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#-COBORDISMS WITH FOLIATED CONTROL 

F. T. FARRELL AND L. E. JONES 

ABSTRACT. We announce a foliated version of Ferry's metric h-cobor-
dism theorem [13]. Let M be a compact Riemarinian manifold and 7 a 
smooth foliation of M such that the sectional curvatures of the leaves of 
7 are zero. There are numbers a > 0 (depending only on dim(M)) and 
6 > 0 (depending on M and 7) so that if W is an h-cobordism over M 
having 6 control in the directions perpendicular to 7 and having a-i(7) 
control in the directions tangent to J , then W is a product cobordism. 
Here i{7) denotes the greatest lower bounds for the injectivity radii of 
all the leaves of 7. 

Statement of theorems. M will denote a smooth compact Riemannian 
manifold and 7 will denote a smooth foliation of M, Note that each leaf L of 
7 inherits a Riemannian structure from M, and therefore has a well-defined 
radius of injectivity i(L) (cf. [5]). We define i{7) to be the greatest lower 
bound for all the i(L). 

W will denote an /i-cobordism with d-W = M. W comes equipped with 
homotopy retractions h~\ W x [0,1] —• W and fe+: W x [0,1] —• W, satisfying: 
h~{W x 1) c d-W, h-{x,t) = x for all x G d-W and t G [0,1]; h+{W x 1) c 
d+W, /i+(:r, t) = x for all x G d+W and t € [0,1]. 

To any continuous path p: [0,1] —» M we can associate two numbers Li(p), 
£2(2?) as follows. Z/2(p) is the greatest lower bound of all numbers À > 0 that 
satisfy: there is a continuous path q: [0,1] —• L into some leaf Loi 7 such that 
d(g(£)> P{t)) < A for all £ G [0,1] (here d( , ) denotes the metric on M induced 
by the Riemannian structure). Define Li(p) to be the greatest lower bound 
of all numbers À > 0 that satisfy: there is a continuous path q: [0,1] -» L 
into a leaf of 7 such that d(q(t),p(t)) < 2L2(p) for all t G [0,1]; moreover the 
diameter of g([0,1]) in L is less than or equal to A. 

Using the L\( ) and i>2( ) we can now define the diameter of the h~ 
cobordism W in the direction parallel to 7—denoted by D\(W)—and in 
the direction perpendicular to 7—denoted by Ü2{W). For each y G W let 
p~ : [0,1] —• M denote the composition 

[0, l] = {y)x[0,l]cWx[0,l]^W = Wxl*u d-W = M; 

and let p+: [0,1] —• M denote the composition 

[0,1] = {y) x [0,1] C W x [0,1] £ W = W x 1 ̂  d-W = M. 
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Define Di(W) to be the least upper bound of all the numbers {Li(p~), Li(p+): 
yeW}. 

The following theorem is a generalization of Ferry's metric /i-cobordism 
theorem [13]. (Note that the following theorem becomes Ferry's theorem if 
the foliation has single points for leaves.) 

THEOREM A. Suppose that dim(M) > 5, and each leaf of 7 has zero 
sectional curvature. Then there is a number a such that the following are 
satisfied: 

(a) a depends only on dim(M); 0 < a < 1. 
(b) Given any /3 > 0 with 0 < a-i(7), there is 6 > 0 so that if Di(W) < /? 

and D2{W) < 6 then W is a product cobordism. 

We have also been able to generalize the local contractibility results of 
Edwards and Kirby [7], and Chernavskii [2], to a foliated context. Let M(M) 
denote the space of homeomorphisms of M. For any numbers a > 0 and 6 > 0 
there is a subspace )/a '6(M) C U(M) defined as follows. A homeomorphism 
ƒ; M —> M is in Ma>6(M) if for every y G M there is a path q: [0,1] —• M 
with q(0) = 2/, q(l) = f(y) and such that L\(q) < a, £2(9) < 6. 

THEOREM B. Suppose that the leaves of 7 have zero sectional curvatures. 
There are numbers a, a' which satisfy the following: 

(a) a, a ; depend only on dim(M); 0 < a, a' < 1. 
(b) Given any ft,e > 0 with f3 < a-i{7), there are (3',6 > 0 with ft' = a' • 0 

and a homotopy h: ̂ ' ^ ( M ) X [0,1] C ^ ^ ( M ) satisfying: h(lM,t) = 1 M for 
all t£ [0,1]; / I ( ) / ^ ( M ) X 1 ) = 1M. 

Note that if 7 has single points for leaves, then Theorem B is the local 
contractibility theorem of Edwards and Kirby [7]. 

Related results. Theorem A has actually been proved in [12] in much 
greater generality than has been described above. We give here only a rough 
description of this more general theorem, by describing in (l)-(4) below 
the more general properties of M, J , and W that still insure the truth of 
Theorem A. 

(1) M is a smoothly stratified space, having Riemannian manifolds for 
strata. M need not be compact. 

(2) 7 consists of a collection of smooth foliations {?i}, one for each of 
the strata {Mi} of M. Moreover the {7i} are interrelated so as to form a 
"stratified foliation" for M. 

(3) p:E —> M is a continuous map from a manifold E satisfying: each 
restriction p:p~1(Mi) —» Mi is a fiber bundle with fiber equal to a compact 
closed manifold i^; Wh(7Ti(Fi) 0 A) = 0, for any i and any finitely generated 
torsion free abelian group A. 

(4) W is an ft-cobordism with d-W = E, which is a product cobordism 
over the complement of a compact subset of E. 

In this more general context the diameters Di(W) and D2{W) are still 
measured in M by projecting under p:E —• M all the relevant homotopy 
retraction trails in E. This formulation of Theorem A generalizes the fibered 
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version of Ferry's metric ft-cobordism theorem which has been proved by 
Chapman [3] and Quinn [16]. 

The above generalization of Theorem A is important because it allows us, 
in many useful special cases, to deal with foliated control problems for which 
Di(W) is much larger than i(7) but Ü2{W) is very small. The simplest 
such example occurs when 7 is a one-dimensional foliation of the compact 
Riemannian manifold M, satisfying: 

(5) For any given k > 0 there are only a finite number of leaves in 7 having 
length less than or equal to k. 

Note that by collapsing a finite number of closed leaves {Li} of 7 to points 
{[L^]}, we obtain a stratified quotient space M' equipped with a stratified 
foliation 7': the strata of M' consist of M — (Ĵ  Li, and the finite set Ui[£*]*> 
7' equals 7 on M —(Ĵ  £*> an(i has single points for leaves in UJ^l- If enough 
of the shorter closed leaves of 7 have been collapsed to points, then Di(W)— 
as measured in M'—will be much less than i{7'), and D^i^)—as measured 
in Mf—will still be small. So the stratified version of Theorem A may be 
applied to W, M', 7', to complete the proof of the following corollary. 

COROLLARY C. Let M, 7 be as in (5) above. For any a > 0 there exists 
e > 0 so that if Di(W) < a and D2(W) < e are both true for an h-cobordùm 
W over M, then W is a product cobordism. 

In sequels to [10, 11, and 12], we shall extend other types of metric control 
theorems to the foliated context. For example, if we drop the hypothesis 
uWh(7ri(Fi) 0 A) = 0" from (3) above, then we can obtain a foliated version 
of a result due to Quinn [17] and Chapman [4], which locates the Whitehead 
torsion of an /i-cobordism (over the total space of a bundle E —• M with 
foliated control in M) in the homology of M with coefficients in the Whitehead 
group, projective class group, and lower if-groups of the fundamental group 
of the fiber. 

Proofs of theorems. In principle the proofs of all metric control theorems 
follow the pattern set down by Edwards and Kirby in their proof of the local 
contractibility of the space of homeomorphisms of a manifold [7]. We recall 
that the two steps in this pattern of proof are as follows. 

Step 1. Choose a handle body for M, and choose the upper bounds for the 
metric control to be much less than the diameters of the handles of M. 

Step 2. Proceed inductively over the dimension of the handles, using the 
torus trick to obtain the desired result in each handle. 

Our proofs for Theorems A, B follow the above pattern of proof, with 
some exceptions which we shall describe now. Not just any handle body will 
do in Step 1, because we only allow the upper bounds for metric control to 
be chosen arbitrarily small in the directions perpendicular to the foliation 7. 
For this reason we must choose the handle body for M so that each handle 
has diameter greater than 7 • i(7) in the directions tangent to 7, where 7 is a 
positive number depending only on dim(M). Then choose a of Theorems A, 
B to be much smaller than 7; and choose the upper bounds £, for the metric 
control in directions perpendicular to J, to be much smaller than the diameter 
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of the handles in these same directions. In Step 2, instead of applying the 
torus trick, we simply scale down the metric in each handle in the direction 
of J, and scale up the metric in the direction perpendicular to 7. In this 
way we obtain the standard metric on each handle, with respect to which the 
control data is no longer foliated control, but rather just ordinary control. So 
our version of Step 2 above can be completed by just applying the relevant 
control theorem (for Theorem A we apply Ferry's theorem, for Theorem B we 
apply the theorem of Edwards and Kirby). 
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