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THE VANISHING OF INTERSECTION MULTIPLICITIES 
OF PERFECT COMPLEXES 

BY PAUL ROBERTS1 

Let R be a commutative Noetherian local ring, and let M and N be finitely 
generated i2-modules of finite projective dimension such that M ®# N is a 
module of finite length. Under these hypotheses, Tor2(M, N) is a module of 
finite length for all i and is zero for large i, and one can, following Serre [7], 
define the intersection multiplicity 

X(M,N) = £ ( - 1 ) * length(Tor;(M,iV)). 
i>0 

For any Tî-module Q, let dim Q denote the Krull dimension of Q. Serre 
proved that if R is a regular local ring and M and N are as above, then 

dim M + dim TV < dim R. 

In addition, if R is unramified, he showed that there is a relation between the 
dimensions of M and N and their intersection multiplicities: 

(1) If dim M + dim N < dim R, then x(M, N) = 0. 

(2) If dim M + dim N = dim R, then x(M, JV) > 0. 

Serre conjectured that these two statements hold for all regular local rings. 
In this paper we outline a proof that the first of these statements holds not only 
for arbitrary regular local rings, but for complete intersections and isolated 
singularities as well. This result has been proven independently in the case of 
complete intersections, using if-theoretic methods, by H. Gillet and C. Soulé 
[5]. 

Somewhat more generally, we prove a result on the vanishing of multiplici­
ties for bounded complexes of finitely generated free modules; such complexes 
we call perfect. Let Y = Spec .R, and let E* and F* be perfect complexes. Let 
X = Supp(2?*) = the support of E+ = {P G Spec R\(E*)p is not exact}; let 
W = Supp(F„). Let p denote the closed point of Y. If G* is a complex with 
Supp(G.) = p, let X(G.) = E i e z ( - l ) ' l eng th^(G, ) ) . 

THEOREM 1. Let R be a local ring which is a homomorphic image of 
a regular local ring. Assume that R is either a complete intersection or an 
isolated singularity. Let E* and F+ be perfect complexes with supports X and 
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W respectively. If 
l.XnW=p, and 

2. dimX + d imW<dimY, 
then x(£* ®R F*) = 0. 

The result on the vanishing of x(M, N) stated above follows by applying 
Theorem 1 to free resolutions of M and N. 

The proof of Theorem 1 uses the theory of localized Chern characters as 
defined in Baum, Fulton and MacPherson [1] and described in Fulton [4, 
Chapter 18]. To obtain the result in the desired generality, we use the theory 
for schemes of finite type over a regular scheme as described in Fulton [4, 
Chapter 20]. 

It had been conjectured (see Szpiro [8]) that a system of invariants of this 
kind, which generalize the Euler characteristic in codimension zero and the 
MacRae invariant in codimension one, could be used to prove a vanishing 
theorem for x(M,N) in the more general case where only M was assumed 
to have finite projective dimension. This was proven in this way by Peskine 
and Szpiro [6] in the graded case and by Foxby [3] when N has dimension 
one, providing more evidence that this should be possible. However, a recent 
example of Dutta, Hochster and McLaughlin [2] showed that the more general 
version is false; in their example the ring R is both a complete intersection 
(in fact, a hypersurface) and an isolated singularity. It thus appears that the 
hypothesis in Theorem 1, where both modules (or complexes) are assumed to 
have finite projective dimension, is the most reasonable. 

Let R, Y = Specfl, F*, F*, X = Supp(F*)> and W = Supp(F*) be 
as above. Let A*Y = 0 ^ 7 be the group of cycles on Y modulo rational 
equivalence. The localized Chern character of E* (and similarly for any perfect 
complex) is a sum, 

ch£(F,) = ch0(F*) + chi(£*) + • • • 

where, for each i and A:, and for every subscheme Z of Y, chi(E*) defines a map 
from AkZ to Ak-i{Z fi X). These operators satisfy the following properties 
(among others): 

1 (MULTIPLICATIVITY). Given two perfect complexes E* and F*, we have 

d&nw{Em ® F.) = ch£(£,)ch£(F*). 

Note that Supp(ü7* (8) F*) = X fl W. The multiplication on the right is 
defined for components chi(E*) and ch-^F*) as the composition 

Ak(z) c h ^ } Ak-j(z n w) c h ^ } Ak-j-iiz n ^ n i ) . 

2 (THE LOCAL RIEMANN-ROCH FORMULA). There is a class r(Y) in 
A* (Y) such that if F* is a perfect complex with support p, we have 

X(E,)=chl(Et)(T(Y)). 

If R is a complete intersection, then T(Y) = [Y] and lies in AnYy where n is 
the dimension of Y. 
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These formulas can be found in Fulton [4, Chapter 18]. The main lemma 
in the proof of Theorem 1 is to show that the localized Chern characters also 
satisfy the following property: 

3 (COMMUTATIVITY). For all i and jf, we have 

chi(E*)chj{F*) = chjiFJchiiE.). 

For the remainder of the paper, we let n denote the dimension of Y. 

PROPOSITION 1. If E* and F* satisfy hypotheses 1 and 2 of Theorem 1, 
then chn(i£* <g> F*)(a) = 0 for all a in AnY. 

PROOF. From the multiplicativity property, we have 

chn{E* ® F*)(a) = ^2 ch,(^)ch,(F*)(a). 
i+j=n 

Assume first that j < n—dim W, so that dim W < n—j. Then chj (F*){OL) is an 
element of An-jW, which is zero, so chi(E*)ch3(F*)(a) = 0. Using commu-
tativity, we similarly deduce that if i < n - dimX, then chi(E*)chj(F*){a) = 
chJ(F*)chi(£'*)(a) = 0. Hypothesis 2 of Theorem 1 implies that one of these 
inequalities must hold for every i and j with i' + j = n, so we conclude that 
ch n (£*(g>ig(a)=0. 

Theorem 1 for complete intersections now follows from Proposition 1, the 
fact that T(Y) is an element of AnY in this case, and the local Riemann-Roch 
formula. 

If F is a regular scheme, then every closed integral subscheme V of dimen­
sion k has a resolution G* by vector bundles over Y, and chn_fc(G*)([F]) = [V] 
in AkY. Using this fact, the commutativity property, and an argument similar 
to that in Proposition 1, one can show that chi(E*)(ot) = 0 for all a G A^Y 
for all k when i <n- dimX and Y is regular. 

PROPOSITION 2. Let R be an isolated singularity {i.e., Y = Y — p is a 
regular scheme). Then, under the hypotheses of Theorem 1, for any integer k 
and all a € AkY, we have chfc(£'* ® F*)(a) = 0. 

PROOF. AS in the proof of Proposition 1, we can assume that j < n -
àimW. Let W = W-p. Since Y is regular, the element chj(F*)(a) of Ak-jW 
must become zero when restricted to W, so it is the image of an element of 
Afc-j(p). Consider the commutative diagram 

Ak-j(p) —• Ak-jW 
chi(E.) I | chi(Em) 

A0{p) —• Ao(p). 

Since Am(p) ^ 0 only for m = 0, the only case when chi(E*)chj(F*)(a) 
might not be zero is when k = j and i = 0. However, cho(i£*) is the operator 
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which multiplies an element by ^2ieZ(-lYrank(Ei), and, since dimX < 
dimy, this number is zero. Hence the product vanishes in this case also, and 
this concludes the proof. 

Theorem 1 for isolated singularities now follows immediately from Propo­
sition 2 and the local Riemann-Roch formula. 
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