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GENERALIZATIONS OF THE NEUMANN SYSTEM 

BY R. J. SCHILLING1 

0. Introduction. The following observation, due to E. Trubowitz [7], 
illustrates an intimate relationship between spectral theory and Hamiltonian 
mechanics in the presence of constraints. Let q(s) be a real periodic function 
such that Hill's operator, 

* = (s)'-«M. 
has only a finite number g of simple eigenvalues. There exist g + 1 periodic 
eigenfunctions xç>,...,xg and corresponding eigenvalues ao , . . . , ag of L such 
that 

9 g 

l = £z? a n d Q=-J2(arx2r+y2r^ 
r=0 r=0 

where yr = dxr/ds. The equations Lxr — arxr (r = 0 , . . . , g) are equivalent 
to the classical Neumann system [7]. 

H. Flaschka [3] obtained similar results from a different point of view. 
His approach is based on the articles [2 and 5] of I. V. Cherednik and I. M. 
Krichever. The familiar Lax pairs, the constants of motion and the quadrics of 
the Neumann system emerge as consequences of the Riemann-Roch Theorem. 

The purpose of our work is to apply Flaschka's techniques to operators of 
order n > 2. We will be defining higher Neumann systems whose theory is 
closely tied to the spectral theory of linear differential operators of order n. 
C. Tomei [9], using scattering theory, obtained some of our n = 3 formulas. 

Preliminaries. 
(1.1) RlEMANN SURFACE. Let R be a Riemann surface of genus QR with 

a point oo and a rational function whose divisor of poles (A)oo is n°°. We set 
K = Ax/n. Then AC_1 is a local parameter vanishing at oo. Let W be the set 
of Weierstrass gap numbers of oo. 

(1.2) ALGEBRAIC CURVES. We assume that R admits a second rational 
function z with the following 3 properties. There exists an integer N > 0 and 
an integer / e {1,2, . . . , n — 1} relatively prime to n such that 

z = \~NK,~1(ZO + ZIK,~X H ), zo = 1, at oo. 

Let (z)oo = (0)H f-(m), (r) € R, be the divisor of poles of z. Let ar = A(r). 
We assume that each (r) is a simple pole and ar ̂  as whenever s ̂  r. We 
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assume that the genus QR is related to m, n and / by the following important 
formula, QR = ^(n-l)(2(m + l)-nN-(/ + 1)). It is known that two rational 
functions on a Riemann surface satisfy a polynomial equation. Since that 
equation, it turns out, follows from the Baker function theory below, we need 
not discuss the existence of Riemann surfaces with the properties above. 

Since n and / are relatively prime, there exist ry, Sj E Z such that \riz8* 
has a pole of order j at oo. Let t = (tj\j E W) be a vector of QR complex 
"time" parameters. Let 6 = J2jew^j^rjz8j • 

(1.3) BAKER FUNCTIONS. Let 8 be a positive nonspecial divisor of degree 
ÇR that does not meet oo and satisfies L(S - oo) = {0}. It is known that there 
exists a unique function -0 = ^(£ ,p) , called the Baker function of £, with the 
following two properties, i/j is meromorphic in R - oo and any pole of V> lies 
in 6. Near oo, ijj is given by ^e~e = 1 + £i(£)/c-1 + £2(£)ft~2 H > where the 
£j are functions analytic on an open subset of C9R containing t = 0. 

(1.4) DUAL BAKER FUNCTION. By the Riemann-Roch Theorem there 
exists a unique abelian differential fi and a positive nonspecial divisor 6' of 
degree gR such that (Q) = 6 + 6'- 2°° and fi = -/c2(l + 0(/c"2)) dK~l at oo. 
Let <\) — ?/\$/(-£, p). We will refer to <f> as the Baker function dual to t/j and 6' 
will be called the dual divisor [2]. 

(1.5) NEUMANN SYSTEMS. There exists a linear differential operator L of 
order n in d/dt\ and, for each j E W, a linear differential operator Lj of order 
j in d/ctti such that 

(1.5.1.1) L(t)ij(t,p) = \(p)rP(t,p) and Lj{t)4>{t,p) = ^{t,p). 

Let L* be the formal real adjoint of L (for instance, (qDJ)* = (-l)WJq). 
The article [2] contains a clever proof of the following formulas: 

(1.5.1.2) L(t)'<l>(t,p) = \(p)<l>(t,p) and L^Y^p) = j £ ( t , p ) . 

We are now in position to define the main object of our analysis. Let 
pr = Res(r)(^n) and choose constants a r , /3r E C* such that pr = ar(3r. We 
evaluate the Baker functions I/J and (j) over the poles of z to make the following 
definitions: 

(1.5.2) x\{t) = ar^{t,r) and ur
n{t) = M{t,r), r = 0 , . . . ,m. 

Let m E C2 n(m + 1) be the point whose coordinates are x\, ur
n and their first 

n - 1 derivatives with respect to t\. We are concerned with the equations 
obtained from (1.5.1) by setting p = (r), r = 0 , . . . , m. 

(1.6) SOLITON EQUATIONS. The integrability condition of the simultane­
ous linear equations (1.5.1) is the partial differential equation 

(*) dL/dt3 = [Lj,L}, jeW. 

The Lax equation usually suggests that certain spectral data associated to L 
are preserved in time. In the present setup it is the Riemann surface R that 
is preserved. Two of the equations (*) are important in their applications 
to soliton mathematics. If n = 2 and j = 3, (*) is the Korteweg-de Vries 
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equation. If n = 3 and j = 2, (*) is the Boussinesq equation in the form of a 
system of equations. 

Results. 
(2.1) SYMPLECTIC MANIFOLD AND TRACE FORMULAS. The differen­

tial fj = WjÇft H is meromorphic because the exponents of ip and (j) at oo 
cancel. The meromorphic differential rj = Xkzfj has simple poles in (z)^ 
and it may have a pole at oo. Let Cv = Y^V^R Resp(r/). The classical formula 
Spefl-oo ReSpM = -ReSoo(^) expresses Res^r?) in terms of m. If Resoo(^) 
is constant (in t) the equation Cv = 0 defines a hypersurface in C 2 n (m + 1 ) . 
The functions Cv with ReSoo(rç) constant are called constraints. 

(2.1.1) THEOREM. The algebraic subset M of C2 n(m + 1) defined in terms 
of the quadratic constraints Cv = 0 is a symplectic manifold. The dimension 
of M is given by dim(M) = 2gR + 2(ra + 1). 

(2.1.2) THEOREM. The coefficients of L are expressible in terms of the 
point m associated with the Baker function and the poles of z. 

It follows then that the equations (1.5.1) with p = (r), r = 0 , . . . , m, define 
ÇR autonomous vector fields Xf, j G W, on M. The (n = 2) vector field X{ 
is a generalization of the Neumann system [3 and 4]. 

(2.2) LAX EQUATIONS. One of the nicest results of Flaschka's work is a 
systematic derivation of the well-known Neumann-Lax pairs. The best expla­
nation for the existence of the Neumann-Lax pairs comes from Krichever's 
theory of commutative rings of matrix differential operators. The divisor 
A' = 8' + (z)o - oo is nonspecial and its degree is QR -f m. Following [4] we 
call A ; the augmented dual divisor. According to [8], there exists a vector 
function $ = ( $ ° , . . . , $ m ) T with the following two properties. $ is mero­
morphic in R - (2)00 and any pole in $ lies in A;. Near (r), $ 5 is given by 
$se-e _ arfjrs 4- 0{z~l). Let ( ; ) be the bilinear form associated to L by 
the Lagrange identity, d(ƒ; g)/dt\ = Lf • g - ƒ • L*g. H. Flaschka discovered 
the n — 2 version of the very beautiful formula, 

(2.2.1) * ' ( t , P ) = (*ï(*);0(*,p)) JQ^Ê-S**). 

According to Krichever there exists an (m + 1) x (m + 1) matrix Bj that 
depends polynomially on z such that $ t j = B j$ . Using Flaschka's formula 
(2.2.1) we are able to express B3 in terms of m. The function Xzn belongs 
to the ring H°(R - {Z)OO)0R). Thus according to Krichever there exists 
an (m + 1) x (m-f 1) matrix L that depends polynomially on z such that 
L$ = \zn$. The Lax equation Ltj = [B_y, L] is immediate. Our explicit 
formulas show that L is a rank n perturbation of the diagonal matrix azn in 
that the range of L - azn is spanned by x i , . . . , xn. The (n = 2) L and Bi 
generalize the Neumann-Lax pairs in [1, 3 and 4]. 

We have A' - (<t>)oo > 0 and therefore <f>e6 belongs to the linear space 
of Baker functions spanned by the components of $. This observation led 
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Flaschka to the n = 2 version of the following formula: 
m 

(2.2.2) J>(t,p)ee = £ t£ ( t )* r ( i ,p ) = <u»(t),*(i,p)). 
r=0 

The formula has two applications. We use (2.2.2) to obtain explicit formulas 
for the operators L3. Such formulas were one of Cherednik's objectives [2]. 
When $ is eliminated from (2.2.2) by use of (2.2.1) we obtain the following 
result. 

(2.2.5) THEOREM. There exists annxn matrix Z = Z(m, A), rational 
in \, whose spectrum is independent of t. The algebraic relationship (1.2) 
between A and z is given by the characterization polynomial det(Z - zl) = 0. 

(2.3) COMPLETE INTEGRABILITY. The m + 1 Hamiltonians (x\\ur
n), r = 

0,..., m, are rather trivial involutive constants of motion. A reduction of M 
by these Hamiltonians defines a symplectic manifold which, by (2.1.1), has 
dimension 2gR. We use the fact that the eigenvalues of L and Z are constants 
of the motion to construct a Hamiltonian Hj for each vector field X*, j £ W. 

(2.3.1) THEOREM. The gR Neumann vector fields X] of (2.1.4) form a 
completely integrable Hamiltonian system. 

It is known that the level surface MQ = {m* G M\Hj(m) = Cj} of a 
completely integrable system, if real and compact, is a torus. Our last result 
is concerned with the structure of these energy level sets. 

(2.3.2) THEOREM. The level surface of the reduced manifold is locally 
isomorphic to the Zariski-open subset, Jacobian-(theta divisor) of the Jacobian 
variety of the algebraic curve given by det(Z(A) - zl). 

The idea in the proofs of (2.3.1,2) is an algebro-geometical version of the 
solitonic inverse scattering transform. Let M be one of the symplectic mani­
folds of Theorem (2.1.1). We assign to each point m G M an algebraic curve 
C and a divisor 8 = Sm on C. The isomorphism of Theorem (2.3.2), called 
the divisor map, is given by 

m G M - > ( C , ^ (Jac(C), A{6)) 

where A is the Abel map. It contains a method for linearizing the equations of 
motion. The important ideas can be found in [1 and 5]. We apply McKean's 
pole conditions [6, p. 624] to make certain results, especially the description 
of <$, more explicit. 
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