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SECONDARY CLASSES AND TRANSVERSE MEASURE 
THEORY OF A FOLIATION 

BY S. HURDER AND A. KATOK 

1. The purpose of this note is to announce several theorems showing how 
the secondary classes of a foliation J of a compact manifold X depend upon 
the measure theoretic properties of the equivalence relation determined by the 
foliation. The relevant properties are: 

(i) amenability [14], which is equivalent to hyperfiniteness by Connes-
Feldman-Weiss [3]; and 

(ii) the Murray-von Neumann type. 
A set B C X is saturated if it is the union of leaves of 7. The equivalence 

relation 7 has type I if there is a measurable subset of X which intersects 
almost every leaf exactly once; type II if it admits an invariant measure, finite 
or infinite in the given measure class but does not have an essential saturated 
set of type I; and type III if it does not have any essential saturated sets of 
types I or II. Every equivalence relation can be decomposed into parts of types 
I, II, and III. These types correspond to certain algebraic properties of the 
von Neumann algebra M(X, 7) associated with the equivalence relation [1, 
13]. 

Let X be a compact manifold without boundary and J a C 2 , codimension-
n foliation of X. The secondary classes are given by a map A* : H*(WOn) —• 
H*(X; R) with image spanned by the classes of the form A*(yicj). Here, yi 
is a basis element for the relative cohomology if*(gln, On), and cj is a Chern 
form of degree at most 2n. If degree cj = 2n, we say the class is residual. The 
Godbillon-Vey classes are those of the form A*(yicj) € # 2 n + 1 ( X ; R ) , with 
2/1 G if1(gln ,On) , the normalized basis element. The generalized Godbillon-
Vey classes are those of the form A*(yiy/Cj), where yi = 1 is permitted. (For 
a convenient reference, see [11].) 

The residual secondary classes have the unusual property that they localize 
to the measurable saturated subsets of X: for each such B c X and residual 
yicj e # p (WO n ) , the restriction A*(2//Cj)|£ G HP(X) is well defined [5]. 
The following theorems are stated for the secondary classes of 7 on X, but 
corresponding theorems also hold for the localized classes A*(yiCj)\B of the 
restriction 7\B. 

THEOREM 1. If 7 has type I, then all residual secondary classes of 7 are 
zero. 

Since 7 has type I if and only if it is a fibration in the category of measurable 
equivalence relations, Theorem 1 generalizes the well-known fact that the 
secondary classes are zero for a smooth fibration. 
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THEOREM 2. Assume there is a generalized G-V class which is nonzero 
for 7. Then 7 contains a nontrivial component of type III. If 7 is ergodic, 
M(X, 7) must be a type III factor. 

The factors of type III are divided into subtypes IIIo, III A for 0 < À < 1 and 
IIIi. An ergodic foliation of type HI A has an absolutely continuous transverse 
measure which is multiplied by powers of À under the holonomy maps. If this 
measure is given by a C1 density, it is easy to see that the G-V class A*(yiCi) 
is zero [6]. One can speculate whether this holds for all type IIIA-foliations 
and what role the type III classification plays in the values of the G-V classes. 
For a recent development in the case of type IIIo foliations, see Connes [2]. 

THEOREM 3. If 7 is amenable then all residual secondary classes A* (yicj) 
e i f p + 2 n (X;R) forp>\ are zero. 

The original Rousarrie examples of foliations with A*(t/icy) nonzero are 
amenable, so Theorem 3 cannot be extended to the secondary classes of degree 
2n + 1 without additional hypotheses. This is discussed further in [6]. 

If almost every leaf of 7 has subexponential growth, then 7 is amenable. 
Combining Theorem 3 with Theorem 1 of [6] yields: 

COROLLARY 4. If almost every leaf of 7 has subexponential growth, then 
all residual secondary classes of 7 are zero. 

2. Given a generalized G-V class yicj G #*(WOn), using Thurston's re­
alization theorems and the topological methods of [7, 9] it is often possible 
to construct on a given compact orientable manifold X uncountably many 
distinct codimension-n foliations for which A*(t//Cj) takes distinct nonzero 
values. The above theorems then place restrictions on the possible dynamics 
of such 7 and the measure properties of its von Neumann algebra M(X, 7). 
Our general expectation is that the residual secondary classes of 7 directly 
define invariants of M(X, 7) and the C -algebra C (X, 7) (cf. [2]) and for 
yicj with yi G üT*(sln, On) we conjecture these classes are invariants of orbit 
equivalence. 

3. Sketch of proofs. For each cohomology class yi G üT*(gln,On) there 
is a Weil measure x(Vi) o n t n e quotient measure space X/7. These generalize 
the Godbillon measure g = x(~~27r • y\) introduced by Duminy to study the 
G-V class of codimension one foliations [4]. The residual secondary classes of 
7 are determined by the values of the Weil measures, so it suffices to show 
the appropriate xivi) = 0- Theorems 1-3 are consequences of our study 
of how the measures x(yi) depend on the transverse dynamics of 7. Let 
Q —> X denote the normal bundle to 7. The following is an essential tool for 
calculating the Weil measures. 

THEOREM 5. 1 Let ho \be a\measurable\metric on\Q —> X\whose restric­
tion to each leaf of 7 is smooth. If ho has a uniform bound on all of X for the 
norms of the first derivatives of ho in leaf directions, then the Weil measure 

1This result was announced by the first author at the AMS Special Session on Foliations 
in East Lansing, Michigan, November 1982. 
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x{yi) can be calculated from the measurable family of closed forms {x(yi)\L 
s.t L is a leaf of 7} defined leaf wise by means of the smooth metrics {ho\L 
s.t. L is a leaf of 7}. 

To prove Theorem 1 we use the assumption that 7 has a measurable cross-
section to show there is a metric h$ on Q satisfying Theorem 5 and which 
is almost everywhere holonomy invariant. This implies the restricted classes 
x{yi)\L vanish a.e., so the measures xivi) = 0 a n d the theorem follows. 

For Theorem 2 assume there is an absolutely continuous invariant trans­
verse measure for 7 with almost every leaf essential. Then Theorem 5 implies 
the Godbillon measure g = 0 and all classes &*(yiyicj) = 0, a contradiction. 

For Theorem 3 we use a fundamental theorem of Zimmer [14] to conclude 
that the normal smooth GLn(R)-cocycle of an amenable foliation is measur­
ably equivalent to a cocycle taking values in one of 2n maximal amenable 
subgroups of GLn(R). The key result is to show this cocycle can be made 
tempered or locally bounded in leaf directions so that Theorem 5 applies. This 
follows from some general results concerning cocycles over metric equivalence 
relations with values in linear Lie groups. More specifically, let 7 be a dis­
crete equivalence relation provided with a measurable family of metrics on 
the leaves so that any ball contains finitely many elements and the number of 
those elements grow at most exponentially with the radius. We call such an 
object a metric equivalence relation of exponential type. 

THEOREM 6. Let<p: 7 —> H be a measurable cocycle from a metric equiv­
alence relation of exponential type into a maximal amenable subgroup H of 
GLn(R). If (p is measurably equivalent to a tempered cocycle with values in 
GLn(R), it is also measurably equivalent to a tempered cocycle with values in 
H. 

This is one of the series of results concerning the asymptotic behavior and 
tempering of cocycles over group actions and metric equivalence relations. 
Other results will appear in [10, 12]. 

We then use a result of [8] to conclude that for yi of degree p > 1, the class 
A*(y/)|L is exact for a.e. leaf L, and there is a global measurable bounded 
(p — l)-form on X implementing this. By the leafwise Stokes' Theorem [5] 
and Theorem 5, the Weil measure xG/i) ls z e r o-

Full proofs of the above plus related results will appear in [10]. 
Our techniques suggest the following: 
CONJECTURE 7. For yi G £P(sln ,On) , the Weil measure x{yi) is quasi-

invariant under orbit equivalence: If (X, 7) and (X', 7') are orbit equivalent, 
then x{yi) assigns the value zero to corresponding sets in X/7 and Xf/7'. 
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