
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 15, Number 1, July 1986 

ON EXTENDING SOLUTIONS TO WAVE EQUATIONS 
ACROSS GLANCING BOUNDARIES 

MARK WILLIAMS 

Introduction. The purpose of this note is to announce some results on 
the following extension problem. On a C°° manifold M with boundary, if u 
is a given extendible distribution satisfying 

(1) PueC°°{M), 

under what conditions (on P,<9M, and U\QM) can u be extended across dM 
as a solution, that is, to a distribution ü G D'{M) such that Pu G C°°(M), 
for some open manifold M extending M across dM! Here P is assumed 
to be a second-order differential operator on M with smooth coefficients, 
noncharacteristic with respect to <9M, and with real principal symbol p having 
fiber-simple characteristics 

(2) dfiberP^O on p-HOjnfPMVO) 

(for example, the wave operator acting in the exterior of a smooth obstacle). 
After extending the coefficients of P smoothly across <9M, we can view P as 
an operator on some open extension M of M. 

The problem is easily solved in the two cases where no null bicharacteristics 
tangent to dT*M are present. When dM is everywhere elliptic with respect 
to P , classical theory implies that the desired ü can be found if and only if 
u\dM 6 C°°{dM). When dM is everywhere hyperbolic, nothing has to be 
assumed about U\QM € D'(dM), for the extension ü can be produced simply 
by solving the Cauchy problem in a neighborhood of dM with Cauchy data 
given by u. Here we are interested in the two cases where null bicharacteristics 
tangent to dT*M to first order are present, the diffractive and gliding cases. 
An example given in [8] shows that if the boundary is diffractive, even when 
U\QM is smooth, it may happen that no extension as a solution (in fact, 
no extension u such that p £ WF Pu where p € dT*M is a point of null 
bicharacteristic tangency) exists. Our main result (Theorem 2) implies that, 
in contrast to the diffractive case, near gliding points extensions as microlocal 
solutions always exist when U\SM is smooth. We construct such an extension 
after showing that, near a gliding point a £ WFU\QM, any distribution u 
satisfying Pu G C°°(M) has the series expansion given in Theorem 1. The 
proof of Theorem 2 makes essential use of the recent unified treatment of the 
diffractive and gliding parametrices [5], in which the eikonal and transport 
equations are solved on both sides of the boundary. Full proofs will appear in 
[9]. 

We proceed to recall some terminology. 
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Boundary points. Let i\ dM —» M be the inclusion inducing the projec­
tion i*:dT*M —> T*dM. Then the elliptic, hyperbolic, and glancing regions 
are respectively 

E = {a € T*dM\0:p ^ 0 on the line L*~\(T)}. 

H — {cr <E T*dM\0:p has (two) simple zeros in c* (a)}. 

G = {a € T*dM\Q:p has a double zero, p, in L* (a)}. 

o 

Letting x be a real C°° function vanishing simply on dM and positive in M 
near dM, we write G = Gd U Gg U Go (a union of the diffractive, gliding, 
and higher-order tangency regions), where a € Gd, Gg, or Go depending on 
whether {p, {p, x}}(p) > 0, < 0, or = 0 respectively. 

Gliding parametrices. Let a = L*(p) G Gg. Choose coordinates 

( x , y , ^ ) e r R n + 1 such that M = {x > 0}, p = (0,0,0,77), and Hpyi(p) > 
0 (so y 1 will serve as our time variable). The forward and backward gliding 
parametrices at a are maps B±: D'(dM) —• D'(M) such that for some small 
neighborhood U C M of ira and some small conic neighborhood A c T*dM\0 
of <r, we have P £ ± 0 G G°°(f/) and £ ± g | a M = 9 mod G°°(dM) for all 0 with 
WFg C A. Moreover, B+ (resp. £_) propagates singularities in the direction 
of increasing (resp. decreasing) y\ • B± (see [2, 5, or 7]) are constructed from 
Fourier-Airy integral operators 

(3) G±F(x, y) = (2*)-* f e ^ * > ^ ƒ (a, 6, f ; x, 2/, /i)F(M) dM, 

where 

ƒ = [a(x, y, p) Ai(ç(x, y, /x)) + 6(x, y, /x) Ai'fc (s, y, /z))]/Ai(fo(/i)). 

Here /i = (2,//) = (*,/i2 , . . . ,/xn) € C x R n _ 1 and Imz = =FT (T > 0) on 
T± respectively. Ai is the standard Airy function (see [6, p. 218]), an entire 
function whose zeros are all simple and negative. CO(AO = C(0, y, pi) = zpü , 
so (Ai(^o))-1 makes sense on T±. The phase functions faç and the symbols 
a, 6 are obtained by taking almost analytic extensions (see [3]) in the p\ 
variable of functions solving eikonal and transport equations on both sides of 
x = 0. The symbols a and b are supported in a small conic neighborhood 
v C {(x,y,p)\pn > C\p\} of (0,0,/Z), where /Z = (0, . . . ,0 ,1) . Finally, we 
recall that <j) and b also satisfy 0i>y(O,O,/Z) = (0,77) and 6|x==o = 0. 

Operators B± with the desired properties can now be obtained by setting 
B± = C±J, where J\E'(dM) -> £ ' (R n ) is a proper elliptic F.I.O. microlo-
cally inverting the boundary operators (G±)|a;=o. 

Note that although </>, f, a, and 6 are defined on both sides of x = 0, the 
operators JB± are defined only in x > 0 because the Airy quotients in (3) blow 
up exponentially in x < 0. 

Main results. We number the zeros rk of Ai(z) so that 0 > r\ > r<i > 
• • • —• - 0 0 . 
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THEOREM 1. Let P be a second*order differential operator on M non-
characteristic with respect to dM, with real principal symbol p satisfying (2). 
IfaeGg and u G D'(M) satisfies Pu € C°°{M) and a £ WFu\dM, then 
u = v1+v2, where a £ WFbV2 (WFb is defined in [4]) and v\ = J^k uk ~ 

k J 

Here fa = {rk^nZ ), otk is the residue of (Ai(z)) x atrk, a,b, </>,£ 
are as in (3), and F € £"(Rn) . 

Since 6(0,2/,//) = 0 and c(0,y,/i) = zjin , each of the terms Uk satisfies 
Uk\x=o = 0 as well as Puk € C°°(U) for some neighborhood U C M of 
7T0-. The factors (Ai(^o))"1 which forced us to consider only x > 0 when 
defining B± have now disappeared, so the fact that </>, f,a, and 6(x,y,/ifc) 
satisfy eikonal and transport equations in a two-sided neighborhood U C M 
of ira can be put to use. We deduce that each Uk extends to a ük € Df(U) 
such that Puk G C°°(Ü). This suggests 

THEOREM 2. Le£ P and M be as in Theorem 1. If a £ Gg and if u G 
D'(M) satisfies Pu G C°°(M) and <r ^ WFUIOM, ^ ^ aw extension ü can 
be constructed such that WF Pu fl L* (T) = 0 , /or some come neighborhood 
TcT*dM\0of(T. 

Sketch of the proofs. Using the fact that regularity propagates in the 
boundary near gliding points (see [1]), we first find a distribution g G Ef(dM), 
supported in y\ < 0, for which u = v\ -f v2 where v\ = B+g — B~g and 
a <£ WFbv2. Putting F = Jgwe have (27r)n(B+0 - B-g) = 

(4) f ei4>I{a,b^)F{z^')dzdyi' - f e+lPdzdp'. 

We compute the integral with respect to z first (noting that the integrand 
has poles at rkfÀ , k — 1,2,...) by taking the limit as k —• oo of integrals 
around closed rectangular contours in C centered at the origin. In [5] it is 
shown that the zeros Ok of Ai'(2) satisfy 0 > o\ > r\ > 0*2 > r2 • • • —• -00. So 
it is convenient to make the left vertical side of the fcth rectangle pass through 
tffc+iMn . Estimates of the Airy quotients on the vertical segments show that 
the contributions to the contour integrals from those segments approach zero 
as k —• 00. Thus Cauchy's integral formula with remainder yields that (4) 
equals 

(5) 2mJ2 f ^lX9vM^kl^/3[(aM^ 
k J 

+ f f d-z{ei<f>I{a, 6, ç)F) ctzAdz d//, 

where W = {z G C: — T < Imz < T}. Though the integrand in the second 
term has infinitely many poles in W, estimates of (Ai(^o))-1 near the negative 



68 MARK WILLIAMS 

real axis and the fact that 0, f, o, and b are almost analytic in z imply that 
the second term is smooth in x > 0. This finishes the proof of Theorem 1. 

As noted above, each Uk extends to a ük G Df(U) such that P % G C°°(U). 
Let x(y) £ Co°(Rn). Then repeated integrations by parts with respect to the 
y variable yield, for all N > 0, the estimates |(üfc(x, •), x(*))l ^ CWlafcl |r/c|_iV 

with CAT independent of fc. Similar estimates clearly hold for d%ük as well. 
Since rk ~ — cfc2/3 (see [5, Appendix A]) and since the residues a^ can be 
shown to satisfy |afc| < C|rfc|-1/4, we may conclude that the sum 5Zfcüfc 
converges to a distribution v\ G C°°(R: D'(Rn)) extending v\. Moreover, for 
all N > 0, |Püfc| < CN\fk\~N in U (by the properties of 0, f, a, and 6), and 
similar estimates hold for d$iy{Pük)- Hence Pi5i = ^kPuk G C°°(Ü). To 
complete the proof of Theorem 2, we invoke a simple lemma [8, 1.6] which 
implies that since a £ WFbV2, an extension V2 of V2 can be constructed such 
that WF V2 H *<* (r) = 0 for some conic neighborhood T 3 a. So £ = v\ + #2 
is the desired extension of u. 
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