegel showed 
in [99] that there is also, when p = 1, a germ G of an analytic automorphism 
at the origin satisfying F°G = G ° F'(0) if |F'(0)| = 1 and if F'(0) satisfies 
some diophantine condition, and a similar result holds in dimension p if the 
eigenvalues \l9...,\p of F(0) satisfy \\t - \"? • • • X"/| > (nx + • • • + np)~

v 

(1 < z < />, nx > 0 , . . . , np > 0, nl + • • • + np > 2) for some v > 0, see [92, 
103, 113] or [9, Chapter V]. We will not give further historical comments here, 
and we refer to a forthcoming expository paper [25] by B. Chevreau and the 
second author for a detailed presentation of the formal theory of normal forms 
via the Jordan-Chevalley theorem in algebraic groups and for further details 
about Picard's approximation method, a very powerful one despite the error in 
some statements of [83]. 

In general there is no germ G of an analytic automorphism at the origin 
satisfying F ° G = G°B, where B is the "formal normal form" described 
above, even if B is a polynomial or a linear map. There was recent interest in 
the theory of topological and analytical classification of such maps F, see 
Camacho [19], Martinet and Ramis [71], Sherbakov [97], and Voronin [107] in 
dimension one. See also Belitskii [12] and Russman [92] for higher dimensions. 
There is also a rich literature concerning real variable analogues of the 
functional equations discussed above, see Kuczma's book [63]. 

The theory of normal forms for germs of analytic automorphisms has a 
counterpart, the theory of normalization of differential equations (or the 
theory of normalization of holomorphic flows). The idea there is, by a suitable 
analytic change of variables, to turn some differential equations which present 
a singularity at the origin into linear, or at least into simpler differential 
equations. The seminal paper in this area is the thesis of Poincaré [84], and the 
counterparts of the "relations" described above are called "resonances". The 
connections between the two theories can be interpreted through an exponen­
tial map between the "infinite Lie group" g introduced above and its "infinite 
Lie algebra", see Sternberg [102,103], Arnold [9, Chapter V] and also Martinet 
and Ramis [71]. Poincaré's hypotheses exclude "resonances", which were first 
studied by Dulac [37]; there is also some recent interest in this area, see Bruno 
[17], Camacho [19], Camacho and Sad [20], Ecalle [40], Elizarov and Ilyashenko 
[41], Françoise [47], Malgrange and Martinet's talks at the Bourbaki seminar 
[68, 70] and Martinet and Ramis [71, 72], where further references can be 
found (see also Dulac [38]). 

The range of Bieberbach's original function is the set 
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where F is a polynomial automorphism. The theory of iteration of polynomial 
and rational maps is very complicated, even in dimension 1. The basic work in 
dimension 1 is due to Julia [58, 59] and Lattes obtained some results in 
dimension 2 in [66]. There is also a recent renewal of interest in this area, see 
for example Mane, Sad and Sullivan [69], Sullivan and Thurston [105] and 
Douady's talk at the Bourbaki seminar [35] where further references can be 
found. 

Denote by Aut^C^) the set of all analytic automorphisms of Cp of jacobian 
1. One heuristic consequence of the above discussion is the fact that Bieber-
bach's original map is the uniform limit on compact sets of a sequence of 
analytic automorphisms of jacobian 1. This leads to the following definition. 

DEFINITION 6.8. A Bieberbach function is an analytic map G: Cp -> Cp
9 with 

a 

nondense range, such that @ —> G for some sequence (0 ) of elements of 
n —* oo 

Aut1(C/?). The set of Bieberbach functions is denoted by B(CP). 
It follows from Corollary 6.6 that the original example of Bieberbach [11], 

Kodaira's function [61] and, up to a renormalization, Sadullaev's functions [93] 
satisfy the above conditions. 

It follows from Corollary 5.3 that Bieberbach functions are one-to-one, have 
jacobian one and that their range is a Runge domain. Moreover the range of 
such a function G is the set of all z ^ Cp such that |0„-1(z)| •+> oo. These 
observations will lead to a new method for constructing such functions, to be 
developed in §8. 

7. Iteration of entire mappings. We will first show in this section that for 
every sequence (Fn) of nondegenerate elements of J$?(CP, Cp) there exists 
G e JP(CP, Cp) such that (G ° Fl ° • • • o JFn)(C') is onto for every n > 1 (and 
if (Cp\ Fn)n>l is a projective system with Fn\ CPn+l -» CPn entire and 
Fi ° * ' * ° Fn n o t constant there exists G e J^(CP\ CPl) such that 
f l ^ ! ^ 0 ^ 0 ••• ° Fn)(C

Pn) is dense in CPl). The function G can be chosen 
arbitrarily close to the identity map with respect to the a-topology, but this 
result does not indeed give any information about C\n >x Fx <> • • • ° Fn(C

p) since 
these functions G are not one-to-one (they cannot be one-to-one if ^ ( C ^ ) is 
not dense in C^). We obtain as a corollary the fact, proved by Gauthier and 
Ngô Van Que in [49], that functions with dense range are dense in Jf?(Cp, Cq) 
and that surjective functions are dense in 3^(QP, Cp). 

We also study the relationship between F r ^ C ^ ) ) and ¥v((F1 ° F2)(C
P)) 

when Fx and F2 are entire and one-to-one. If K is a compact subset of ^ ( C ^ ) 
and if Fx is one-to-one there exists a Bieberbach function F2 such that 
F2(C

p) n FX-\K) = 0 , so that (Fx o F2)(C
P) nK= 0 . Using this observa­

tion it is easy to construct a sequence (Fn) of Bieberbach functions such that 
the interior of C\n>i(Fl © • • • o Fn)(C

p) is empty. What we show is that it is 
also possible to arrange that 

Fr[(Fxo . . . oF„)(C')] c F r [ ( F x . ••• ° Fn+l)(C»)] (n > 1). 

This follows from the fact that if F1 is one-to-one and if K is a compact subset 
of Fl(C

p), then there exists a Bieberbach function F2 such that Fr[Fl(C
p)] c 

Fr[(F t o F2)(C
p)] and (Fx o F2)(C

P) n K = 0 . The proof involves sequences of 
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elements of Aut^C^) which converge to the identity map with respect to the 
a-topology but whose elements map some sequences of large elements of C^ 
onto some very different ones. 

We conclude this section with the observation that, if G is Bieberbach's 
original function (or one of Sadullaev's functions [93]) there exists a bounded 
set B such that G~l(B) meets the range of every nonconstant entire function 
H: C2 -> C2. In fact there exists for every e > 0 a Bieberbach function F such 
that F(C2) n D(0,1) = 0 and such that (F<>H)(C2) O Z)(0,1 + e) # 0 for 
every nonconstant entire function H: C2 -» C2. So Bieberbach's original 
example and Sadullaev's examples are not good starts if one wants to construct 
a sequence (Fn) of entire functions over C2 satisfying (Fx ° • • • <> Fn)(C

2) Pi 
Z>(0, n) = 0 (« > 1) and there exist one-to-one entire functions i7: C2 -> C2 

such that 

f i (FoGlo...oG„)(C2)* 0 

for every sequence (Gn) of entire functions from C2 into itself. These results 
follow from the elementary computations of Proposition 6.7. 

We begin the section with two lemmas about entire functions of one 
complex variable, which follow from standard interpolation results and from 
Runge's theorem. 

LEMMA 7.1. Let (an) and (/}„) be two sequences of complex numbers, and let f 
be an entire function over C. If all the an are distinct, and if l i m i n f ^ ^ l a j = 
4- oo, then there exists a sequence (fm) of entire functions satisfying the following 
conditions. 

(2) For every m ^ 1, fm(an) — Pn when n is large enough. 

PROOF. For every m ^ 1 there exists qm G N such that an > m (n > qm). It 
follows from standard interpolation results [27, Exercise 5, p. 209] that there 
exists an entire function g such that g(an) = /}„ (n > 1). Also it follows from 
the theory of Weierstrass products that there exists an entire function h whose 
set of zeros is exactly the set { an }n > . For / > 1 denote by Pt the function 

Set M = sup | z K J / i (z ) | . Then 

sup \f(z)-g(z)-h(z)Pt(z)\ < M sup 
\z\ < w | z | < m 

Taking fm = g + hPi9 with i large enough, we obtain sup | z |< J / ( z ) - fm(z)\ 
< \/m and fm{an) = & (n > qj. So the sequence (fjm>1 satisfies the 
desired conditions. 

fU)-g(z) 
h(z) 

- PM 0. 
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LEMMA 7.2. Let (S2M) be a sequence of open discs in C with disjoint closures 
such that d(0, fi„) -> oo, let ƒ be an entire function and let (/?„) be a sequence 

of elements of C. There exists a sequence (fm) of entire functions satisfying the 
following two conditions. 

(2) For every m > 1, D(f$n, 1) c /W(S2„) when n is large enough. 

PROOF. Denote by 8n the radius of ÏÏ„, denote by an the center of ÖM, and 
denote by hn the functions z -» /?n + 2(z — an)/8n. We can construct a strictly 
increasing sequence (qm) of integers such that tin n D(0, m) = 0 (« > #w). 
For m > 1 set # m = (U M < ^â M ) U Z)(0, m). 

It follows from Runge's theorem that there exists a polynomial P0 such that 

| | 7 > o - / l k < V 2 » n , l | P o - A * l k < l / 2 

(qm < A: < qm+i). By a repeated use of Runge's theorem we can then construct 
by induction a sequence (Pi)i>1 of polynomials such that 

< 2" / _ 1 

(# m + / < fc < ^ w + / + i ) . It follows from the first condition that the series EyL0 ?j 
converges uniformly over compact subsets of C to an entire function fm. We 
havesup | r | < J / m ( z ) - / ( z ) | < 1/m, so that fmJ:^/• 

Also 
oo 

\\L-hkhk<2~i-l+ I I l^k+ 7<1 
y - i + i 

i f qm+i < * < ^m+i+i 0' > 0). So sup,^_a>i|.aJ/m(f ) - hn(£)\ < 1 for n > ^m. 
Since |A„({) - flj = 2 we have |/*„(£) - u| > 1 for |£ - a„| = 8„, \u - pn\ < 1. 
It follows then from Rouche's theorem that the equation fm(z) = u has a 
solution in Œ„ for \u - pn\ < 1. So D(j8w, 1) c /W(B„) (m > 1, AI > #w) and the 
sequence (fm)m>\ satisfies the conditions of the lemma. 

For / < p we denote by mt\ (xv...,xp)^xt and 7r(/): (XV. . . , x) -> 
( jq , . . . , x /_1, x / + 1 , . . . , x^) the canonical projections. 

LEMMA 7.3. Le/ (JC„) 6e a sequence of elements of Cp such that 
lim supw _> «J* J = +oo. There exists a sequence (&m)m>i of elements of SL (C) 
and a subsequence (xn ) of the sequence (xn) such that | |0m — 7|| -> 0 and such 
that liminï^JTTJ o @m(xn)\= + oo(m > 1, j < p). 

PROOF. We may assume without loss of generality that \^rk(xn)\ -> oo for 

some k < /?. Let 5 be a finite subset of {1,...,/>} containing k which is 
maximal with respect to the property lim suprt _+ ̂ (inf^ G 5 | Wy(x„)|) = + oo. There 
exists a subsequence (JC„ ) of the sequence (xn) such that \irrj{xn )| .̂ > oo for 

y e S". For every j £ S we have limsup/_+00|7r/(.xn )| < +oo. Define @m for 
m > 1 by the condition wy ° 0 m = wy (7 e 5), TT, °©w = ny + iTk/m (j £ S). 

I^lk+. 
>-/-! 

m 7 - 0 
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ThenDet0m = 1, ||0W - / ^ ^ Oand | ( V 0 J ( x „ ) | . - ^ 00 for every; < p. 

This proves the lemma. 

PROPOSITION 7.4. (i) For every sequence (xn) of elements of Cp such that 
\xn\ -> oo and for every countable subset S of Cp there exists a sequence 

a 

(<pm)m>i of entire functions from C p into itself such that <pm -» I and such that 
S^<Pm[{Xi}i>n] (n>l,m>l). 

(ii) For every sequence (D(xn,8n)) ofopen poly discs in Cp with \xn\ -> oo 
there exists a sequence (¥m)m>i of entire functions from Cp into itself such that 
tym -* I and such that 

m —• oo 

^J\J D(x„Ôi)) = CP (n>l,m>l). 

PROOF. Fix m > 1. In both cases it follows from Lemma 7.3 that there exists 
0 m e SL/7(C) such that sup|Z)<w |0w(z) - z\ < \/m and such that 
|(77 o 0 J ( i „ )| -> oo (j<p) for some subsequence (xn ) of the sequence 

(JC„), and we may assume without loss of generality that all the terms of the 
sequence ((ITJ ° ®m)(xn))i>1 are distinct for j < p. 

To prove (i) now consider a sequence (/?„) of elements of Cp such that 
fin = s for infinitely many values of n when s ^ S. 

It follows from Lemma 7.1 that there exist entire functions f l m , . . . , f m 

over C such that \fjym(z) - z\ < \/m (j < /?, \z\ < m) and such that 
(fj,m ° *j ° ®m)(xn) = *,(&) w h e n ' i s l a rB e enough (7 = 1 , . . . , p). Set Fm = 
(/i.m» •••»//,,!») a n d Vw^^m0®»,- T h e n Fmm~:oo

I s o t h a t ^ m ^ 0 0
/ and 

«PmC**,) = A w n e n i i s l a r § e enough. So S c <?„,[{>,},>„] for m > 1, « > 1. 
This proves the first assertion. 

To prove (ii), consider a dense sequence (fin)n>i in C77. There exists a 
sequence (M/)/>i °f positive real numbers such that the polydisc D(@m(xn ), juz) 
is contained in 0m(D(.xn ,8,.)) ( / > 1) and such that the closures of the 
discs (D((iTj0®m)(xn)9iii))i>1 are disjoint for j < /?. It follows then from 
Lemma 7.2 that there exist entire functions glm,..., g over C such that 
|gy m(z) - z| < 1/w (|z| < m, j < /?) and such that 

Z)(7T7( i8 I .) , l)cg j > l[i)((7r7o0m)(^ (), /x /)] 

when i is large enough (y < /?). Set Gw = (g1 ? m , . . . , g^m) and * m = Gm ° 0m . 
Then Gm -^ /, so that ^m -^ /. Also for m > 1 we have Z>(fr,l)c 

m —»• oo m - > ex 

^(^U*,^)) w h e n ' i s !arge enough, so that Cp a ^m(\Ji>nD(xi98i)) 
(n > 1, m > 1). This proves the second assertion. 

COROLLARY 7.5. (i) Let (Cp% Fn) be a projective system where Fn\ C
Pn+l -> 

CPn is entire and where F1° • • • ° Fn is not constant for n > 1. Then there exists 
a sequence (<pw)m>i of elements of Jf?(Cp\CPl) such that 

n (<pm° F^ • • • o f j ( c - o 
a 

is dense in C Pl for m ^ 1 and SWC/Ï f/ïâtf <pw -» J. 
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(ii) Let p > 1 and let (Fn) be a sequence of nondegenerate entire functions 
from Cp into itself. Then there exists a sequence {^m)m>\ in J$?(CP

9C
P) such 

that ^m ^ I and such that (¥„ <> Fx ° • • • o Fn)(C
p) = Cp (n > 1, m > 1). 

m —* oo 

PROOF, (i) Since (Fx o . . . o Fn)(C
Pn+l) is unbounded for n > 1, we can find 

a sequence (xn)n>l of elements of CPl such that \xn\ -> oo and such that 

xn^(Fl<> ••• o FW)(C/,|,+1) (n > 1). The first assertion then follows im­
mediately from Theorem 7.4 (i), when considering a countable set K C ^ 1 

which is dense in C^1. 
(ii) Since Fx © • • • « JFW is nondegenerate, the set 

{ z G C ^ ( F 1 o . . . o f J ( z ) H } 

is dense in Cp (n > 1). So the interior of (Fx ° . . . o Fn)(C
p) is unbounded for 

every w > 1, and we can find a sequence (£>(*„, 5„))n>i of open poly discs in 
Cp such that |JCJ ^ oo and such that D(x„, 8n) c (Fx <> •. • o Fn)(C

p) (n > 

1). The second assertion then follows immediately from Theorem 7.4(h). 

COROLLARY 7.6 (GAUTHIER - NGÔ VAN QUE [49]). 
(i) Functions with dense range are dense in Jf(Cq,Cp)(p > l9q > 1). 
(ii) Surjective functions are dense in Jf(Cp, Cp)(p > 1). 

PROOF. TO prove (i), set px=p, pn = q (n ^ 2), Fx = F, Fn = I (n > 2). If 
F is not constant, there exists a sequence (<pm)m>i in 3t?(Cp,Cp) such that 
<pw ^ I, and such that (<pm ° F)(Cq) is dense in Cp (m > 1). Since 

a 

wm° F -> F, this proves the first assertion, because nonconstant functions 
' AW —» 0 0 

are trivially dense in ^ ( C ^ , C*). 
To prove (ii), first consider a nondegenerate element F of Jf(Cp,Cp). 

Taking Fx = F, Fn = I (n > 2), we see that there exists a sequence ^ w of 
elements of Jf?(Cp, Cp) such that Vm ° F is onto and such that ^ m -^ /. So 

"* m -» oo 

^ o /r -> /r a n ( j r̂ c a n fce approximated by surjective elements of 
m m—> oo 

^ ( C 7 7 , C*) with respect to the a-topology. 
Also, by using triangulation, it is immediate to check that GL(C/7) is dense 

in End(C/>). Consider a degenerate function F G / ^ C ^ ) . There exists a 
sequence (Um) of elements of E n d ^ ^ ) such that \\Um\\ -^ 0 and such that 
J(F 4- Um)(0) * 0 (m > 1). So F + l/w -+ F and F + t/w is nondegenerate 
for every m > I. This concludes the proof of the second assertion. 

We now turn to the study of ¥r(F(Cp)) when F: Cp -> Cp is a one-to-one 
entire function. Since F(CP) is open we have l i m i n f ^ ^ l x j = + oo if a = 
\imn^O0F(xn) where a e Fr(F(C^)). Also, since Cp is separable, F r ^ C ' ) ) 
is separable and there exists an unbounded countable set S such that 
F i^^C^) ) c F(S). We wish to show that there are no restrictions concerning 
such sets S. More precisely we will show that given any unbounded set S there 
exists a one-to-one entire function G with the same range as F such that 
F r ( G ( C ' ) ) c G(S). 
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LEMMA 7.7. Let (xn) be a sequence of elements of Cp, with p > 2. Assume 
that for some i < p all the terms of the sequence (^i(xn))n>1 are distinct and that 
liminf^^^lTT^x^)! = +oo. Then for every sequence (un) of elements of Cp~l 

there exists a sequence (0W) of elements of Aut1(C/?) such that ^ ° 0 m = ^ 
a 

(m > 1), 0 m -* I and such that (7r ( i ) o0J(x„)= un eventually for each fixed 

m > 1. 
PROOF. Fix m > 1. There exists qm> I such that K(x«)l > m (n > qm). It 

follows from Lemma 7.1 that there exist entire functions (gjm)J<pj^i over C 
such that |g7,m(z)| < \/m (|z| < m) and (g y ,m°^)(^ n) = ^iun) ~ Wj(x„) 
(n > qm) for j < p, j ^ i. Define 0W: Cp -» C^ by the conditions irt ° 0 m = TT,-, 
17,- o 0 m — TTy 4- gy?m ° ^j . Then the sequence (0 m ) m > i satisfies the desired con­
ditions. 

COROLLARY 7.8. Let (xn) and (yn) be two sequences of elements of Cp, with 
p > 2. Assume that for some i,j < p all the terms of the sequences (^i(xn))n>l 

and 0 7 0„) )«>i are distinct and that l iminf^ JT7;(.X;„)| = l iminf^ J7r y . ( j j | 
= + oo. 

Then there exists a sequence (0m)m>i of elements of A\itl{Cp) such that 
a ^ 

0 m -> I and such that &m(xn) = yn eventually for each fixed m > 1. 

PROOF. First assume that i i= j . For n > 1, define z„ e C^ by the conditions 
7T/(zw) = ^i{xn\ 7r(/)(zn) = 7T(i)( yn). It follows from Lemma 7.7 that there exist 
two sequences (<pw) and (^m) of elements of Aut^C^) such that qpm -> /, 
^ m -> /, and such that <pm(xn) = zn and ^ ( X ) = )>„. So the sequence 

(0m ) = {^tm ° <pm) satisfies the desired conditions in this case. The general case 
follows, since when / =j we can use an auxiliary sequence (un) satisfying 
^ ( w « ) = « (« > 1) with /c # /'. 

LEMMA 7.9. Lef ((^^,„)M>i)^>i ^ # countable family of sequences of elements 
of Cp such that limsup„^00|x J = + oo (q ^ 1). 

77ïe« f/zere exists a sequence (0m) of elements of SL/>(C) swc/z //?<?/ 0m -* ƒ 
and such that limsup„^(inf,</; |(7r, o 0w)(x^ n)\) = + oo for every q > I. 

PROOF. For q > I denote by Qq the set 

r e S L / C ) | l i m s u p ( i n f | ( W l . o r ) ( j c , f J | ) = + *o 

Then ^ = n m > 1 ( U M > 1 { r e S L / Q l i n f ^ ^ K ^ o r X x ^ J I > m}\ so that B^ 
is a G8 subset of SL^C). But if T e SL^C), limsupn^ J T X ^ n ) | = + oo, and 
it follows from Lemma 7.3 that there exists a sequence (0W) of elements of 
SL„(C) such that 0W A ƒ and such that 0 m ° T e B (m > 1). So 8Ö is 

Z7 m —» oo ^ ^ 

dense in SL/;(C) (# > 1) and it follows from the category theorem that the set 
H ^ i B ^ is dense in SL/>(C). The result follows. 
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THEOREM 7.10. Let F: Cp -> Cp be a one-to-one entire function and let S be 
an unbounded subset of Cp, with p > 2. Then there exists a sequence (0m) of 

a 

elements of Aut^C^) such that 0m -* / and such that ¥r(F(Cp)) 
c ( F o 0 j ( S ) ( m > l ) . 

PROOF. Let (aq)q>l be a dense sequence in Fr(F(Cp)). For each q > 1 there 
exists a sequence (xqn) of elements of C^ such that aq = limn^00 F(xq n), 
and \x \ -> oo for each q > 1. Fix m ^ 1. It follows from Lemma 7.9 

that there exists <pm e SL/,(C) such that ||<pw - 7|| < \/m and such that 
limsupII^00Kwi°SP«,X^,w)l = + oo (g> 1). 

Define by induction a family (uqm)q>i of strictly increasing functions from 
N into itself satisfying the following conditions. 

W |("l ° V m ) ! ^ ^ ^ ^ ) ) | > |(*1 ° ̂ H ^ o y , ^ ' ) ) | 

If g + n > qr + «' or if q + « = q' + «', g > q'. 

(2) | K ° <Pw)(^,^w(«)) | > q + " (#i > 1, ? > 1). 

Then all the terms of the double sequence {{TT1 ° <pm)(xqu} m(»)))q>iyn>i are 
distinct and this double sequence has no limit point in C. There exists for some 
i < p a sequence {yn) of elements of S such that \irt(yn)\ -> oo and such that 

all the terms of the sequence ( 7̂  (>>„)) are distinct. We can rewrite the sequence 
(yn) as a double sequence (zqn)q>ln>l. It follows from Corollary 7.8 that 
there exists ^tm e A\xil(C

p) such that \^m(z) — z\< 1/ra (\z\ ^ m) and such 
that *m(zqtn) = <pm(xq^m{n)) for (q,n) e N 2 \ A m where Am is a finite 
subset of N2 . Set 0W = op"1 <> ^m . Then ©„, -> /. Also for every a > 1, we 

m * m rn m m _+ ^ 

have 

So F r ^ C ' ) ) c (Fo@m)(S) (m>l\ and the theorem is proved. 

COROLLARY 7.11. Let F: Cp -* Cp be a one-to-one entire function, and let K 
be a compact subset of F(CP), where p > 2. Then there exists a Bieberbach 
function G such that (F<>G)(CP) D K = 0 , Fr(F(Cp)) c Fr((F° G)(C')). 

PROOF. The set F~l(K) is a compact subset of Cp. Let £2 be a compact 
neighborhood of F~\K). There exists a Bieberbach function H whose range 
misses a neighborhood of the origin, and setting G(z) = nH(z/n) (z ^ Cp) 
with « large enough we obtain a Bieberbach function G such that G(CP) C\ti 
= 0 . Since G(CP) is unbounded it follows from the Theorem that there exists 

a 

a sequence (0W) of elements of Aut^C^) such that 0W -> / and such that 
Fr(F(C')) c ( F o 0 m o G ) ( C ) (m > 1). Since ( f o 0 w o G)(<y) c F ( C ) , we 
obtain 

F r (F(C ' ) ) c Fr ( (Fo0 m oG)(C^)) (m > 1). 
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Since @m -^ I, <èm
l - i ƒ. So %~\F~\K)) c 0, hence (0 » G ) ( C ) n 

F - 1 ( AT) = 0 for large values of m. So the Bieberbach function Bm ° G satisfies 
the desired condition for large values of m. 

COROLLARY 7.12. Let Fx: Cp -> Cp be a one-to-one entire function. There 
exists a sequence (Fn)n>2 of Bieberbach functions such that 

r\ (Fi° - - - * w) 
has empty interior and such that 

F r ( ( F l 0 ••• o F „ ) ( C ) ) c F r ( ( F 1 o . . . . f , + 1 ) ( C ' ) ) (n>\). 

PROOF. By a repeated use of Corollary 7.11 we can construct by induction a 
sequence (Fn)n > 2 of Bieberbach functions such that 

Fr[(F\ o . . . o F„)(C)] c Fr[( ^ o . . . o F„+ 1)(C')] (« > 1) 

and such that (Fx ° • • • ° T^XC') n A"„_i = 0 (« > 2), where 

^ , = { z e ( f 1 o . . . o F , ) ( C ^ ) M ( z ) F r [ ( F 1 o . . . o f j ) ( C O ] ) > y , | z U / } . 

Clearly, the interior of C\n>l(Fl° • • • «F^XC77) is empty, and the sequence 
(Fn)n>2 has the required properties. 

A natural idea for constructing a sequence (Fn)n>l of entire mappings 
Cp -> C 7 such that C\n>l(F1 o . . . o F ^ C 7 ) = 0 would be to try to construct 
by induction the sequence (Fn) so that (F1<> ••• o FJ(C2) n Z>(0, n) = 0 
(/? > 1). When /? = 2 we can take Fx = 0 ° F° ^ , where F is any of the 
functions constructed in §6 and where © and ^ are suitable affine automor­
phisms of C2 (for all examples except Fatou's a suitable choice of 0 and ^ 
even ensures that Fx is a Bieberbach function). But the following result shows 
that Bieberbach's original function and Sadullaev's functions would be a bad 
start for such a construction (the notations below are the same as in §6, so that 
k e C, \k\ > 1, J E C [ I ] , d°j>29 y(0)=/(0) = 0, and # > 0 satisfies 
\M)\ >(k + l)l€l whenever f G C, |£| > tf ). 

THEOREM 7.13. (i) For euery g > 1 and for every nonconstant entire mapping 
H: Cq -> C2 we have (GkJ ° H)^) n Z)(0, K) # 0 . 

(ii) For e^ery sequence (Fn) of nondegenerate entire mappings from C2 mto 
/tee//, we /ztf i;e 

7 r , ( n ( G , J o F 1 o . . . 0 F „ ) ( C 2 ) ) = C (i = l ,2) . 

(iii) For ei>ery sequence (Fn) of entire mappings from C2 into itself we have 

r u x ^ - ^ o . . . 0 FJ(C 2 )# 0. 
PROOF. It follows from Proposition 6.7(i) that \zx\ < max(AT, |z2|) for every 

z = (zx, z2) e GkJ(C
2). If (G*>y. o i/)(C«) n £(0, i ^ ) = 0 w e have 

| (7 r 1 oG^.o7f ) (z ) |<max(^ , | (7 r 2 oG, , 7 o/ / ) (z ) | ) 



162 P. G. DIXON AND J. ESTERLE 

and 

m a x ( | ( 7 7 1 o G , J o / / ) ( z ) | , | ( 7 7 2 o G , J o i / ) ( z ) | ) > ^ 

so that |(TT2 O Gkj ° H)(z)\ > K (z G C*). It follows then from Picard's theo­
rem that 7T2 ° Gfc • o /f is constant. So ^ © Gfc • <> H is bounded, hence constant 
too. Since GA y is one to one, H is constant, which proves (i). 

To prove (ii), notice that Fx ° • • • © Fn is nonconstant for every n > 1. 
Hence ^ 2 ° ^ / ^ ° ' ' ' ° ^ *s n o t constant, by the same argument as above. 
Since the sequence (GkJ°Flo • • • ° Fn)(C2) is decreasing there exists a e C 
such that C \ {a} c (TT2 o G^ y o ^ o . . . o F„)(C2) (n > 1), by Picard's theo­
rem. So for every £ e C \ {a} and every n > 1 there exists .*„(£) e C such 
that (*„(£), £) e (G*,, o FX o . . . o F„)(C2). Also |*„(OI < max(#, |£|) so the 
sequence (xn(£)) possesses at least one limit point x(£) for every £ e C \ {a}. 
Since the sequence (GkJ°Fl° • • • <> Fn)(C2) is decreasing we have 

(*(«) .*) e ( G A . > . F 1 o . . . . F ) i ) ( C 2 ) ( / i > l , * # a ) . 

But since |x(£)| < max(/(:, |||) (£ e C \ {a}), there exists x(a) G C such that 

(*(«) ,«) e f l ( G , , ; o F 1 o . . . o f n ) ( c 2 ) , 

and 

"if n (^•"^••••°^)(c2)) = c. 

The fact that it$\n>x (GkJ°Fl° • • • o Fn){C2)) = C follows from Proposi­
tion 6.7 (ii) by similar arguments. To prove (ii) we only used the fact that 
^i ° ' ' * ° Fn *s nonconstant for every n > 1. But if Fx ° • • • ° Fn is constant 
for some n > 1, (GkJ

oFlo • « • o Fm)(C2) reduces to the same singleton for 
every m > n, and the fact that assertion (iii) holds is obvious in that case. 

We conclude this section with the following result, which follows also from 
Proposition 6.7. 

THEOREM 7.14. For every e > 0, there exists a Bieberbach function F over C2 

which possesses the following properties. 
(i) F(C 2 )nD(0, l ) = 0. 
(ii) For every q ^ 1 and for every nonconstant entire mapping H: Cq -> C2, 

(F°# ) (C«)nZ>(0 , l + <0* 0 . 

PROOF. Set G = G2 ^2, say, so that we can take 1£ = 3. We may assume 
without loss of generality that e < 1, and G is a Bieberbach function. Also 
\zx\ < max(3, |z2|) for every z = (zx, z2) G G(C2). Set a = e/9, 6 = 1/3, and 
G1 = 0 ° G ° 0 ~ 1 , where 0 is the linear map (zx, z2) -* (azvbz2). Then 
GX(C2) = (0oG)(C 2 )sothat 

I z\ I max (e/3,e|z2|/3) 
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for every (zl9 z2) e GX(C2). Consider the polydisc 

A = {(zl9z2) e C 2 | |zx — 1 — 2e/3 | < 1, | z 2 - 1| < l } . 

If (zl9 z2) e A then \zx\ > 2e/3 and |z2| < 2 so that A n GX(C2) = 0 . Now 
consider an entire mapping H: Cq -> C2 such that sup(|z1 - 1 - 2e/3|, 
|z2 - ID > 1 + e for every (zv z2) e (Gx o H)(Cq). Then |zx| > e/3 or |z2| > e 
for every (zl9 z2) G (Gx ° H)(Cq). In the first case we must have |z2| > 1, so 
that (7T2°Gl° H)(Cq) is not dense in C. So 772°G1o// is constant and 
<nl°Gl° H is bounded, hence constant too. So i / is constant if (Gx ° H)(Cq) 
avoids the polydisc of radius 1 + e centered at the point (1 4- 2e/3,1). Denote 
by T the translation (zl9 z2) -> (zx - 1 - 2e/3, z2 - 1). Then F = T ° Gx pos­
sesses the required properties. 

We did not investigate whether there is a bounded set B such that G~l{B) 
meets the range of any nondegenerate (or nonconstant) entire mapping 
H: C2 -> C2 in the case where G is Fatou's original function, or Kodaira's 
function. 

In fact we do not know for any p > 2 whether there exists a nondegenerate 
function G: Cp -* Cp with nondense range such that for every bounded subset 
B of Cp there exists a nondegenerate entire function HB: Cp -> Cp satisfying 
HB(CP) n G~l(B) = 0 (for a description of classes of sets which meet the 
range of any nondegenerate entire mapping Cp -> Cp we refer again to 
Carlson and Griffiths [21], Griffiths [51] and Gruman [52]). 

Note that if F: Cp -> Cp is nondegenerate, and if F(Cp) is contained in a 
pseudoconvex open set U such that 

liminf d(z9FrU) > 0, 
|z|->oo 

then there exists K > 0 such that (F°G)(CP) C\ D(09 K) * 0 for every 
nondegenerate mapping G: C^ -> C^. To see this, note that the function 
z -* -log(J(i7[G(z)], Fr£/)) is plurisubharmonic and nonconstant over Cp

9 

hence unbounded. So there exists a sequence (zn) such that d(F[G(zn)]9 

FrU)-*0 and \F[G(zn)]\ < # eventually if 

inf d(z9¥rU)>0. 
\z\>K 

Z G F ( C ) 

But we were not able to find a concrete example of such a pair (F9U). 

8. New examples of Bieberbach functions. In this section we present a new 
method of constructing Bieberbach functions. The method is suggested by the 
results of §5, and consists in producing sequences (0w)w>i of elements of 
Autx(C2) which converge uniformly on compact sets to a Bieberbach function 
F and satisfy |@~1(2r)| -> oo ( Z G A), where A is some "large" set, so that 

n-* oo 

F(C2) O A = 0 . We thus obtain a Bieberbach function Fx such that FX(C2) 
Pi (Ux U Vx) = 0 and a Bieberbach function F2 such that Vx c F2(C2), 
F2(C2) nUx= 0 , where ^ = {(x9 y) e C 2 | inf (Rex, Re .y) > 1}, Vx = - ^ . 
This leads to the construction of a nondegenerate entire function Ge: C

2 -> C2 
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such that 

G t ( C 2 ) n ö ( 0 , l - e ) = 0 , 

i n f ( t a ( z ) | , | * 2 ( 2 ) | ) < l (2 6 6,(C2)), 

lim [ in f (K 1 (z ) | , | f f 2 (z ) | ) ]=0 , 
|z|-*oo 

z e G e ( C 2 ) 

where e is any given element of (0,1). 
Heuristically, this means that there exist nondegenerate entire functions over 

C2 whose ranges are very "small". The second condition implies of course that 
(Geo H)(C2) Pi Z)(0,2) # 0 for every nonconstant entire function H: C2 -> 
C2, but similar results were obtained in §7 for some Bieberbach functions. 

In the other direction we construct for every e > 0 an entire function 
He: C

2 -> C2 such that H£(C
2) n D(0,1) = 0 and such that C2\H£(C

2) c 
Z)(0,1 4- e). Moreover, the number of elements of H~\{z}) is bounded for 
every z G C2 by an integer which depends on e (of course, as observed in §4, 
these functions He cannot be one-to-one). 

The key to the constructions is a deep theorem of Arakelian about entire 
functions of one complex variable. Denote by C^ = C U {oo} the Riemann 
sphere, and let V be a closed subset of C such that C^ \ V is connected and 
locally connected at {oo}. Arakelian's theorem (see [6 or 48, Theorem 1]) 
shows that any function ƒ : V -> C which is continuous over V and analytic 
over V can be uniformly approximated over V by entire functions. In fact if <o 
is a positive-valued continuous function over R+ such that 

r00 I log co ( / ) I , 

it follows from a result of Arakelian and Gauthier [7, Corollary 5] that there 
exists an entire function g over C such that | f(z) - g(z)| < <o(|z|) for every 
z e V. This leads to the following lemma. 

LEMMA 8.1. Let (av . . . , a2n) be a strictly increasing family of real numbers, 
and let a l 5 . . . , an + l be complex numbers. Set Vx — (z e C |Rez < ax), Vt = 
{ z e C | f l 2 i _ 2 < R e z < f l 2 M } (2 < / < w), Vn+1 = {z G C |Rez > a2n}. 
Then there exists a sequence (fm) of entire functions over C such that 

sup \fm(z) -at\e^ -> 0 (1 < / </ i + 1). 
\ s i \ m-* oo 

PROOF. Set V = Vx U • • • u Vn + V Then C^ \ V is connected and is locally 
connected at (oo). Now define g: V -> C by the conditions g(l^) = {a,} 
(1 < / < n + 1). It follows from the Arakelian-Gauthier theorem that there 
exists for each m > 1 an entire function fm over C satisfying \fm(z) - g(z)\ ^ 
e~|z| /m for every z G F, and the result follows. 

For a G R set [ / f l ={zG C2|inf [Revr^z), Re?72(z)] > a}. The following 
lemma is a crude application of Lemma 8.1. 
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LEMMA 8.2. Let a > 0. There exists a sequence (&m) of elements of Aut^C2) 
which possesses the following properties. 

(i) suP|z|<jiem(2) - z\ + \em\z) - z\]m^x o. 
(2) em(t / a + 1) c Ua+2, ®m(-Ua+l) c -Ua+1 (m > 1). 

PROOF. We apply Lemma 8.1 with 
ax = -a — 1, a2 = -a — \, a3 = a + \, a4 = a + 1, 

a1 = -2 , a2
 = 0, a3 = 2. 

Let (/m) be the sequence of entire functions given by the lemma. We may 
assume that Reƒ„,(£) > 1 (Re£ > a + 1), Re/W(£) < -1 (Re£ < -a - 1), 
| / m « ) | < i (|Re€| < « + i) for every m > 1. 

Define 0m : C2 -> C2 by the formula ©m(z1? z2) = (wl5 u2) where ux = zx + 
fm^l\ «2 = *2 +/«("l)- T h e n ©m G Aut^C2). AISO S'\ul9U2) = (*1, *2) 
where z2 = w2 - fm(ux\ zx = wx - fm(z2). If (zl5 z2) G Ua+l then Rewx > 
# + 2, hence Re/W(w1) > 1, and so Re«2 > a + 2 and ®m(£/a+1) c £/a+2. 
Similarly ©m(-£/a+1) c -£/fl+2. Now if |(zl5 z2)| < a then IRew-J < a + \ and 
so 

| 6 m ( z l » Z 2) " ( * 1 , * 2 ) I < SUP | ƒ„ , (£) |. 
|Re£|<a + l /2 

Also IRe/JzOI < i , |Re(z2 - fm(zx))\ < a + ^ and so 

Kl{Zl,Z2)-(*l,*2)\< SUp | / m ( É ) | . 
|Re£|<a + l /2 

So the sequence ( ö w ) w > i satisfies the desired conditions. 
Form > 1, Fejr(C^,C / ,),wesetasbefore| |JF| |W I = sup | z |< JF (z ) | . 

LEMMA 8.3. Let p > 1 tf«d let (Fn)n>l be a sequence of entire mappings from 
Cp into itself. If E^LJI/ — Fn\\m < + 00 for every m > 1, then the sequence 
(Fl ° • • • ° F „ ) O 1 converges uniformly on compact subsets of Cp to an entire 
mapping F: Qp ̂  Qp. 

PROOF. Fix m > 1. There exists nx> 1 such that E£L„i + 11|7 - FJ | m + 1 < 1. 
Let z <= Cp such that |z| < m. If « > «x 4- 1 then 

\FH(z)\<\z\ + \\I-Fjm<m+\\l-Fjm+1<m + l. 

A routine finite induction shows that 

\(Fko . . . o F j ( z ) | < m + I | | / - F j m + 1 < m + l 

(wx + 1 < k < «). Hence ||F„i + 1o • • • ° Fn\\m < m + 1 (/i > ̂  + 1) and so 
suP«>ill^i ° • • • ° Fn\\m < + 00 for every m > 1. We thus see that the family 
(Fx ° . . . o Fn)n>l is a normal family, and so for every m > 1 there exists 
Xw > 0 such that 

l(fi Ü ( O I < ^ ( |« |<m,n>l) . 
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Consider again m > 1. There exists p > m such that \\Fn\\m < p (n > 1), and 
so K ^ ° ••• »FHy(z)-(Flo ••• • FH + 1Xz)\ * \p\z - Fn+l(z)\ (\z\ < m, 
« > 1). So 

00 

I | | (F 1 o. . . .F„) - ( / ' 1 o. . . .F ) 1 + 1 ) | | # I 1 < + <* ( w > l ) 

and the series Fx 4- H^>
=i(Fl ° • • • ° Fw + 1 — F1 ° • • • ° Fn) converges uniformly 

on compact subsets of e77 to an entire mapping F. We have 
f o . . . o F A F, which proves the lemma. 

" n - > co 

THEOREM 8.4. T/zere awtó « Bieberbach function F over C2 such that 
in^Rez^ Rez2) < 1, sup(Rez1, Rez2) > -1 for every (z1? z2) G F(C2). 

PROOF. By using Lemma 8.2, we can construct for every « > 1 an element 
<p,t of Autx(C2) such that 

II' - ^ l . - i < 2-", <P„(U„ U(-U„)) c Un+1 U(-[/„+ 1). 

Set <ï>„ = <p~l. It follows from lemma 8.3 that the sequence (Q>1 o . . . o $n)n>1 

converges uniformly on compact subsets of C2 to an entire mapping F. 
We have (Q;1 o . . . o ^l)(Ux U ( - t / J ) c Un+l U (-t/n+1), and so 

for every z G ^ u ( - ^ ) - S o ^(C2) n (^i u (~^i)) = 0- Clearly, F is a 
Bieberbach function, and the theorem is proved. 

COROLLARY 8.5. Let e G (0,1). There exists an entire function Ge: C2 -> C2, 
with J(GE)(z) # 0 for every z G C2, which possesses the following properties. 

( l ) G 6 ( C 2 ) n D ( 0 , l - e ) = 0 . 
(2) irx(Ge(z)) # 0 am/ 772(Ge(z)) # 0 /or e^ry z G C2. 
(3) infdwj, |w2|

1 + e|w1|) < 1 and inf(|w2|, |Wi|1 + e|w2l) < 1 for every (wi> ui) G 

Ge(C
2). 

(4) inf(|Wl|, |II2D < 1 for every (uv u2) G Ge(C
2) and 

mf(MfO|,|ir2(iO|) - 0 
|w|-+oo 

for every u G Ge(C
2). 

PROOF. Let F be a Bieberbach function which satisfies the conditions of 
Theorem 8.4. There exists an affine map Le over C2 such that Fe = (Le <> F)(C2) 
satisfies the following conditions. 

(a) If (zx, z2) G Fe(C
2), Rez2 > 0 then 

(1 + e)Rez1 + Rez2 < 0. 

(b) If (z l5 z2) G Fe(C
2), Rezx > 0 then 

(1 + e)Rez2 4- Rezx < 0. 

(c) If (zx, z2) G Fe(C
2), Rezx < 0, Rez2 < 0 then 

sup(Rez1?Rez2) ^ log(l - e). 
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Set <p(z) = (e^z\ e^z)) (z G C2) and set Ge = <p o Fe. If (zx, z2) e Ge(C
2) 

then (IzJ, |z2|) = (eR e i \eR e t / 2X where (w1? u2) G Fe(C
2). Clearly, Ge satisfies 

(1), (2), (3). Assertion (4) is an immediate consequence of (3). 
REMARK 8.6. (1) We have Fe(C

2) n Z)(0,1) = 0 and (F e °# ) (C«)n 
D(0,1/(1 — 2e)) # 0 for every nonconstant entire function H\ Cq -> C2 

and every g > 1, where Fe = 1/(1 — e)Ge. This follows from the fact that 
Fe(C2) c {(Zl, z2) G C^infdzJ, |z2|) < 1/(1 - e)}. So if (Fe<> H)(C«) n 
Z>(0,1/(1 — 2e)) = 0 the connected set (Fe ° H)(Cq) must be contained either 
in the set {(zv z2) G C 2 | |ZX| < 1/(1 - e), |z2| > 1/(1 - 2e)} or in the set 
{(z1? z2) G C 2 | |z2| < 1/(1 - e), |zx| > 1/(1 - 2e)}. In both cases it follows 
from Picard's theorem (or simply from Weierstrass's theorem) that 77̂  ° Fe<> H 
and 7T2° Fe° H are constant, so that H is constant since Fe is locally one-to-one. 
But similar properties were already obtained in Theorem 7.14 for some 
Bieberbach functions, which are one-to-one. 

(2) We can choose the affine map Le introduced above so that Fe = Le° F 
satisfies the condition 

(c') (1 + e)Rez2 4- Rez! > (2 4- e)log(l - e) if (z1? z2) G Fe(C
2), Rezx < 

log(l - e) and (1 4- e)Rez1 + Rez2 > (2 + e)log(l - e) if (z1? z2) G Fe(C
2), 

Rezx > log(l - e). 
So it is possible to obtain in Corollary 8.5 the extra condition 

(5) sup(|w2| + e |wiU"il + V i l ) > (1 ~ <01 + 2e 

forevery(M l ,W 2)GGe(C2). 
Condition (5) shows that Ge(C

2) avoids then a neighborhood of the set 
A = {(zx, z2) G C2|7T1(z) • 7T2(z) = 0}, which is the union of two complex 
lines. 

In a recent paper [77, Example 5], which reached the authors after this work 
was completed, Nishimura produces, for every a > 0, an entire mapping 
Ha\ C2 -> C2, with nonvanishing jacobian, whose range avoids A U D(0, a). 

On the one hand condition (5) above is stronger than Nishimura's condition. 
On the other hand if we take a = e -1 then we obtain infdwj, |w2|) < e for 
every (wl5 u2) G ( ^ o Ha)(C

2), where Ha is Nishimura's map and >F is the map 
(z1? z2) -> ( l /z 1 , l / z 2 ) . (Nishimura's construction also uses Arakelian's theo­
rem.) 

(3) Bloch's theorem shows that if ƒ : D(0,1) -* C is an analytic function of 
one complex variable such that /'(0) = 1 then f(D(0,1)) contains an open disc 
of radius AT, where K is the Bloch constant, which does not depend on ƒ (see 
[27, Chapter 12, Definition 1.8]). Corollary 8.4 shows that this phenomenon 
does not hold for analytic functions of two complex variables. Consider for 
example the function G1/2 given by Corollary 8.5. For every TJ > 0, there exists 
a linear map Lv such that (r}(Gl/2 ° Lv))'(0) = ƒ, but [r](Gl/2<> LV)](C2) is 
contained in the union of two polycylinders of radius 17, so that 
[TJ(G 1 / 2 O LV)](C2) does not contain any polydisc of radius greater than 17. 

(4) In §4, we made the obvious observation that the volume of F(CP) is 
infinite if F: Cp -* Cp is a one-to-one entire function. On the other hand, a 
routine computation that we omit shows that m(Ge(C

2) n D(0, r)) = 0{r2e) 
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where Ge is the function given in Corollary 8.4. It seems very likely that the 
volume of F(CP) is infinite for every nondegenerate entire function from Cp 

into itself, but the authors have not been able to prove this. 
It is nevertheless possible to modify the function G£ given by Corollary 8.5 

to arrange the volume of one of the branches of the image of C2 to have finite 
volume. For example take e = \ and consider the function H = ^ ° G 1 / 2 , 
where ^ is the function (zl5 z2) -> (z2, z2). If (ux, u2) ^ H(C2), with \u2\ > 1 
then (uv u2) = (v2, u2) where \u\3/2 • \u2\ < 1 so that \ux 

m[H(C2) n{z <E C2\ \ir2(z)\> l}] < 4 T T 2 | 1 t 

i2\ < 1. So 

I sds dt 

< 2TT2 f rl/2dt < +oo. 

We thus see that H(C2) = Ux U U2 where [ / ^ { z e H(C2)\ K ( z ) | < 1}, 
U2= {z e H(C2)\ |TT2(Z)| < 1}, and where m ^ ) < +oo. Since infflw^z)!, 
|TT2(Z)|) —> 0, z G H(C2), we even have 

m({z G / / ( C 2 ) | |TT 2 (Z) |> TJ}) < +oo 

for every 17 > 0. 
Now we wish to produce a Bieberbach function F whose range avoids Ul 

but contains -Uv In order to get some qualitative information about the 
inverse images of bounded sets for F, we give an application of Lemma 8.1 
which is more precise than the one given in Lemma 8.2. We set p(z) = 
infflw^z)!, |ir2(z)|)forz e C2. 

LEMMA 8.7. Let a, b, \, n be four real numbers, and let 8 > 0, 17 > 0. There 
exists 0 G Aut1(C2) which possesses the following properties. 

(1) | 0 ( z ) - z + ( A , i u ) | < r ? e - ^ z ) 1 / 4 

for ReTr^z) > a + 8, Rew2(z) > b + 8. 

(2) | 0 ( z ) - z + ( A , O ) | < r ? e - ^ ) 1 / 4 

/or Re7T1(z) < a — 8, Re7r2(z) > 0 — ju, + 8. 

(3) | 0 ( z ) - z + ( O , M ) | < ^ - ^ > 1 / 4 

/or R e ^ ( z ) > a + 8, Re?72(z) < 6 - 8. 

(4) | 0 ( z ) - z| < TjéTp(*)1/4 /or Reir^z) < a - 8, Re7r2(z) < b - /x - 8. 
PROOF. We may assume without loss of generality that TJ = 8. It follows 

from Lemma 8.1 that there exist a sequence (^ ) of entire functions over C 
1/4 

such4that \fp(£)\<e-M'/p ( / > ^ l , R e £ < 6 - ^ - 8 / 2 ) , !ƒ,(«) - X| < 
£ '*' /p (p > l,R.e è > b — p + 8/2) and a sequence (g ) of entire functions 
over C such that \gp(t)\ < e~^/4/p (p > l ,Re* < a - 8/2), |g/,(£) - p| < 
e~^|1/4//? (/? > 1, Ref > a + 8/2). Denote by 0^ the map (z1? z2) -> (Ü1? U2) 
where u2 = z2 - gp{zx), vY = zx - fp(u2). If Rezx > a + 8/2 then 

and if Rezx < a — 8/2 then 

k-* 2 HM*i) |<*- p ( ° //> 
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So if p > 2/8, Rezx ^ a + 6/2, Rez2 > 6 + 8 then Reu2 > b - /x + 8/2, 
\fP(v2) - A| < e~^/A/p, hence 1^ - zx + X| < e~^1/4/p. Since |t;2| > \z2\ -
|/x| - 1 and since tl/4 - (t - |/i| - 1)1/4 -> 0, we obtain 

r-»oo 

\ep{z) - z + (X, / i ) |< ke-rt'^/p, 

where /c > 1 is some constant. So condition (1) is satisfied by ®p when 
p > 2k/8. Similar considerations show in fact that the four conditions are 
satisfied by 0^ when p is sufficiently large. This proves the lemma. 

The following lemma will enable us to avoid some tedious computations in 
the proof of the next theorem. 

LEMMA 8.8. Let r > 0 and let F: D((0,0), r) -> C2 be a continuous map. If 
\F(z) — z\ < rfor every z G D((0,0), r ) , then there exists u G D((0,0), r) such 
thatF(u)= (0,0). 

PROOF. Since Z)((0,0), r) is compact and convex, this follows from the 
Brouwer-Schauder-Tychonoff fixed point theorem [39, Theorem 5.10.5] applied 
to the map z -> z — F(z) of Z)((0,0), r) into itself. (Note that for analytic 
maps the result follows easily from Rouché's theorem.) 

THEOREM 8.9. Let e G (0,1/2). Set 

A = (z G C2|Re7T2(z) = Ö } U { Z G C 2 | Re TT^Z) = 0,Re7r2(z) > 0} 

u { z G C2|Re7T1(z) < 0, Re7T2(z) G N } 

u { z G C2|Re7T2(z) < O^Rew^z) G N}. 

Set 

B = {z G C2|Re7T2(z) 4- 1 G N, R e ^ z ) < Re7r2(z) + 1} 

u { z G C2|Re771(z) G N, Re?72(z) < Revr^z)}. 

We= ( U {z G C 2 | |Re772(z) - £ + l | < e/2*, R e ^ z ) < k}\ 

u ( (J {* G C 2 | iReTr^z) - f c | < e/2*,Re7r2(z) < A:}] 

uf (J (z G C21A: - e/2 < Re772(z) ^ k, k ^ R e ^ z ) < fc + l } | 

u ( (J (z G C2|Â: - e/2 < R e ^ z ) < k9 k - 1 < Re772(z) < fc}]. 

Setti = (z G C 2 \ , 4 | inf(Re^(z), Re TT2(Z))< 0}. 
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Let S: C2\B -> C2 and T: fi -> C2 be the maps defined by the formulae 

S(z)=T(z) = z 

S(z) = z -(k,0) 

S(z) = z-(0,k) 

T(z) = z+{k,0) 

T(z) = z+(0,k) 

( R e ^ z ) < l,Re7T2(z) < 0 ) 

(Re7T1(z) < k, k - 1 < Reir2(z) < k, 

(k < Re7T1(z) < k 4- l,Re7r2(z) < k, 

(Rew^z) < 0, k - 1 < Rew2(z) < k, 

(k < Rew^z) < k + 1, Rew2(z) < 0, 

k>\) 

k>\) 

k>\) 

k>\). 

Then there exists a Bieberbach function F: C2 -> C2, which possesses the 
following properties. 

(1) If Reff^z) > e, Re772(z) > e, rte/i z £ F(C2). 
(2) / / z e fi, andifd(z, A) > e, r7*e« z e F(C2), and \F~\z) - T(z)\ < e. 
(3) Ifz e C 2 \ W£, then |F(z) - S(z)| < e. 
(4) / / ^ ( z , ,4) < e, W z / z G F(C2), then d(F~\z\ B) < 2e. 
(5) If d(z, B) < e, then d(F(z\ A) < 2e. 
(6) F - x ( A ) c fl/U r ( A f O Û ) , where A £ = ( z G C 2 | < / ( Z , A ) < e), /or ev­

ery subset A of C2. 
(7) ƒƒ A is a bounded subset of C2, z7ze« z7*e sef 

(z e F-1(A)|max(Re771(z),Re772(z)) < a) 

is bounded for every a e R. 

PROOF. Notice that S ( C 2 \ £ ) = fi, T(ti) = C2\B and that T = S~\ As­
sume that an entire mapping F: C2 -> C2 satisfies (1), (2), (3). If u e F(C2), 
d(u, A) ^ 2e, then it follows from (1) and (2) that d(F~\u), B) > e. So if 
d(z9 B) < e, then d(F(z), A) < 2e. Also if d(u, B) > 2e then it follows from 
(3) that d(F(u\ A) > e. So if z e F(C2), and if d(z, A) < e, then 
d(F~l{z\ B) < 2e. This shows that F satisfies (4) and (5). 

Now let A be a subset of C2. If z e F~l(A\ z £ We, then \S(z) - F{z)\ < e. 
Hence S(z) e Ae. Since S(z) e fi we obtain z = T(5(z)) e T(Ae O fi). Hence 
F\A) a W£U T(Ae n fi), and so F satisfies (6). 

It follows easily from Lemma 8.8 that if F is a one-to-one entire mapping 
which satisfies |F(z) - S(z)\ < e/2 for z e C 2 \ We9 then F satisfies (2), but 
it does not seem that this stronger version of (3) is sufficient to obtain (1) 
directly. 

We now construct the required function F. For n > 1 let ®„ be an element 
of Autx(C2) which satisfies the conditions of Lemma 8.7 with X = JU, = 1, 
û = & = /i, 8 = TJ*= e/2n+\ 

It follows from condition (4) of Lemma 8.7 that 

Ë l l ' - © J L < 7 ^ (m>l). 
n=m+2 L 

It follows then from Lemma 8.3 that the sequence (Fn)n>1 = 
( 0 l O . . . °<èn)n>l converges uniformly over compact subsets of C2 to a 
one-to-one entire mapping F: C2 -> C2. 

file:///F~/z
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For n > 1 set 

An = {z e AIRQTT^Z) < «,Re7r2(z) < n - 1} 

u { z e C ^ R e ^ z ) = 0, Re7r2(z) > « - l} 

u { z e C^ReTr^z) ^ «, Re772(z) = 0}, 

and set 

fiM={ze ^IReTr^z) < H,Re7r2(z) < n - 1} 

u { z e C ^ R e ^ z ) = «,Re7r2(z) > « - 1} 

u { z G C2 |Rew1(z) > «,Re772(z) = « } . 

We define S„: C 2 \ B n -> C2 and Tn\ C
2\An^ C2 by the formulae 

Sn(z) = z — (« ,«) ifRe7T1(z) > «, Re 7r2 ( z ) > n, 

Sn(z) = z - ( « , 0 ) if ReTr^z) < «,Re7r2(z) > n - 1, 

Sw(z) = z - ( 0 , « ) if ReTr^z) > n,Re7r2(z) < w, 

Sn(z) = S(z) if ReTr^z) < «,Re7r2(z) < n - 1, 

r n ( z ) = z + (« ,«) if Reir^z) > 0, Re7r2(z) > 0, 

Tn(z) = z + (« ,0 ) if R e ^ z ) < 0, Re772(z) > n - 1, 

r„(z) = z +(0,w) if ReTr^z) > n,Re7r2(z) < 0, 

Tn(z) = r ( z ) if ReTr^z) < 0, Re7r2(z) < n - 1 or 

if Refli(z) < n, Re7r2(z) < 0. 

W e h a v e ^ ( C 2 \ 5 J = C 2 \ ^ , Tn(C
2\An) = C2\Bn and Tn = Sn~

l (n > 1). 
Denote by An the set of all elements z of C2 which satisfy one of the following 
conditions 

(an) Reirl(z)>n+ £ " TT77, Re772(z) > n + ~ -
2 2"+ 1 ' 2V ; / 2 2 n + 1 

(*») ReTr^z) < „ - | + ~ , Re7T2(z) > * - 1 + ~ . 

(c„) Re77x(z) >n+ ^ y , Re?r2(z) < w - | + ^ j . 

(dn) R e ^ z ) < 1 - § + 7 ^ 7 , Re7r2(z) < - | + ^ 

( O ReWl(z)<fc- | + ^ Y , 

A: - 1 4- — < Re7T2(z) < k —- + 
^k jn + 1 " *. \ / - syk+L ^n + \ 

for some /ce ( 1 , . . . , « — 1}. 

(/») * + -T ^ 7 < Reiri(z) < ik + 1 TT + 
w«/ 2* ?n 2 2 

« + i 

Re7T2(z) < k - -z + —— f° r some k e { 1 , . . . , « - 1}. 
2 2W 
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We have the following property: 

(8) | F ( | ( z ) _ 5 ) | ( z ) | < | _ _ i _ ( z e A „ , « > l ) . 

It follows from Lemma 8.7 that (8) holds for n = 1. Assume that (8) holds 
for some n > 1. If z satisfies (an + l) then it follows from Lemma 8.7 that 
l@«+i(z) - z + ( l ' l ) l < £/2n+2> so that z satisfies (ÛW). It follows then from 
the induction hypothesis that 

l ^ + i ( * ) - ö » + i ( s ) + ( » . » ) l < § - ^ r T . 

and so 

\Fn + l(z) - Sn + 1(z)\=\Fn + l(z)-z+(n + l,n 4- 1) | < f - ^ . 

If z satisfies (&„ + 1) then it follows from Lemma 8.7 that |0n + 1(z) - z + 
(1,0)| < e/2n + 2. So 0„+1(z) satisfies (bn) and it follows from the induction 
hypothesis that 

l^ + i (^ ) -e - + 1 ( z )+( / i , o ) | < f - ^ r -

Hence 

\Fn + ï(z) - S„+l(z)\ =\F„ + 1(z) - z +(n + 1,0)\ < § - ^ . 

If z satisfies (cn + 1) then it follows from Lemma 8.7 that |0„+1(z) — z 4-
(0,1)| < e/2w + 2. So 0n + 1(z) satisfies (c„), and it follows from the induction 
hypothesis that \Fn + 1(z) - ®n+l(z) 4- (0, n)\ < e/2 - e/2n + 1. Hence 

\Fn + l(z) " Sn+l(z)\ =\Fn+1(z) - z + (0,a + 1)| < e/2 - e/2"+2. 

If z satisfies (d„ + 1), or if z satisfies (e„+i) for some k e {1 , . . . , «} , or if z 
satisfies ( /w + 1) for some k e ( 1 , . . . , n ), then 

ReTr^z) < n 4- 1 —̂ 4- —̂ — = n 4- 1 E—, 
1V 7 ^ w + 1 yn + 2 yn + 2 

Re7T9(z) < n H = n 
zx 7 2n + 1 2n + 2" 

and so it follows from Lemma 8.7 that |0n + 1(z) - z| < e/2n+2. 
If z satisfies (d„+1), then 0w+1(z) satisfies (dn), so that \Fn+1(z) - 0„+ 1(z) | 

< e/2 - e/2n + \ and 
i £ £ 

l * n + l ( * ) - Sn + l(Z)\ =\Fn+l(z) ~Z\ < 2 " ^ T i ' 

If z satisfies (en + 1) for some /c e (1 , . . . , « — 1}, then 0n + 1(z) satisfies (e„) 
for A:, so that \Fn+1(z) - ®n+l(z) 4- (A:, 0)1 < e/2 - £/2" + 1. Hence 

\Fn+1(z) - Sn+l(z)\ =\Fn+l(z) - z +(k,0)\ < f - ^ 2 -

If z satisfies (/„ + 1) for some k e { 1 , . . . , « - 1}, then 0„+1(z) satisfies ( ƒ„) 
for A:, so that |F„+1(z) - 0„+ 1(z) 4- (0, fc)| < E / 2 - £/2w+1. Hence 

\Fn + i(*)-SH+l(z)\=\FH+l(z)-z+(0,k)\< f " ^ 2 -
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If z satisfies (en+l) for k = «, then &n+1(z) satisfies (bn). Hence \Fn + l(z) — 
0„ + 1(z) + («,O)| < e/2 - e/2n+\ and so 

\Fn + 1(z) - Sm+1(z)\ = \FH+1(z) - z + ( « , 0 ) | < | - -—. 

If z satisfies ( fn + x) for k = n, then 0n + 1(z) satisfies (cn). Hence \Fn+l(z) -
®n + i(z) + (0, «)| < e/2 - e/2w+1, and so 

\Fn + i{*)-SH+l(z)\=\FH+l(z)-z+(0,n)\< f - ^ . 

So the inequality |Fw+1(z) - Sn+1(z)\ < e/2 - e/2n + 2 holds for every z G 
Aw + 1. We obtain (8) by induction. 

Now let z e C2 such that d(z, An) > e - e/2". Then d(Tn{z\ Bn) > e -
e/2", and so Trt(z) + « E A„ if \u\ < e/2 - e/2" + 1. 

Let K be the component of C2 \ i?„ which contains Tn(z). There exists 
a e C2 which is such that S„(t/) = u - a for every u ^ K. 

Set G„(w) = Fn(Tn(z) + u) - z ( w e C2). If |u| < e/2 - e / 2 " + \ then 
Tn(z) + W G A „ n ^ a n d s o S„( W + u) = Tn(z) + u-a = S„(T„(z)) + u 
= z + u. Hence 

\Gn(u)-u\=\Fn(TH(z) + u)-z-u\ 

= \Fn(Tn(z) + u) - Sn{T„(z) + u)\ < f - ^ r r . 

It follows then from Lemma 8.8 that there exists u e D(0, e/2 - e/2"+1) 
which satisfies Gn{u) = 0. We obtain Fn(Tn(z) 4- u) = z, T„(z) + w = F^^z) 
and so |F„_1(z) - Tn(z)| = |ti| < e/2 - e/2n + 1. So we have the inequality 

(9) \Fn~\z)-Tn{z)\<^ - ^ (d(z,An)>e-j;9n>l). 

If Z G C 2 \ We, then Z G A „ when n is sufficiently large. It follows then from 
(8) that \Fn(z) - S(z)\ = \Fn{z) - Sn(z)\ < e/2 - e/2n + l when n is suffi­
ciently large. So F satisfies condition (3) of the theorem. 

If Re7T1(z) > e, Re7r2(z) > e then d(z, An) > e and so it follows from (9) 
that \Fn~\z) - (n,n)\ = \Fn~\z) - Tn(z)\ < e/2 - e/2n+1 for every n > 1. 
Hence liminf^^^li^ '^z)! = + oo, and so it follows from Corollary 5.3 that 
z £ F(C2). So F satisfies condition (1) of the theorem. 

Now if z G Œ and if d(z, A) > e then d(z, An) > e, and so it follows from 
(9) that \F-\z) - Tn(z)\ < e/2 - e/2n+l for every n > 1. Since T„(z) = T(z) 
when n is sufficiently large it follows then from Corollary 5.3 that F satisfies 
condition (2) of the theorem. 

Notice that it follows from (8) that we have the following property, for every 
subset A of C2: 

(10) 

F-\L) c ( C 2 \ A j U rn({z e C 2 \ ^ | J ( z , A) < f - ^ J ) (n > 1). 

file:///F-/z
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It remains to prove that F satisfies condition (7) of the theorem. To do this we 
shall use the following inequality. 

(ii) l(e t---e, ,)(z)-r|<^- i ir r 

(ReTT^zW k £- 4- —^—, Re?r2(z) < k - 1 - —u + — T T , n>k>\\. 

It follows from Lemma 8.7 that (11) holds for n = k, k > 1. Now fix fc > 1 
and assume that (11) holds for some « > &. If 

Re9r,(z) < k r + - , Re779(z) < k - 1 r + T, 
1V y ^ 9^ 2" 2 2n 

then it follows from Lemma 8.7 that |0n + 1(z) - z\ < e/2"+ 2 . So 
Re(^i « Ö„ + iX*) <k- e/2k + e/2n + \ Re(7r2 o 0„ + 1)(z) < fc - 1 - e/2* + 
£/2w + 1, and so it follows from the induction hypothesis that 

| ( 0 , o . . . o 0 w + 1 ) ( Z . ) - 0 n + 1 ( Z ) | < ^ - - i T . 

So |(0£ o . . . o 0M+1)(z) - z| < 6/2* - e/2n + 2 , and we obtain (11) by induc­
tion. 

Notice that, by using Lemma 8.8 as in the proof of (9), we easily deduce 
from (11) the inequality 

(n) -K©.-1 e ^ ) ( z ) - * | < ^ - ^ 

( R e W l ( z ) < / c - ^ 7 + ^ 7 , 

Re7T2(z) < k - 1 - ~ ^ + ^ y , « > k > l ) . 

Inequality (12) has some interest in itself, because it follows from (12) that if 
Re(w! » Fk-

l)(z) < k + 1 - e/2*, Re(7r2 ° i ^ X z ) < A: - e/2* then z G 
F(C2), and I F ^ z ) - ^""H*)! < e/2*. 

Now let A be a bounded subset of C2. If z e F ' 1 ^ ) and if Re wx(z) < A: + 
1 - e/2k + \ Rew2(z) < A: - e/2k+1, where A; > 1, then it follows from (11) 
that 

\z-(Fk'
loF)(z)\^ i i m s u p | z _ ( 0 / t + i „ . . . o e „ ) ( z ) | < - ^ T , 

n—*• oo Z 

and so d(z, Fk~
1(h)) < e/2k+1. Since Ffc

_1(A) is bounded for every k > 1, F 
satisfies condition (7), and the theorem is proved. (Conditions (1), (2), (3), (10), 
and (6) are illustrated in Figures 1, 2, 3, and 4.) 

The role played by Lemma 8.8 in the above proof is purely technical. 
Information about the behavior of 0" 1 could be obtained directly in Lemma 
8.7 to avoid the use of Lemma 8.8 in the proof of (9), but such arguments 
would necessitate more tedious computations. 
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Rez~ = 6-

F L{z) ~ z + (6,0) 

F~l(z) - z + (5, 0) 

F~L(z) ~ z + 4, 0) 

F *(z) ~ z + (3,0) 

F _ 1 ( z ) ~ z + (2, 0) 

Rez 9 = 0-
F _ 1 (z ) - z + (1 , 0) 

z £ F(C2) 

F \z) ~ z 

F 

~ z + 

(0,1) 

(zW (z)\ 
~ z + 
(0,2) 

r~V IF-^^OOI 
~ z + 

(0,3) 
|~ z + 

(0,4) 

F~\z)\ 

~ z + 

(0,5) 

Rezj = 1 Re Zj = 6 

FIGURE 1. The behavior of F~l and the critical tube 
Ve = {z ^C2\d(z,A) < e} (Theorem 8.9(l)-(2)). 

Note that in the above theorem we did not use the full force of Lemma 8.7. 
Since in Lemma 8.7 we have |0(z) - z\ < Tje~p(z)1/4 for Reir^z) < a - ô, 
Re TT2(Z) < b - ju - ô, we see that 0 (z ) - z converges to zero when p(z) goes 
to infinity for Re7rx(z) < a - Ô, Re7r2(z) < b - ju, - 8. A similar remark 
holds for the other conditions of the lemma. So, the larger mindlm^^z)!, 
|Im7r2(z)|) is, the better is the information which can be obtained about the 
difference F(z) - S(z) outside the critical tube W£. By using Lemma 8.8 we 
can then replace the critical tube Ve= {z e C21 d(z, A)^ e) by a smaller set 
and improve the information about the difference F~l(z) - T{z) on the 
intersection of Q with the complement of this smaller set. 

Note also that the weight e~|z|1/4 is not the best possible in Lemma 8.1. 
Weights co which satisfy 

r\j^mdt<+00 
l t3'2 

work for all closed sets which satisfy Arakelian's condition, but for a union of 
vertical strips better weights can be found [7]. Also, in Lemma 8.1, we can 
replace the vertical exceptional strips by subsets of C which get infinitely thin 
when |Im£| -> oo. This could also lead to versions of Theorem 8.9 where the 
critical tubes Ve and We are replaced by smaller sets, and where the information 
about the differences F~\z) - T{z) and F(z) - S(z) outside these critical 
sets is improved. 

r 
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Re ^ — 5 

Re z , — 0 

F(z) ~ z - (6, 0) 

F ( z ) ~ z - ( 5 , 0 ) ! 

F(z) ~ z - (4, 0) ! 

F(z) ~ z - (3, 0) : 

F(z) ~ z - (2, 0) ! 

F ( z ) ~ z - ( 1 , 0 ) ! 

± 

F(z) 

~ z -

(0,1) 

e/2 

F(z) 

~ z -

(0,2) 

^(z) 
~ z -

(0,3) 

F(z) 

~ z -

(0,4) 

F(z) 

~ z -

(0,5) 

+ k/64 

Rezj = 0 Rezj = 2 

FIGURE 2. The behavior of F and the critical tube We (Theorem 8.9 (3)). 

Statements as precise as Theorem 8.9 can be obtained by playing a more 
complicated "Arakelian game". Each automorphism 0rt in the construction of 
F consists in giving one vertical translation on a vertical tube, when "freezing" 
the complement (except for a critical vertical tube) and then in giving one 
horizontal translation on a horizontal tube, when "freezing" the complement 
(except for a critical horizontal tube). But we could introduce at each step 
various vertical translations on various vertical tubes, and then various hori­
zontal translations on various horizontal tubes. We can even have at each step 
infinitely many vertical and horizontal translations. 

The sequence (0X° ••• o 0 j W1n converge to an entire mapping F if 
E^LxP - 0 J I * < +oo for each compact set K, and we can arrange this 
condition to be satisfied not only for compact sets but also for tubes with 
compact basis. Of course, the critical sets which will appear in such more 
sophisticated constructions will be more complicated than the critical tubes Ve 

and We. We leave the details to the reader, and we will not study here the kind 
of ranges which can be obtained for such Bieberbach functions F. 

Condition (7) in Theorem 8.9 ensures that if A is a bounded subset of C2 

then the set (z G F~\A) |sup(Re7r1(z), Re7r2(z)) < a} is bounded for every 
a e R. In fact we showed that \z\ < supMeA|Fm

1(w)| + e/2m+1 if z G F\A) 
and if max(Re7r1(z), Re7r2(z) + 1) ^ m. In order for F to satisfy the 
conditions of Theorem 8.9 we can use a sequence (0m) of elements of 
Autx(C2) where, for each m > 1, 0m is the map (x, y) -* (w, v), with v = 
y — hm(x — m), u = x - hm(v - m + 1), and where hm is an entire function 
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Rez~ 

Re z2 = 2 

Re z2 = 0. 

% 

Rezj = 2 

e/32 

e/2" 

Rez t 

Rezj = 0 

FIGURE 3. Fn'
l(D(092)) (condition (10), proof of Theorem 8.9). 

over C which satisfies 

| A m ( 0 l < « / 2 m + 1 ( R e ^ - e / 2 ^ 2 ) , 

| * B ( 0 - l | < e / 2 " + 1 ( R e « > e / 2 - + 2 ) . 

This sequence (AOT) of entire functions can be obtained by using ArakeHan's 
theorem only once. To see this consider an entire function h which is such that 
IMOI < e-^/A (Re£ < -1/2) , |A(0 - 1| < e"^l1/4 (Re£ > 1/2). Set 

MO - ( l o g ^ + V 1 ) ) 4 * ( ( e C , m > l ) . 

This sequence (hm)m>1 satisfies the required conditions, and we can deduce 
estimates for 1 1 ^ 1 ^ = supttGA|Fw

1(w)| from estimates for the growth of the 
function h. We will not do this here. 

We showed at the end of §7 that if F is Bieberbach's original example there 
exists K>0 such that (F°G)(C2) n Z>(0, K) ± 0 for every nonconstant 
entire mapping G: C2 -> C2. We do not know whether a similar property 
holds for the mappings constructed in Theorem 8.9. 
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RP 7-y ~ 1 

WfMs 
. . . - o ^ ^ 

Pi 

Rezj 

I 
. Rez x = 2 

= 0 

•± e/16 

1 -ry 

FIGURE 4. F ^ D ^ ) ) (Theorem 8.9 (6) and Theorem 8.11). 

Nevertheless it is possible, for these functions F9 to obtain more qualitative 
information about inverse images of open sets which meet the boundary of 
F(C2). 

We will need the following well-known result. 

LEMMA 8.10. Let Ube a connected open subset of C and let (fn) be a sequence 
ofholomorphic functions over U. If there exists a j G U such that 

l i m s u p ^ J / ^ a ) ^ +00, liminf^ J / „ ( £ ) | = +oo, 
then C\Un>ifn(U) contains at most one point. 

PROOF. It follows from [27, Chapter 12, Theorem 4.1] that if C \ 
(Un>lfn(U)) had more than one element then either the sequence (ƒ„) would 
have a normal subsequence or the sequence (ƒ„) would have a subsequence 
( fn ) such that | fn (z)\. -> oo uniformly over compact subsets of U. Since the 

hypotheses exclude both possibilities, the result follows. 
In the following theorem, we use the same notations as in the proof of 

Theorem 8.9. 

THEOREM 8.11. Let F: C2 -> C2 be an entire mapping. For i = 1, 2, A c C2 

set \in(k) = mf{\==ReTTi(u)\ue F-\j\\ ReTr^t / )^^, Re7r2(w) < n}. 
Assume that F„ -> F where(Fn) is a sequence of elements of Aut(C2) which 

" n -* oo 

possesses the following properties. 
(i) \Fn(z) - Sn(z)\ < 1/2 (d(z, Bn) > 1/2, n > 1). 
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(ii) There exists a sequence (en) of positive real numbers which converges to 
zero such that 

\{Fm'o Fn)(z) - z\ < En 

(Re9r1(z) < n 4- 1/2, Re772(z) < n - 1/2, m > n ^ l ) . 

TTzeH 7r1(F"1(C/)) tfWtff 7r2(F_1(f/)) tfre de/we in C a/id 

limsup ̂ M = limsup hAEl = _«, 

/or et>ery ö/?e« swfoe/ U of C2 which is such that U Pi Fr(F(C2)) ¥= 0 . 

PROOF. Let Z G C 2 and let n > 1/2 + sup(Re771(z),Re7r2(z) 4- 1). Set 
u = F~\z\ and assume that inf(Reir^u), Re TT2(M)) < « - 1/2. If d(w, 2?„) < 
1/2, then it follows from the geometry of Bn that sup(Re ^(w), Re772(w) 4- 1) 
< n 4- 1/2. 

If rf(n, £„) > 1/2, then it follows from (i) that \z - Sn(u)\ < 1/2, so that 
ReC^ o Sn)(u) < n, Re(7r2 o Sn)(u) < n - 1. If 

inf (Re( W l o < Sj(n) ,Re(^ 2 o l Sj(«) )>0, 

then, since Tn = 5'M~1, it would follow from the definition of Tn that 
inf(Re ^(w), Re7r2(w)) > «, a contradiction. So either Re(7r1 ° Sn)(u) < 0, 
Re(772 o Sn)(u) < n - 1, or Re(771 ° 5„X") < "> Re(7r2 o S J O ) < 0. By using 
the definition of Tn and the fact that Tn = S~l, we obtain in the first case 
Re 7^(1/) < n — 1, Re7T2(w) < n - 1, and in the second case Re 7^(1/) < n, 
Re TT2(W) < n - 1. Thus, we have the property 

(a) If i n ^ R e ^ o F;l)(z\ Re(7r2 o F~l)(z)) <n- 1/2, and if n > 1/2 4-
sup(Re7r1(z), Re7r2(z) 4- 1), then 

sup(Re(771 o F'l)(z)9 Re(772 o F~l)(z) + l ) < n 4- 1/2 (z G C2) . 

Also, we deduce immediately from (ii) the following property. 
(b) If supCRe^oF^Xz) , R e ( ^ 2 °

 Fn~l)(z) + 1)< * + 1/2, then z G 
F(C2), and \F~\z) - Fn~\z)\ < en (z G C2, « > 1). 

By using (a) and (b), we obtain 

(c) inf(Re(7r1oFn-1)(z),Re(7r2oFw-1)(z)) > n - 1/2 

(z G C 2 \ F ( C 2 ) , « > 1/2 + sup(Re771(z),Re772(z) 4- l ) . 

Now let U be an open subset of C2 such that U n F r ^ C 2 ) ) ^ 0 , and let 
z0 G £ƒ n Fr(F(C2). There exists zx G F(C2) such that D(z0,2\zl - z0|) c U. 

Denote by D the open unit disc of the complex plane. For £ G D set 
co(f) = 2£zx + (1 - 2£)z0. 

Fix 1 e {1,2} and set hn = TT^ F'1 o o) (n > 1). Then ReA„(0) = 
Re^,. <> Fw

_1)(z0) and so it follows from (c) that \im'mfn_^oo\hn(0)\ = +00. 
Also h„(1/2) = (TTfO^Xzi) and so it follows from Corollary 5.3 (3) that 
(7r /oF-1)(z1) = l im_ 0 0 / i n ( l / 2 ) . 

Fix )8 G C, 17 > 0. Set n0 = sup{« G N|e„ > T | / 2} . Let «x > sup(«0, Re/? 
4- 1/2 4- TJ/2, \z0\ 4- 3/2 4- 2|zx - z0|). It follows from Lemma 8.10 that 
ön>n hn(D) is dense in C, and so there exists u G D ( Z 0 , 2 | Z 1 — z0|) which 
satisfies \fi — (TT^ F~l)(u)\< T)/2 for some n > nv So « > sup(Re^(w), 

file:///F~/z
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Re7r20) + 1) + 1/2, and Re(7r, o F;l)(u) < Rej3 + TJ/2 < n - 1/2. It fol­
lows then from (a) and (b) that u e F(C2), and that \F~\u) - F~\u)\ < en 

< TJ/2. Hence |/2 - (77,-° F~l)(u)\ < TJ, and ^(F^U)) is dense in C. This 
proves the first assertion. 

Also there exists r > 0 which is such that the closed ball B(z0,r) is 
contained in U, and there exists a sequence (up) of elements of the open ball 
B(z0, r/2) which is such that up e F(C2) (p ^ 1), and such that z0 = 
lim^ _ w 1*,. 

Denote by Bp the closed ball B(up, r - \up- z0|), and denote by 1?̂  the 

closed ball B(z0,r - 2\up- z0\) (p > 1). Let m be the Lebesgue measure on 
Cp. We have B'p<zBp<zU(p>l) and 

lim m(B')= lim w ( # ) = m ( £ ( z 0 , r ) ) . 
/?—» 00 p-* 00 

Fix again i e {1,2}. It follows from the harmonicity of the function 
z -> Re(77, o F~l){z) that 

and that 

»t(2j;)Re(*, » ^ - ^ ( z o ) = ƒ Re(«i o F ^ X l ) d*. 
j B , 

Set jn„ = inf{fi = Re(w,oF„_1Xw)|M e (7}. By using (c), we obtain 

,Lnm{B,\B'p) < f Re( W , oF„- 1 )U)^ 

= m ^ R e ^ . o f ; - 1 ) ^ ) - « ( U ^ R e ^ . F ^ K z o ) 

< m(B/))Re(W,.oF„-1)(«;,) - m(fl;)(n - 1/2) 

(p>l, n> sup(ReTT^ZQ) + 1/2, Rew2(z0) + 3/2)). 

Since (w,. ° F " 1 ) ^ ) = lim„^00(w,. « F ^ X " , ) , we have 

lim sup —- < — 
«-oc n ^ m(Bp\B'p) 

for every p > 1, hence l imsup^ /n = -oo. So there exists a sequence (vn) of 
elements of U such that 

lim sup — = -oo. 
n-> oo W 

Since £/ is bounded, it follows from (a) and (b) that 

sup(Re(771oJPn-1)((;J,Re(7r2oF„-1)(f;J + l ) < n + 1/2, 

file:///F~/u
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that un G F(C2) and that \F~\vn) - F~\vn)\ < en when n is sufficiently 
large. We obtain 

hm sup —— < lim sup = -oo. 
n—>oc ft n—>oo ft 

This concludes the proof of the theorem. 
The mappings F constructed as in the proof of Theorem 8.9 satisfy the 

hypothesis of Theorem 8.11, since condition (i) is weaker than (8) and 
condition (ii) weaker than (12). We do not know whether Theorem 8.11 applies 
to all mappings which satisfy the conditions of Theorem 8.9, since some 
specific properties of the sequence (Fn) used to construct F were used in the 
proof of Theorem 8.11. But the other tools of the proof of Theorem 8.11, the 
mean value formula and Lemma 8.10, can, of course, be used to study F~l(U) 
if F is any Bieberbach mapping and if U is any neighborhood of an element of 
the boundary of F(C2). This suggests that results similar to Theorem 8.11 
might hold in this general setting. Note that the classical theorem [27, Chapter 
12, Theorem 4.1] used to prove Lemma 8.10 is a deep result, since the big 
Picard theorem follows immediately from it. But in the proof of Theorem 8.11 
we just used the fact that Un>n hn(D) is dense in C. This can be shown 
directly, since otherwise there would exist Ö G C such that the sequence 
(l/(hn - a))n>ni is bounded over D, and the limit of any subsequence of it 
would either never vanish or vanish everywhere on D, by Rouché's theorem. 
This argument, similar to the standard proof of Weierstrass's density theorem, 
shows how elementary are the reasons which force 7r1(F~1(ï7)) and 7T2(F~l(U)) 
to be dense in C if U is an open neighborhood of an element of the boundary 
of F(C2), when F is constructed as in the proof of Theorem 8.9. 

Also, the second assertion of Theorem 8.11 shows that the branches of 
F~l(U) n We which appear in Figure 4 get infinitely long at infinity. We now 
use this fact to obtain the following result, which shows how complicated the 
range of a Bieberbach mapping can be. 

COROLLARY 8.12. There exists a Bieberbach mapping G: C2 -> C2 such that 
( i)Fr(G(C2))cFr(GoG)(C2) , 
(ii) (G ° G)(C2) n U has infinitely many components for every bounded subset 

U of C2 whose intersection with the boundary of G(C2) is nonempty. 

PROOF. Apply the construction of Theorem 8.9 with e = 1/4. Let T be the 
translation z -> z - (1/2,1/2). Let G = F ° T . By Theorem 8.9 (1), (2) we 
have iï\Ae c F(C2) c (z: i n ^ R e ^ z ) , Re7r2(z)) < 1/4}. Hence 

^n{z:inf(Re7T1(z),Re772(z)) < -3 /4} 

c ( T o F ) ( C 2 ) c (z:inf(Re771(z),Re7r2(z)) < - 1 / 4 ) . 

It follows that We n (T O F)(C2) has infinitely many components. 
Now let U be a bounded open subset of C2 whose intersection with the 

boundary of G(C2) = F(C2) is nonempty. By Theorem 8.9(6), F~\U) c We 

U T(U£ n 0). By using Theorem 8.11 and Theorem 8.9(7) we find that 
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F l(U) n We n (T ° F)(C2) has infinitely many components which do not 
meet the bounded open set T(Ue n Q ) . 

Since (G2 o T " 1 ) ^ 2 ) n £/ = F(F'\U) n (r o F)(C2)), we see that G2(C2) 
n U = (G2 © T _ 1 ) ( C 2 ) n £/ has infinitely many components. This proves (ii). 
But it follows from (ii) that Fr(G(C2)) c G2(C2), and so Fr(G(C2)) c 
Fr(G2(C2)), since Fr(G(C2)) n G(C2) = 0 . This proves the corollary. 

We showed at the beginning of this section that the range of an entire 
nondegenerate function on C2 can be very small. We now deduce from 
Theorem 8.9 examples which show that the range of an entire nondegenerate 
function on C2 can be both nondense and very large (of course, as we observed 
in §4, the entire functions obtained below cannot be one-to-one). 

THEOREM 8.13. Let e > 0, and let n > 3 be an integer satisfying (1 4- e) 
•(cos(7r/«))n > 1. Then there exists an entire function G: C2 -> C2 which 

possesses the following properties. 
( l ) G ( C 2 ) n Z ) ( 0 , l ) = 0 . 
(2)C 2 \Z)(0 ,1 + e ) c G(C2). 
(3) For every z e G(C2), the set G~l({z}) possesses at most n2 elements. 

PROOF. Set a = (1 + e)1/ncos(n/n) - 1, so that 0 < a < e, and let m be an 
integer such that m > a + e + 2. Let F be a Bieberbach function satisfying 
the conditions of Theorem 8.9 with e = a /2 m. So z e F(C2) if Re7r1(z) < 1 
— ct/2m, KQTT2(Z) < -a/2m, or if a/2m < Re772(z) < 1 — a/2m, Re7r1(z) 
< -a/2m, and z £ F(C2) if Re7r1(z) > a/2m, RQTT2(Z) ^ a/2m. There 
exists an affine map L such that the function H = L° F satisfies the condi­
tions 

(i) If Re772(z) > 1 + a, R e ^ z ) > -m + 1 + a, then z G #(C2) . 
(ii) If -m + 1 + a < Re?r2(z) < 1, R e ^ z ) > 1 + a, then z G #(C2) . 
(iii) If ReTr^z) < 1, Re772(z) < 1 then z £ H(C2). 
Consider the function \p: z -> ((^(z))", (7r2(

z))nX a n d s e t G = \p ° H. 
Clearly, G satisfies (3). If z e C2, then 

sup(Re(7T1 o H)(z), Re(772 o if ) ( z ) ) > 1, 

so that 

sap{\(1r1oH)(z)\,\(«2oH)(z)\)>l, 

s u p ( | ( W l o G ) ( z ) | , | ( » 2 o G ) ( z ) | ) > l 

and hence G satisfies (1). 
Now let u = (pxe'01, p2e /82) with |0X| < IT, |0 2 | < w, px > 0, p2 > 0, be an 

element of C2 \ D(0,1 + e). If p2 > 1 + e set Ü2 = p1/" • é?'"0*/". Then Re u2 > 
(1 + e)l/ncos(ir/n) = 1 4- a. Let £ be an «th root of ei@l with Re£ > 0, and 
set vx = p\ /wf Then y = (i^, i;2) e 7/(C2), so that w = ^(v) e G(C2). 

If p2 < 1 + e, then px > 1 + e. Set ^ = f}/neiSl/n. We see as above that 
R e ^ > 1 + a. Let £ be an nth root of ei@2 with Re£ < 0, and set v2 = p\/nt 
Then 0 > Re v2 > -p\/n > - l - e > a - m + l. So v = (ul9 v2) e H(C2\ 
and u = i//(y) G G(C2). Hence C2 \Z)(0,1 + e) c G(C2), and the theorem is 
proved. 
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We can obtain, with n = 3, e = 8, an entire function whose range avoids 
£>(0,1) and contains the complement of D(0,9) such that the inverse image of 
(z) never contains more than 9 elements. If we take n = 4, e = 4, we obtain an 
entire function whose range avoids D(0,1) and contains the complement of 
Z>(0,5) such that the inverse image of (z) never contains more than 16 
elements, and so on. Of course, since (cos(77/«))w -> 1, it follows from 

n —*• o o 

Theorem 8.13 that for every e > 0 there exists an entire function whose range 
avoids Z>(0,1) and contains the complement of D(0,1 + e). 
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