
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 11, Number 2, October 1984 

WEIGHTED POLYNOMIALS ON FINITE AND INFINITE 
INTERVALS: A UNIFIED APPROACH 

BY H. N. MHASKAR AND E. B. SAFF1 

1. Introduction. As described in the survey article [6], the study of 
"incomplete polynomials", as introduced by G. G. Lorentz [4] in 1976, leads to 
results on the asymptotic properties of polynomials orthogonal on an infinite 
interval (cf. [5]) and to theorems on the convergence of uray sequences" of 
Padé approximants for Stieltjes functions. Here we present a generalization 
of the theory for incomplete polynomials which unifies many of the previous 
results. The essential question which serves as the starting point for the 
investigation is the following:1 

Suppose w(x) is a nonnegative weight function continuous on its support 
E C R = (—oo, oo). (By the support of w we mean the closure of the set 
where w is positive.) Assume that w(x) vanishes at points of E; that is, 
Z := {x G E : w(x) = 0} ^ 0 (or, in case E is unbounded, then |x|w(x) —• 0 
as |x| —> oo). If Pn is an arbitrary polynomial of degree at most n, then the 
sup norm over E of the weighted polynomial [w(x)]nPn(x) actually "lives" on 
some compact set S C E — Z which is independent of n and Pn. The question 
is to determine the smallest such set S. 

For example, if w(x) = xö / ( 1~ö ) with E = [0, 1],0 < 0 < 1, then, as shown 
in [2, 8], S is the subinterval [02, 1]. 

In this paper we use potential theoretic methods to show how S can be 
obtained for a class of weight functions. The assumptions on w are given in 

DEFINITION 1.1. Let w: R —• [0, +oo). We say that w is an admissible 
weight function if each of the following properties holds: 

(i) E := supp(w) has positive capacity. 
(ii) The restriction of w to E is continuous on E. 
(iii) The set Z := {x G E: w(x) = 0} has capacity zero. 
(iv) If E is unbounded, then |x|w;(x) —• 0 as |x| —• oo, x G E. 
Here, and throughout the paper, the term "capacity" means inner loga

rithmic capacity (cf. [10, p. 55]). For any set E C R2, its capacity will 
be denoted by C(E). If K is a compact set with positive capacity, then VK 
denotes the unique unit equilibrium measure on K with the property that (cf. 
[10, p. 60]) 

(1.1) f log\x-t\duK(t)=\ogC(K) 
JK 

quasi-everywhere (q.e.) on K. (A property is said to hold q.e. on a set A if 
the subset E of A where it does not hold satisfies C(E) = 0.) 
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For an admissible weight w, we always set 

(1.2) Q(x):=log(l/w(x)). 

Finally, if K C E — Z is compact and C{K) > 0, we define the F-functional 
of K by the formula 

(1.3) F(K):=logC(K)- f QdvK. 
JK 

The theorems of §2 show that, for a class of weight functions, S is derived 
by maximizing the F-functional. Also, if 7rm denotes the collection of all 
polynomials of degree at most m and || • ||^ denotes the sup norm over a set A, 
we describe the asymptotic behavior of the errors in the weighted Chebyshev 
problem 

(1.4) En(w) := M{\\[w{x)}n{xn - p n - i (x )} | | E : pn-i e 7rn_i}, 

n = l , 2 , . . . , 

as well as asymptotic properties (as n —» oo) of the extremal polynomials 
Tn(x; w) = xn -\ G 7rn which satisfy 

(1.5) En(w) = \\[w(x)]nTn(x; w)||E, n = 1, 2 , . . . . 

2. Statements of main results. 

THEOREM 2 . 1 . Let w be an admissible weight function with support E. 
Then there exists a compact set S C E — Z with C(S) > 0 that has the 
following properties. 

(a) For every compact set K C E — Z with C(K) > 0, 

(2.1) F(K) < F(S), 

where F is defined in (1.3). 
(b) If equality holds in (2.1), then S C K. 
(c) For any positive integer n, if Pn G 7rn and the inequality 

(2.2) |[w(x)]nPn(x)| < M (M = constant) 

holds q.e. on S, then it holds q.e. on E. 
(d) The errors En(w) defined in (1.4) satisfy 

(2.3) [Eniw)]1'» > exp(F(5)), V n = l , 2 , . . . . 

Clearly properties (a) and (b) uniquely determine the set S = S(w) of 
Theorem 2.1. In the special case when w(x) = 1 on E and E is compact, then 
5 is just the support of the equilibrium measure £>s for E. 

Of practical importance is the characterization of S given in 

THEOREM 2.2. Assume that, in Theorem 2.1, the setT, — Z is the finite 
union of disjoint nondegenerate intervals and that Q(x) of (1.2) is convex in 
each of the components of E — Z. Then the following additional properties 
hold. 

(a) The compact set S of Theorem 2.1 is the finite union of nondegenerate 
disjoint closed intervals, at most one in each component ofYj — Z. 
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(b) Equality holds in (2.1) if and only if S C K and C(K - S) = 0. 
(c) For any positive integer n, if Pn G 7rn, then 

(2.4) | | H x ) p P n ( z ) | | E = \\[w{x)}nPn(x)\\s. 

(d) The errors En(w) of (1.4) satisfy 

(2.5) lim [£n(«0]1 / n = exp(F(5)). 
n—>oo 

The proof of Theorem 2.1 follows by showing that S is actually the sup
port of a measure which solves an extremal problem for generalized energy 
integrals, as we now describe. Let At(E) denote the collection of all positive 
unit Borel measures // with supp(/i) C E, and define 

(2.6) Iw[fi] := ƒ ƒ [log \x-t\- Q{x) - Q{t)} d»{x) d»{t) 

for // G M (E). Following methods of Frostman (cf. [10]) we obtain 

THEOREM 2 .3 . Let w be an admissible weight function with support E 
and let 

(2.7) K ; :=sup{/w ;[M]:/iGM(E)}. 

Then there exists a unique measure /JLW G M (E) such that Iw[iiw] = Vw. 
Moreover, Sw := supp(/x^) satisfies all the properties stated in Theorem 2.1; 
that is, Sw

 = S. 

Concerning the limiting distribution of the zeros of the extremal polyno
mials Tn(x\w) we have 

THEOREM 2.4. With the assumptions of Theorem 2.2, let {xk^t^i de
note the zeros of the extremal polynomial Tn(x;w) of (1.5), and let vn be the 
associated unit Borel measure defined by 

un(B) := (l/n)|{* eB}\. 
Then, in the weak star topology, 

(2.8) lim un = /j,w, 
n—+oo 

where fXy) tS the extremal measure of Theorem 2.3. Furthermore, 

(2.9) Jdm o |T n(^;^) | 1 / n = e x P n log \z-t\d»w{t)\ 

uniformly on every compact set of the plane disjoint from the convex hull [A, r] 
ofS. 

3. Applications. For Jacobi weights of the form w(x) = xe^x~e\{) < 
0 < 1,E = [0, 1], or w{x) = (1 - x)A l(l + x)A2, Ai, A2 > 0,E = [-1, 1], 
maximizing the associated F-functional leads to the results of [2, 9, 3 and 7] 
concerning incomplete polynomials. 

For a weight W on R of the form W(x) = exp(—q(x)), where q(x) is even 
and convex on R and q(x)/\nx —• oo as x —• oo, we can also analyze the 
extremal problems 
(3.1) 

en{W) := -mî{\\W(x){xn - p„_1(x)}| |R : p n _ ! € *„_!>, n = 1, 2 , . . . , 

file:///x-t/-
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and the corresponding extremal polynomials tn(x;W) = xn + • • • G 7rn sat
isfying en(W) = \\W(x)tn(x;W)\\n. After maximizing the appropriate F-
functional, Theorem 2.2(c) yields 

(3.2) \\W(x)Pn(x)\\R = \\W(x)Pn(x)\\[-an,an], VPneTTn, 

where a = an is a root of the equation 

(3.3) n = I f ' aX^ax) dx. 

Letting wn(x) := exp(—q(anx)/n) with E n := supp(wn) = [—1, 1], it follows 
from (3.2) that 

en{W) = a%En{wn), tn(anx; W) = < r n ( x ; wn). 

If the weights wn converge uniformly to an admissible weight w on [—1, 1], 
it can be shown that the asymptotic behaviors (as n —• oo) of En(wn) and 
Tn(x'ywn) are the same as that for En(w) and Tn(x-,w). These facts lead to 
the results of [5] for W(x) = exp(—|x|a),o: > 1, as well as to L°°-analogue of 
the L2-results in [1] for W(x) = exp(—exp|x|). 
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