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Recurrence relations occur in a variety of mathematical contexts. They 
connect a set of elements of a sequence of some type, usually either numbers or 
functions, such as coefficients in series expansions obtained by undetermined 
coefficients, moments of weight functions, and members of families of special 
functions. They can be used either to define the sequence or to produce its 
elements. 

They lead to concise algorithms which are useful for either manual or 
automatic calculations and can allow great economy in tabulation or ap­
proximation. Algorithms based on recurrences are particularly useful for 
automatic computers because of the compact programs to which they lead, 
with concomitant economies in memory requirements and in error elimination. 

Serious difficulties may be encountered, however, when inexact arithmetic or 
initial values are used. For example, the modified Bessel functions of the first 
kind, In(x) satisfy the recurrence: 

(1) >Wi(*) = ~(2n/x)yH(x) + ^ I I _ 1 ( J C ) . 

For x = 1, they are positive for all «, and decrease monotonously toward 0 as 
n increases. Using values for 70(1) = 1.266065878 and ^ ( l ) = 0.5651591040, 
correct to 10 significant digits, and computing I2(l), I3Q),... by (1), we find 

" /„(I) 

0 0.1266065878 ( + 1) 
3 0.2216842400 (-1) 
6 0.2296600000 (-4) 
9 -0.1307056000 (-2) 
12 0.1044007639 ( + 2) 

n 7„(1) 

1 0.5651591040 (00) 
4 0.2737126000 (-2) 
7 -0.4176000000 (-5) 
10 0.2360843800 (-1) 
13 -0.2510353092 ( + 3) 

" /„(I) 

2 0.1357476700 (00) 
5 0.2714160000 (-3) 
8 0.8143000000 (-4) 
11 -0.4734758160(00) 
14 0.6537358115(4-4) 

These absurd numerical values are caused by instability in using this recur­
rence for In(x) for increasing n. Such difficulties are familiar to numerical 
mathematicians in many contexts, although they may not be as generally 
recognized as would be desirable. 
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Another solution of (1) is ( - l)nKn(x), where Kn(x) are the modified Bessel 
functions of the third kind which increase rapidly with increasing n. This 
solution can be evaluated without difficulty starting with values of K0(x) and 
— Kx(x) and working forward. Any linear combination of these two solutions 
is, of course, also a solution of (1). The difficulty in computing the In(x) arises 
because any error in the initial values, or in performing the recurrence, is 
equivalent to introducing a component of the rapidly growing ( — l)nKn(x), 
which soon comes to dominate the results. 

This explanation of the instability suggests that one could use (1) to compute 
sequences of modified Bessel functions of the first kind stably if values of two 
contiguous large orders, IN(x) and IN+1(x) say, were known. One rearranges 
(1) to express yn_x in terms of y and yn+1 and computes IN_l(x), IN-2(

X)> • • • 
from it. Any components of the second solution introduced by errors in the 
initial values will rapidly become insignificant compared to the increasing 
values of In(x). Indeed, as pointed out by J. C. P. Miller [1952], one can 
choose arbitrary values for yN(x) and yN+i(x), 1 and 0 for example, and find 
that the lower order elements of the sequence soon become proportional to the 
corresponding In(x). The proportionality constant can be determined by a 
single value of In(x), or even by some normalizing condition such as 
(2) IQ(x) - 2I2(x) + 2IA(x) - 2I6(x) + • • = 1. 
For x = 1.0 and TV* = 14, this algorithm produces values of In(\) with errors 
no greater than one unit in the tenth significant digit f or « < 11. 

Miller's observation suggested a number of questions: 
a. What other sequences of importance in applications can be evaluated to 

specified precision using backward recurrence? 
b. Are there systematic ways of finding recurrences and normalizing condi­

tions for which the Miller algorithm is likely to generate a specified sequence 
successfully? 

c. How can the algorithm be improved to reduce the possibility of overflow 
and underflow, to improve efficiency, or to provide specified accuracy? 

d. What bounds can be set on the errors of the results? 
e. What conditions must the recurrence and the normalizing condition 

satisfy to guarantee convergence? 
f. If the algorithm converges for a given recurrence and normalizing condi­

tion, what is the sequence to which it converges? 
g. Can the algorithm, and the answers to the previous questions, be extended 

to include inhomogeneous recurrences, recurrences of order greater than two, 
or nonlinear recurrences? 

The three-term recurrence is significantly simpler than higher order ones, 
and the major results were established by the time of Gautschi's review papers 
[1967, 1972]. The key to convergence when applying such recurrences in the 
downward direction is the existence of a minimal solution, w{n\ i.e. a solution 
such that w(n)/y(n) = o(l) for all nontrivial solutions y(n) which are not 
proportional to w(n). If a minimal solution exists, the sequences {yN(k)} for 
0 < k < n produced by starting with arbitrary yN(N) and yN(N + 1) (with 
N > n) and computing, successively yN(N - 1), yN(N - 2), . . ., 
yN(n),..., yN(0), will approach proportionality to the sequence {w(k)} as N 
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increases. If the known value of one of the w(k) is used to find the proportion­
ality constant, no further condition is necessary for convergence of the algo­
rithm. If an infinite series must be used, its rate of convergence is also critical. 

Demonstrating the existence and identity of a minimal solution for a given 
recurrence may require a variety of tools drawn from a wide range of classical, 
if no longer generally familiar, fields of mathematics. For recurrences connect­
ing families of special functions, such as our Bessel function example, one may 
find two families which form a basis for the general solution, and draw upon 
the backlog of asymptotic information available. In other cases, the asymptotic 
theory of difference equations, or the properties of related continued fractions 
may be helpful. 

The three-term recurrence 

(3) y(n) + a(n)y(n + 1) + b(n)y(n + 2) = 0 n = 0 ,1 ,2 , . . . 

is formally equivalent to the continued fraction 

(4) y(») = .a(n)
 bM *(* + !) ... 

W y(n + 1) K } a{n + 1) - a(n + 2) -

for all values of n. A theorem of Pincherle shows that (3) has a minimal 
solution if, and only if, the continued fraction (4) converges. Further, the 
backward recurrence algorithm may be cast as evaluating finite segments of the 
continued fraction by starting at the tail and computing successive ratios 
y(k)/y(k + 1). Although formally equivalent to the simple backward recur­
rence, this algorithm reduces the likelihood of overflow when working with 
finite numerals. Of course, an additional connection between three-term recur­
rences and continued fractions comes from the familiar recurrence satisfied by 
the numerators and the denominators of successive convergents. 

Recurrences with more than three terms and inhomogeneous recurrences are 
harder to treat, because of the more complicated structure of their general 
solutions—linear combinations of a full basis set of solutions of the homoge­
neous equation—along with a particular solution, if the recurrence is inhomo­
geneous. It is thus possible that the desired solution is neither dominant, and 
thus computable by forward recurrence, nor minimal, so that the Miller 
algorithm could be applied successfully. Moreover, convergence does not 
depend on the growth properties of the solutions of the original recurrence, but 
on those of its adjoint. Algorithms have been devised, however, which, al­
though more complicated, are often successful in generating not only dominant 
and recessive solutions, but at least some of the intermediate ones. Conver­
gence and error propagation have also been partially analyzed, although the 
results are difficult to apply. 

In this volume Wimp collects (and often extends) algorithms, convergence 
criteria, and error estimates. He supplements the rigorous analytical treatment 
of these questions by many examples illustrating both the behavior of the 
algorithms and the wide variety of problems to which the techniques can be 
applied. Although many of the examples produce sequences of various hyper-
geometric functions, others show applications to such problems as determining 
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moments of distributions, finding Gaussian quadrature rules, expressing the 
solutions of differential equations as power series or as series of orthogonal 
polynomials, and evaluating and transforming such series. 

The last part of the book is concerned with nonlinear multidimensional 
recurrences and iterations. In contrast with the earlier section, where the 
emphasis was on the generation of sequences and on the questions of stability 
and convergence of the backward recurrence as the starting point increased, 
the principal interest with these recurrences is the behavior of the sequences 
which are generated as a function of the initial values. Although the strange 
behavior of sequences which do not converge has attracted considerable recent 
interest, the field is too new for definitive treatment, and cases in which the 
sequences do converge to a limit are treated more fully. These include the 
classical Gauss arithmetic-geometric mean algorithm for the complete elliptic 
integral, as well as the Borchardt and Bartky algorithms. These are of particu­
lar interest both because of the classic nature of the problems which they solve, 
including the rectification of the lemniscate and ellipse, but also because they 
provide approaches to evaluating general elliptic functions and integrals which 
are not hypergeometric and do not satisfy linear differential equations. 

In summary, the numerical mathematician concerned with evaluation of 
special functions will find most of this book of exceptional value, while the 
mathematician interested in other topics will be introduced to many surprising 
results, which draw on a wide spectrum of classical mathematical techniques. 
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Dimension theory is one of the triumphs of point-set topology. When Cantor 
showed that Euclidean spaces of different dimensions nevertheless admitted 
one-one correspondences, and Peano showed that this could even happen in a 
continuous way, the naive ideas about dimension were shattered. Was there 
even a topological invariant that could be called dimension? Brouwer showed 
that this was so, at least for EucHdean spaces; but his work did not lead to a 
satisfactory general theory. The key idea was contained in a remark of 


