ON EXTENDING SOLUTIONS TO WAVE EQUATIONS ACROSS GLANCING BOUNDARIES

MARK WILLIAMS

Introduction. The purpose of this note is to announce some results on the following extension problem. On a C^{∞} manifold M with boundary, if u is a given extendible distribution satisfying

$$(1) Pu \in C^{\infty}(M),$$

under what conditions (on $P, \partial M$, and $u|_{\partial M}$) can u be extended across ∂M as a solution, that is, to a distribution $\tilde{u} \in D'(\tilde{M})$ such that $P\tilde{u} \in C^{\infty}(\tilde{M})$, for some open manifold \tilde{M} extending M across ∂M ? Here P is assumed to be a second-order differential operator on M with smooth coefficients, noncharacteristic with respect to ∂M , and with real principal symbol p having fiber-simple characteristics

(2)
$$d_{\text{fiber}} p \neq 0 \quad \text{on} \quad p^{-1}(0) \cap (T^*M \setminus 0)$$

(for example, the wave operator acting in the exterior of a smooth obstacle). After extending the coefficients of P smoothly across ∂M , we can view P as an operator on some open extension \tilde{M} of M.

The problem is easily solved in the two cases where no null bicharacteristics tangent to ∂T^*M are present. When ∂M is everywhere elliptic with respect to P, classical theory implies that the desired \tilde{u} can be found if and only if $u|_{\partial M} \in C^{\infty}(\partial M)$. When ∂M is everywhere hyperbolic, nothing has to be assumed about $u|_{\partial M} \in D'(\partial M)$, for the extension \tilde{u} can be produced simply by solving the Cauchy problem in a neighborhood of ∂M with Cauchy data given by u. Here we are interested in the two cases where null bicharacteristics tangent to ∂T^*M to first order are present, the diffractive and gliding cases. An example given in [8] shows that if the boundary is diffractive, even when $u|_{\partial M}$ is smooth, it may happen that no extension as a solution (in fact, no extension \tilde{u} such that $\rho \notin WFP\tilde{u}$ where $\rho \in \partial T^*M$ is a point of null bicharacteristic tangency) exists. Our main result (Theorem 2) implies that, in contrast to the diffractive case, near gliding points extensions as microlocal solutions always exist when $u|_{\partial M}$ is smooth. We construct such an extension after showing that, near a gliding point $\sigma \notin WFu|_{\partial M}$, any distribution u satisfying $Pu \in C^{\infty}(M)$ has the series expansion given in Theorem 1. The proof of Theorem 2 makes essential use of the recent unified treatment of the diffractive and gliding parametrices [5], in which the eikonal and transport equations are solved on both sides of the boundary. Full proofs will appear in **[9**].

We proceed to recall some terminology.

Boundary points. Let $\iota: \partial M \to M$ be the inclusion inducing the projection $\iota^*: \partial T^*M \to T^*\partial M$. Then the elliptic, hyperbolic, and glancing regions are respectively

$$E = \{ \sigma \in T^* \partial M \setminus 0 : p \neq 0 \text{ on the line } \iota^{*^{-1}}(\sigma) \}.$$

$$H = \{ \sigma \in T^* \partial M \setminus 0 : p \text{ has (two) simple zeros in } \iota^{*^{-1}}(\sigma) \}.$$

$$G = \{ \sigma \in T^* \partial M \setminus 0 : p \text{ has a double zero, } \rho, \text{ in } \iota^{*^{-1}}(\sigma) \}.$$

Letting x be a real C^{∞} function vanishing simply on ∂M and positive in $\stackrel{\circ}{M}$ near ∂M , we write $G = G_d \cup G_g \cup G_0$ (a union of the diffractive, gliding, and higher-order tangency regions), where $\sigma \in G_d$, G_g , or G_0 depending on whether $\{p, \{p, x\}\}(\rho) > 0, < 0$, or = 0 respectively.

Gliding parametrices. Let $\sigma = \iota^*(\rho) \in G_g$. Choose coordinates $(x,y,\xi,\eta) \in T^*\mathbf{R}^{n+1}$ such that $\overset{\circ}{M} = \{x>0\}$, $\rho = (0,0,0,\overline{\eta})$, and $H_py_1(\rho) > 0$ (so y_1 will serve as our time variable). The forward and backward gliding parametrices at σ are maps $B_\pm\colon D'(\partial M)\to D'(M)$ such that for some small neighborhood $U\subset M$ of $\pi\sigma$ and some small conic neighborhood $\Lambda\subset T^*\partial M\setminus 0$ of σ , we have $PB_\pm g\in C^\infty(U)$ and $B_\pm g|_{\partial M}=g \mod C^\infty(\partial M)$ for all g with $WFg\subset \Lambda$. Moreover, B_+ (resp. B_-) propagates singularities in the direction of increasing (resp. decreasing) $y_1\cdot B_\pm$ (see [2, 5, or 7]) are constructed from Fourier-Airy integral operators

(3)
$$C_{\pm}F(x,y) = (2\pi)^{-n} \int_{\Gamma_{+}} e^{i\phi(x,y,\mu)} I(a,b,\varsigma;x,y,\mu) \hat{F}(\mu) d\mu,$$

where

$$I = [a(x, y, \mu) \operatorname{Ai}(\varsigma(x, y, \mu)) + b(x, y, \mu) \operatorname{Ai}'(\varsigma(x, y, \mu))] / \operatorname{Ai}(\varsigma_0(\mu)).$$

Here $\mu=(z,\mu')=(z,\mu_2,\ldots,\mu_n)\in \mathbf{C}\times\mathbf{R}^{n-1}$ and $\mathrm{Im}\,z=\mp T$ (T>0) on Γ_\pm respectively. At is the standard Airy function (see [6, p. 218]), an entire function whose zeros are all simple and negative. $\varsigma_0(\mu)=\varsigma(0,y,\mu)=z\mu_n^{-1/3}$, so $(\mathrm{Ai}(\varsigma_0))^{-1}$ makes sense on Γ_\pm . The phase functions ϕ,ς and the symbols a,b are obtained by taking almost analytic extensions (see [3]) in the μ_1 variable of functions solving eikonal and transport equations on both sides of x=0. The symbols a and b are supported in a small conic neighborhood $\nu\subset\{(x,y,\mu):\mu_n\geq C|\mu|\}$ of $(0,0,\overline{\mu})$, where $\overline{\mu}=(0,\ldots,0,1)$. Finally, we recall that ϕ and b also satisfy $\phi'_{x,y}(0,0,\overline{\mu})=(0,\overline{\eta})$ and $b|_{x=0}=0$.

Operators B_{\pm} with the desired properties can now be obtained by setting $B_{\pm} = C_{\pm}J$, where $J: E'(\partial M) \to E'(\mathbf{R}^n)$ is a proper elliptic F.I.O. microlocally inverting the boundary operators $(C_{\pm})|_{x=0}$.

Note that although ϕ , ζ , a, and b are defined on both sides of x=0, the operators B_{\pm} are defined *only* in $x \geq 0$ because the Airy quotients in (3) blow up exponentially in x < 0.

Main results. We number the zeros r_k of Ai(z) so that $0 > r_1 > r_2 > \cdots \rightarrow -\infty$.

THEOREM 1. Let P be a second-order differential operator on M non-characteristic with respect to ∂M , with real principal symbol p satisfying (2). If $\sigma \in G_g$ and $u \in D'(M)$ satisfies $Pu \in C^{\infty}(M)$ and $\sigma \notin WFu|_{\partial M}$, then $u = v_1 + v_2$, where $\sigma \notin WF_bv_2$ (WF_b is defined in [4]) and $v_1 = \sum_k u_k = \sum_k v_k = \sum_k$

$$i(2\pi)^{1-n}\sum_{k}\int e^{i\phi(x,y,\tilde{\mu}_{k})}\alpha_{k}\mu_{n}^{1/3}[(a\operatorname{Ai}(\zeta)+b\operatorname{Ai}'(\zeta))(x,y,\tilde{\mu}_{k})]\hat{F}(\tilde{\mu}_{k})\,d\mu_{2}\cdots d\mu_{n}.$$

Here $\tilde{\mu}_k = (r_k \mu_n^{1/3}, \mu_2, \dots, \mu_n)$, α_k is the residue of $(\text{Ai}(z))^{-1}$ at r_k , a, b, ϕ, ς are as in (3), and $F \in E'(\mathbf{R}^n)$.

Since $b(0,y,\mu)=0$ and $\varsigma(0,y,\mu)=z\mu_n^{-1/3}$, each of the terms u_k satisfies $u_k|_{x=0}=0$ as well as $Pu_k\in C^\infty(U)$ for some neighborhood $U\subset M$ of $\pi\sigma$. The factors $(\mathrm{Ai}(\varsigma_0))^{-1}$ which forced us to consider only $x\geq 0$ when defining B_\pm have now disappeared, so the fact that ϕ, ς, a , and $b(x,y,\tilde{\mu}_k)$ satisfy eikonal and transport equations in a two-sided neighborhood $\tilde{U}\subset \tilde{M}$ of $\pi\sigma$ can be put to use. We deduce that each u_k extends to a $\tilde{u}_k\in D'(\tilde{U})$ such that $P\tilde{u}_k\in C^\infty(\tilde{U})$. This suggests

THEOREM 2. Let P and M be as in Theorem 1. If $\sigma \in G_g$ and if $u \in D'(M)$ satisfies $Pu \in C^{\infty}(M)$ and $\sigma \notin WFu|_{\partial M}$, then an extension \tilde{u} can be constructed such that $WFP\tilde{u} \cap \iota^{*^{-1}}(\Gamma) = \emptyset$, for some conic neighborhood $\Gamma \subset T^*\partial M \setminus 0$ of σ .

Sketch of the proofs. Using the fact that regularity propagates in the boundary near gliding points (see [1]), we first find a distribution $g \in E'(\partial M)$, supported in $y_1 < 0$, for which $u = v_1 + v_2$ where $v_1 = B_+g - B_-g$ and $\sigma \notin WF_bv_2$. Putting F = Jg we have $(2\pi)^n(B_+g - B_-g) =$

(4)
$$\int_{\Gamma_{-}} e^{i\phi} I(a,b,\varsigma) \hat{F}(z,\mu') dz d\mu' - \int_{\Gamma_{-}} e^{i\phi} I \hat{F} dz d\mu'.$$

We compute the integral with respect to z first (noting that the integrand has poles at $r_k \mu_n^{1/3}$, $k=1,2,\ldots$) by taking the limit as $k\to\infty$ of integrals around closed rectangular contours in ${\bf C}$ centered at the origin. In [5] it is shown that the zeros σ_k of ${\rm Ai}'(z)$ satisfy $0>\sigma_1>r_1>\sigma_2>r_2\cdots\to-\infty$. So it is convenient to make the left vertical side of the kth rectangle pass through $\sigma_{k+1}\mu_n^{1/3}$. Estimates of the Airy quotients on the vertical segments show that the contributions to the contour integrals from those segments approach zero as $k\to\infty$. Thus Cauchy's integral formula with remainder yields that (4) equals

$$(5) \quad 2\pi i \sum_{k} \int e^{i\phi(x,y,\tilde{\mu}_{k})} \alpha_{k} \mu_{n}^{1/3} [(a\operatorname{Ai}(\zeta) + b\operatorname{Ai}'(\zeta))(x,y,\tilde{\mu}_{k})] \hat{F}(\tilde{\mu}_{k}) d\mu'$$

$$+ \iint_{W} \partial_{\overline{z}} (e^{i\phi} I(a,b,\zeta) \hat{F}) d\overline{z} \wedge dz d\mu',$$

where $W = \{z \in \mathbb{C}: -T \leq \operatorname{Im} z \leq T\}$. Though the integrand in the second term has infinitely many poles in W, estimates of $(\operatorname{Ai}(\zeta_0))^{-1}$ near the negative

real axis and the fact that ϕ, ζ, a , and b are almost analytic in z imply that the second term is smooth in $x \ge 0$. This finishes the proof of Theorem 1.

As noted above, each u_k extends to a $\tilde{u}_k \in D'(\tilde{U})$ such that $P\tilde{u}_k \in C^{\infty}(\tilde{U})$. Let $\chi(y) \in C_0^{\infty}(\mathbf{R}^n)$. Then repeated integrations by parts with respect to the y variable yield, for all N > 0, the estimates $|\langle \tilde{u}_k(x,\cdot), \chi(\cdot) \rangle| \leq C_N |\alpha_k| |r_k|^{-N}$ with C_N independent of k. Similar estimates clearly hold for $\partial_x^{\beta} \tilde{u}_k$ as well. Since $r_k \sim -ck^{2/3}$ (see [5, Appendix A]) and since the residues α_k can be shown to satisfy $|\alpha_k| \leq C|r_k|^{-1/4}$, we may conclude that the sum $\sum_k \tilde{u}_k$ converges to a distribution $\tilde{v}_1 \in C^{\infty}(R:D'(\mathbf{R}^n))$ extending v_1 . Moreover, for all N > 0, $|P\tilde{u}_k| \leq C_N |r_k|^{-N}$ in \tilde{U} (by the properties of ϕ , ς , a, and b), and similar estimates hold for $\partial_{x,y}^{\beta}(P\tilde{u}_k)$. Hence $P\tilde{v}_1 = \sum_k P\tilde{u}_k \in C^{\infty}(\tilde{U})$. To complete the proof of Theorem 2, we invoke a simple lemma [8, 1.6] which implies that since $\sigma \notin WF_bv_2$, an extension \tilde{v}_2 of v_2 can be constructed such that $WF \tilde{v}_2 \cap \iota^{*^{-1}}(\Gamma) = \emptyset$ for some conic neighborhood $\Gamma \ni \sigma$. So $\tilde{u} = \tilde{v}_1 + \tilde{v}_2$ is the desired extension of u.

REFERENCES

- 1. K. G. Andersson and R. B. Melrose, The propagation of singularities along gliding rays, Invent. Math. 41 (1977), 197-232.
- 2. G. Eskin, Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math. 32 (1977), 17-62.
- 3. A. Melin and J. Sjöstrand, Fourier integral operators with complex valued phase functions, Lecture Notes in Math., vol. 459, Springer-Verlag, Berlin and New York, 1975, pp. 120–223.
- 4. R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593-617.
- 5. R. B. Melrose and M. Taylor, Boundary problems for wave equations with grazing and gliding rays, monograph (in preparation).
- 6. M. Taylor, *Pseudodifferential operators*, Princeton Univ. Press, Princeton, N.J., 1981.
- 7. ____, Airy operator calculus, Microlocal Analysis, Contemporary Math., vol. 27, Amer. Math. Soc., 1984, pp. 169–192.
- 8. M. Williams, Wavefront sets of extensions of solutions to diffractive boundary problems, Comm. Partial Differential Equations 8 (1983), 875-928.
- 9. ____, On extending solutions to Dirichlet problems across the boundary as solutions, Duke Math. J. 52 (1985), 547-563.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138

Current address: Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514