GENERALIZATIONS OF THE NEUMANN SYSTEM

BY R. J. SCHILLING¹

0. Introduction. The following observation, due to E. Trubowitz [7], illustrates an intimate relationship between spectral theory and Hamiltonian mechanics in the presence of constraints. Let q(s) be a real periodic function such that Hill's operator,

$$L = \left(\frac{d}{ds}\right)^2 - q(s),$$

has only a finite number g of simple eigenvalues. There exist g+1 periodic eigenfunctions x_0, \ldots, x_g and corresponding eigenvalues a_0, \ldots, a_g of L such that

$$1 = \sum_{r=0}^{g} x_r^2$$
 and $q = -\sum_{r=0}^{g} (a_r x_r^2 + y_r^2),$

where $y_r = dx_r/ds$. The equations $Lx_r = a_rx_r$ (r = 0, ..., g) are equivalent to the classical Neumann system [7].

H. Flaschka [3] obtained similar results from a different point of view. His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. Krichever. The familiar Lax pairs, the constants of motion and the quadrics of the Neumann system emerge as consequences of the Riemann-Roch Theorem.

The purpose of our work is to apply Flaschka's techniques to operators of order $n \geq 2$. We will be defining higher Neumann systems whose theory is closely tied to the spectral theory of linear differential operators of order n. C. Tomei [9], using scattering theory, obtained some of our n = 3 formulas.

Preliminaries.

- (1.1) RIEMANN SURFACE. Let R be a Riemann surface of genus g_R with a point ∞ and a rational function whose divisor of poles $(\lambda)_{\infty}$ is n^{∞} . We set $\kappa = \lambda^{1/n}$. Then κ^{-1} is a local parameter vanishing at ∞ . Let W be the set of Weierstrass gap numbers of ∞ .
- (1.2) ALGEBRAIC CURVES. We assume that R admits a second rational function z with the following 3 properties. There exists an integer $N \geq 0$ and an integer $l \in \{1, 2, ..., n-1\}$ relatively prime to n such that

$$z = \lambda^{-N} \kappa^{-l} (z_0 + z_1 \kappa^{-1} + \cdots), \qquad z_0 = 1, \text{ at } \infty.$$

Let $(z)_{\infty} = (0) + \cdots + (m)$, $(r) \in R$, be the divisor of poles of z. Let $a_r = \lambda(r)$. We assume that each (r) is a simple pole and $a_r \neq a_s$ whenever $s \neq r$. We

Received by the editors September 30, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 58F07, 58F19, 14H40.

¹Supported in part by NSF (Fellowship) Grant No. MCS-8211308, NSF Grant No. MCS-8102748, and Department of the Army DAAG 29-82-K-0068.

assume that the genus g_R is related to m, n and l by the following important formula, $g_R = \frac{1}{2}(n-1)(2(m+1)-nN-(l+1))$. It is known that two rational functions on a Riemann surface satisfy a polynomial equation. Since that equation, it turns out, follows from the Baker function theory below, we need not discuss the existence of Riemann surfaces with the properties above.

Since n and l are relatively prime, there exist r_j , $s_j \in \mathbf{Z}$ such that $\lambda^{r_j} z^{s_j}$ has a pole of order j at ∞ . Let $t = (t_j | j \in W)$ be a vector of g_R complex "time" parameters. Let $\theta = \sum_{j \in W} t_j \lambda^{r_j} z^{s_j}$.

- (1.3) BAKER FUNCTIONS. Let δ be a positive nonspecial divisor of degree g_R that does not meet ∞ and satisfies $L(\delta \infty) = \{0\}$. It is known that there exists a unique function $\psi = \psi_{\delta}(t,p)$, called the Baker function of δ , with the following two properties. ψ is meromorphic in $R \infty$ and any pole of ψ lies in δ . Near ∞ , ψ is given by $\psi e^{-\theta} = 1 + \xi_1(t)\kappa^{-1} + \xi_2(t)\kappa^{-2} + \cdots$, where the ξ_j are functions analytic on an open subset of \mathbf{C}^{g_R} containing t = 0.
- (1.4) DUAL BAKER FUNCTION. By the Riemann-Roch Theorem there exists a unique abelian differential Ω and a positive nonspecial divisor δ' of degree g_R such that $(\Omega) = \delta + \delta' 2^{\infty}$ and $\Omega = -\kappa^2 (1 + O(\kappa^{-2})) d\kappa^{-1}$ at ∞ . Let $\phi = \psi_{\delta'}(-t, p)$. We will refer to ϕ as the Baker function dual to ψ and δ' will be called the dual divisor [2].
- (1.5) NEUMANN SYSTEMS. There exists a linear differential operator L of order n in d/dt_1 and, for each $j \in W$, a linear differential operator \tilde{L}_j of order j in d/dt_1 such that

$$(1.5.1.1) L(t)\psi(t,p) = \lambda(p)\psi(t,p) \quad \text{and} \quad \tilde{L}_j(t)\psi(t,p) = \frac{\partial \psi}{\partial t_j}(t,p).$$

Let L^* be the formal real adjoint of L (for instance, $(qD^j)^* = (-1)^j D^j q$). The article [2] contains a clever proof of the following formulas:

$$(1.5.1.2) L(t)^*\phi(t,p) = \lambda(p)\phi(t,p) \text{ and } \tilde{L}_j(t)^*\phi(t,p) = \frac{\partial t}{\partial t_j}(t,p).$$

We are now in position to define the main object of our analysis. Let $\rho_r = \operatorname{Res}_{(r)}(z\Omega)$ and choose constants α_r , $\beta_r \in \mathbb{C}^*$ such that $\rho_r = \alpha_r \beta_r$. We evaluate the Baker functions ψ and ϕ over the poles of z to make the following definitions:

(1.5.2)
$$x_1^r(t) = \alpha_r \psi(t, r)$$
 and $u_n^r(t) = \beta_r \phi(t, r)$, $r = 0, \dots, m$.

Let $\mathbf{m} \in \mathbf{C}^{2n(m+1)}$ be the point whose coordinates are x_1^r , u_n^r and their first n-1 derivatives with respect to t_1 . We are concerned with the equations obtained from (1.5.1) by setting $p = (r), r = 0, \ldots, m$.

(1.6) SOLITON EQUATIONS. The integrability condition of the simultaneous linear equations (1.5.1) is the partial differential equation

(*)
$$\partial L/\partial t_j = [\tilde{L}_j, L], \quad j \in W.$$

The Lax equation usually suggests that certain spectral data associated to L are preserved in time. In the present setup it is the Riemann surface R that is preserved. Two of the equations (*) are important in their applications to soliton mathematics. If n=2 and j=3, (*) is the Korteweg-de Vries

equation. If n = 3 and j = 2, (*) is the Boussinesq equation in the form of a system of equations.

Results.

- (2.1) SYMPLECTIC MANIFOLD AND TRACE FORMULAS. The differential $\tilde{\eta} = \psi_j^{(i)} \phi_{j'}^{(i')} \Omega$ is meromorphic because the exponents of ψ and ϕ at ∞ cancel. The meromorphic differential $\eta = \lambda^k z \tilde{\eta}$ has simple poles in $(z)_{\infty}$ and it may have a pole at ∞ . Let $C_{\eta} = \sum_{p \in R} \mathrm{Res}_p(\eta)$. The classical formula $\sum_{p \in R-\infty} \mathrm{Res}_p(\eta) = -\mathrm{Res}_{\infty}(\eta)$ expresses $\mathrm{Res}_{\infty}(\eta)$ in terms of \mathbf{m} . If $\mathrm{Res}_{\infty}(\eta)$ is constant (in t) the equation $C_{\eta} = 0$ defines a hypersurface in $\mathbf{C}^{2n(m+1)}$. The functions C_{η} with $\mathrm{Res}_{\infty}(\eta)$ constant are called constraints.
- (2.1.1) THEOREM. The algebraic subset M of $\mathbb{C}^{2n(m+1)}$ defined in terms of the quadratic constraints $C_{\eta} = 0$ is a symplectic manifold. The dimension of M is given by $\dim(M) = 2g_R + 2(m+1)$.
- (2.1.2) THEOREM. The coefficients of L are expressible in terms of the point \mathbf{m} associated with the Baker function and the poles of z.

It follows then that the equations (1.5.1) with $p=(r), r=0,\ldots,m$, define g_R autonomous vector fields X_j^* , $j \in W$, on M. The (n=2) vector field X_1^* is a generalization of the Neumann system [3 and 4].

(2.2) LAX EQUATIONS. One of the nicest results of Flaschka's work is a systematic derivation of the well-known Neumann-Lax pairs. The best explanation for the existence of the Neumann-Lax pairs comes from Krichever's theory of commutative rings of matrix differential operators. The divisor $\Delta' \stackrel{\text{def}}{=} \delta' + (z)_0 - \infty$ is nonspecial and its degree is $g_R + m$. Following [4] we call Δ' the augmented dual divisor. According to [8], there exists a vector function $\Phi = (\Phi^0, \dots, \Phi^m)^T$ with the following two properties. Φ is meromorphic in $R - (z)_{\infty}$ and any pole in Φ lies in Δ' . Near (r), Φ^s is given by $\Phi^s e^{-\theta} = \alpha_r \delta_{r,s} + O(z^{-1})$. Let $(\ ;\)$ be the bilinear form associated to L by the Lagrange identity, $d(f;g)/dt_1 = Lf \cdot g - f \cdot L^*g$. H. Flaschka discovered the n=2 version of the very beautiful formula,

(2.2.1)
$$\Phi^{r}(t,p) = (x_1^{r}(t);\phi(t,p)) \frac{z^{-1}(p)}{\lambda(p) - a_r} e^{\theta(t,p)}.$$

According to Krichever there exists an $(m+1) \times (m+1)$ matrix \mathbf{B}_j that depends polynomially on z such that $\Phi_{t_j} = \mathbf{B}_j \Phi$. Using Flaschka's formula (2.2.1) we are able to express \mathbf{B}_j in terms of \mathbf{m} . The function λz^n belongs to the ring $H^0(R-(z)_{\infty}, O_R)$. Thus according to Krichever there exists an $(m+1) \times (m+1)$ matrix \mathbf{L} that depends polynomially on z such that $\mathbf{L}\Phi = \lambda z^n \Phi$. The Lax equation $\mathbf{L}_{t_j} = [\mathbf{B}_j, L]$ is immediate. Our explicit formulas show that \mathbf{L} is a rank n perturbation of the diagonal matrix az^n in that the range of $\mathbf{L} - az^n$ is spanned by x_1, \ldots, x_n . The (n=2) \mathbf{L} and \mathbf{B}_1 generalize the Neumann-Lax pairs in $[\mathbf{1}, \mathbf{3} \text{ and } \mathbf{4}]$.

We have $\Delta' - (\phi)_{\infty} \geq 0$ and therefore ϕe^{θ} belongs to the linear space of Baker functions spanned by the components of Φ . This observation led

Flaschka to the n=2 version of the following formula:

(2.2.2)
$$\phi(t,p)e^{\theta} = \sum_{r=0}^{m} u_n^r(t) \Phi^r(t,p) = \langle u_n(t), \Phi(t,p) \rangle.$$

The formula has two applications. We use (2.2.2) to obtain explicit formulas for the operators \tilde{L}_j . Such formulas were one of Cherednik's objectives [2]. When Φ is eliminated from (2.2.2) by use of (2.2.1) we obtain the following result.

- (2.2.5) THEOREM. There exists an $n \times n$ matrix $Z = Z(\mathbf{m}, \lambda)$, rational in λ , whose spectrum is independent of t. The algebraic relationship (1.2) between λ and z is given by the characterization polynomial $\det(Z zI) = 0$.
- (2.3) COMPLETE INTEGRABILITY. The m+1 Hamiltonians $(x_1^r; u_n^r)$, $r=0,\ldots,m$, are rather trivial involutive constants of motion. A reduction of M by these Hamiltonians defines a symplectic manifold which, by (2.1.1), has dimension $2g_R$. We use the fact that the eigenvalues of \mathbf{L} and Z are constants of the motion to construct a Hamiltonian H_j^* for each vector field X_j^* , $j \in W$.
- (2.3.1) THEOREM. The g_R Neumann vector fields X_j^* of (2.1.4) form a completely integrable Hamiltonian system.

It is known that the level surface $M_C \stackrel{\text{def}}{=} \{\mathbf{m}^* \in M | H_j(\mathbf{m}) = c_j\}$ of a completely integrable system, if real and compact, is a torus. Our last result is concerned with the structure of these energy level sets.

(2.3.2) THEOREM. The level surface of the reduced manifold is locally isomorphic to the Zariski-open subset, Jacobian-(theta divisor) of the Jacobian variety of the algebraic curve given by $\det(Z(\lambda) - zI)$.

The idea in the proofs of (2.3.1,2) is an algebro-geometical version of the solitonic inverse scattering transform. Let M be one of the symplectic manifolds of Theorem (2.1.1). We assign to each point $\mathbf{m} \in M$ an algebraic curve C and a divisor $\delta = \delta_{\mathbf{m}}$ on C. The isomorphism of Theorem (2.3.2), called the divisor map, is given by

$$\mathbf{m} \in M \to (C, \delta) \to (\operatorname{Jac}(C), A(\delta))$$

where A is the Abel map. It contains a method for linearizing the equations of motion. The important ideas can be found in [1 and 5]. We apply McKean's pole conditions [6, p. 624] to make certain results, especially the description of δ , more explicit.

REFERENCES

- 1. M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, and curves, Adv. in Math. 38 (1980), 267-317; Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math. 38 (1980), 318-379.
- 2. I. M. Cherednik, Differential equations for the Baker Akhiezer functions of algebraic curves, Funktsional Anal. i Prilozhen. 12 (1978), 45-54.
- 3. H. Flaschka, Relations between infinite and finite dimensional isospectral equations, Proc. of Rims. Symposium, Kyoto, Japan (1981).

- 4. ____, Toward an algebro-geometrical interpretation of the Neumann system, Tôhoku Math. J. 36 (1984), 407-426.
- 5. I. M. Krichever, Integration of nonlinear equations by methods of algebraic geometry, Funktsional Anal. i Prilozhen 11 (1977), 15-31.
- 6. H. P. McKean, Boussinesq's equation on the circle, Comm. Pure Appl. Math. 34 (1981), 599-692.
- 7. J. Moser, Geometry of quadrics and spectral theory, Proc. Chern Symposium (1981), 147–188.
- 8. R. Schilling, Baker functions for compact Riemann surfaces, Proc. Amer. Math. Soc. (to appear).
 - 9. C. Tomei, The Boussinesq equation, Ph.D. Thesis, Courant Institute, 1982.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803