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The basic concepts of Riemannian geometry have become useful in a 
surprising variety of mathematical subjects. The terminology of manifolds, 
bundles, Riemannian metrics, and connections has become a lingua franca over 
much of partial differential equations, mathematical physics, and algebraic 
geometry, among other fields. This increasingly widespread use of the 
terminology and methods of geometry has tended to obscure the fact that 
Riemannian geometry as such is a subject with a quite precisely focused 
program, namely, to determine how the topology of a manifold is influenced 
by the local properties of its metric structure. These local properties are usually 
formulated in terms of curvature; this formulation is justified by the theorem 
of E. Cartan that the curvature tensor and its covariant derivatives of all orders 
at a point determine the formal Taylor expansion of the metric at that point. 
The program of obtaining global topological information from local metric 
information actually applies only to complete Riemannian manifolds, i.e., 
those that are complete as metric spaces when the distance between points is 
defined to be the infimum of the Riemannian-metric arc length of curves 
joining the two points. This restriction to complete manifolds, long a standard 
one in the subject, has been given explicit justification by a result of M. 
Gromov that a noncompact manifold admits noncomplete Riemannian metrics 
with essentially arbitrary curvature behavior. 

A complete Riemannian manifold has the property that the geodesies 
(curves that locally minimize distance) emanating from a fixed but arbitrary 
point cover, taken together, the whole manifold. It follows that understanding 
the behavior of these geodesies completely would yield total information about 
the global structure of the manifold itself. This rather vague description can be 
given real mathematical substance; and from this general idea, a body of 
results has been obtained that is the central part of Riemannian geometry. 
These results are the subject of this book. 

To describe the contents of the book in more detail, it is necessary to recall 
the concept of Riemannian sectional curvature. This concept is a natural 
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extension of the older idea of the Gauss curvature of a surface. If M is a 
Riemannian manifold, /? a point of M, and P a two-dimensional subspace of 
the tangent space to M at/?, then the arc-length parameter geodesies through/? 
with tangent vector lying in P form near/? a C°° two-dimensional submanifold 
of M. The Gauss curvature of this surface (with its metric induced from that of 
M ) at p is by definition the sectional curvature of the 2-plane P. It is an 
algebraic observation that the sectional curvature function at a point p 
determines uniquely the curvature tensor at /?, or, equivalently, it determines 
the metric near /? up to and including the second order part of its Taylor 
expansion at /?. It turns out that the most geometrically natural way of 
specifying local metric restrictions on a Riemannian manifold, so as to yield 
global topological information, is to make some hypothesis about sectional 
curvature. 

The most obvious question of this nature is: what are the complete mani­
folds of constant sectional curvature? Because multiplication of the metric by a 
positive constant X divides the sectional curvature by the same constant, this 
question reduces to what are the manifolds of constant sectional curvature +1, 
- 1 , or 0—the answers being, if the manifold is assumed simply connected, the 
unit spheres (of each dimension), the hyperbolic spaces, and the euclidean 
spaces. [The non-simply-connected constant curvature manifolds are quotients 
of these; the determination of all possible quotients is highly nontrivial, 
however, and in fact has been carried out completely only for the +1 case, by 
J. Wolf.] 

Once the constant curvature situation is understood, it is natural to investi­
gate the possibilities of almost constant curvature. With the behavior under 
scaling (as noted) in view, the natural form of this restriction becomes, in the 
positive curvature case, 0 < 8 < sectional curvature < 1 for some 8. The 
corresponding condition for the nonpositive curvature cases is largely sub­
sumed by the classical theorem of v. Mangoldt-Hadamard-Cartan that a 
complete simply connected Riemannian manifold of nonpositive curvature is 
diffeomorphic to euclidean space. (Of course, the question of what types of 
quotients occur to yield the non-simply-connected manifolds of nonpositive 
curvature arises; this will be further discussed momentarily.) The first result in 
the positive curvature case was the theorem of S. Myers, extending (much) 
earlier work of Bonnet: A complete Riemannian manifold with 8 < sectional 
curvature for some 8 > 0 is necessarily compact. (Myers' result actually 
requires only a positive lower bound on the Ricci curvature; rather strangely, 
Ricci curvature is not mentioned in this book.) The paraboloid of revolution in 
R3 shows that a positive lower bound, not just positivity itself, is needed to 
imply compactness. 

The Bonnet-Myers theorem and the v. Mangoldt-Hadamard-Cartan theorem 
illustrate the fundamental intuitions concerning how curvature controls geo­
desic behavior: (more) positivity of curvature makes geodesies diverge less 
rapidly, and more negativity of curvature makes them diverge more rapidly. In 
particular, the Bonnet-Myers proof compares the geodesies on the manifold 
with sectional curvature > 8 to those on the sphere of curvature equal to 8 
everywhere; by the intuitive principle noted, one would expect the manifold's 
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geodesies to converge sooner than the sphere's. The precise (and true) version 
is that the manifold must have diameter < the diameter of the sphere. In the 
case of the v. Mangoldt-Hadamard-Cartan theorem, one compares the mani­
fold to euclidean space, and the conclusion is that geodesies from a fixed point 
of the manifold diverge forever, as in euclidean space, forcing the manifold to 
be topologically trivial. Caution is needed here: strictly speaking, the compari­
son principle applies only to varying a geodesic through nearby ones. In the 
nonpositive curvature case, simple connectivity is utilized to extend the com­
parison to give global results. The intuitive comparison principle just described 
is of course given precise form via the ideas of second variation and Jacobi 
fields and the Rauch Comparison Theorem. 

A compact simply-connected manifold of positive sectional curvature need 
not be topologically a sphere. The complex projective spaces of complex 
dimension at least two admit Riemannian metrics with sectional curvature 
varying between 1/4 and 1. Numerous other examples of positive curvature 
compact manifolds are known (quaternionic projective spaces and certain 
other homogeneous spaces, and some nonhomogeneous examples recently 
discovered by J. Eschenburg). One of the outstanding results of modern 
geometry is that no nonspherical example can satisfy 1/4 < sectional curva­
ture < 1. Precisely, if M is a complete simply-connected Riemannian manifold 
with 1/4 < sectional curvature < 1, then M is homeomorphic to a sphere. The 
proof of this result, originally obtained by M. Berger for even-dimensional 
manifolds, and by W. Klingenberg (the present author) for odd-dimensional 
ones, involves understanding of geodesic behavior going far beyond simple 
application of comparison principles. Subtle and ingenious argument is re­
quired, although the comparison principles are still the basis of the arguments. 

Noncompact manifolds of nonnegative curvature can also be well under­
stood by analysis of geodesic behavior. The results are that a complete 
noncompact manifold of everywhere positive sectional curvature is diffeomor-
phic to a euclidean space (proved by D. GromoU and W. Meyer); and a 
noncompact complete manifold of nonnegative curvature is diffeomorphic to 
the total space of a vector bundle over a compact manifold of nonnegative 
curvature (proved by J. Cheeger and D. GromoU, after the Gromoll-Meyer 
result). These results are again based on the comparison principle, in the 
following form: In a manifold of nonnegative curvature, the sphere of radius r 
around an arbitrary point/? ( = { q\ distance^, q) = r }) is less convex than the 
euclidean sphere of radius r. In general, such spheres need not be smooth, so 
the precise interpretation of this principle involves some further technical 
considerations. In application, this principle implies that if C: [0, oo) -> M is a 
geodesic ray (i.e., C is minimizing between any two of its points), then 

M ~ U {tfl distance^, C(t + r)) < t) 
t>0 

is convex for each r > 0. The construction of such convex sets enables one to 
show, by Morse Theory, that the topology of the manifold is entirely de­
termined by that of certain compact convex subsets, from which determination 
the theorem is then deduced. 
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The global theorems just described (the v. Mangoldt-Cartan-Hadamard 
Theorem, the Sphere Theorem of Berger and Klingenberg, and the theorems of 
Gromoll-Meyer and Cheeger-Gromoll) are the main goals of the first two parts 
(chapters) of this three-part book. The first chapter presents basic material 
on manifolds, covariant derivatives, local behavior of geodesies, and Jacobi 
fields. The second chapter presents more detailed analysis of geodesies—cut 
locus, completeness, Morse theory, Rauch and Toponogov comparison theo­
rems—and the proofs of the theorems. The Gromoll-Meyer and Cheeger-
Gromoll theorems are in fact proved only up to homotopy, with the rather 
messy details of the diffeomorphism statements summarized briefly with 
references. These first two parts of the book together give a clear and still quite 
concise (255 pages) presentation of the essentials of global Riemannian geome­
try. 

The third chapter of the book pursues a related, but somewhat different 
direction, namely, the consideration of the geodesies of a Riemannian mani­
fold as a dynamical system, the geodesic flow. In more detail: on the tangent 
bundle of a complete Riemannian manifold, there is a one-parameter family of 
diffeomorphisms <J>, defined by, for V a tangent vector at p in M, <j>t(V) = the 
tangent vector at time t of the geodesic with intial (t = 0) point p and initial 
tangent vector V. This flow is of great interest as a fundamental example for 
the general theory of dynamical systems; also, information about the geodesic 
flow can be used to prove results about the Riemannian geometry of mani­
folds, often in unexpected ways. The study of the geodesic flow is particularly 
relevant to the geometrically natural question of the existence and properties of 
smoothly closed geodesies, such geodesies being exactly the closed orbits of the 
flow. This question is under active investigation in contemporary research, as it 
has been continuously at least since the work of Poincaré on the subject. 
Although this part of the book stops, in general, short (presumably in the 
interests of brevity) of contemporary results, the material presented does 
provide an excellent introduction to the basic modes of thought about the 
subject. What makes the presentation especially useful and attractive is that 
many results of a concrete, detailed nature are presented—for instance, a 
detailed analysis of geodesies on ellipsoids in R3, and a concrete proof without 
use of Hubert manifolds of the Lyusternik-Schnirelmann theorem that there 
are three simple closed geodesies on a surface of genus zero. There is also an 
extended discussion of compact manifolds of negative curvature including 
Preismann's theorem that every abelian subgroup of the fundamental group of 
such a manifold is cyclic and recent generalizations of this result, and an 
introduction to current results on the geodesic flow of such manifolds (topo­
logical transitivity is proved). This abundance of concrete results and examples 
enables the reader to obtain some intuitive insights that are a very useful 
preparation for, and adjunct to, the powerful, but more formal, less intuitive 
methods (Hubert manifolds, ergodic theory, general dynamical systems theory) 
of contemporary research. 

This book is outstanding in its choice of material. It offers the reader an 
opportunity to progress from minimal prerequisites to substantial competence 
in Riemannian geometry. The formal prerequisites are truly minimal—almost 
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nothing is required except a knowledge of calculus and, occasionally, Hilbert 
spaces and homotopy theory, to the extent of the definition of the fundamental 
group and higher homotopy groups. Realistically, though, a reader will need 
some considerable prior familiarity with manifolds, for without it the introduc­
tory material (the first half of Chapter 1) will seem very terse and overly 
formal. It is in fact quite formal in any case, because the author wants to allow 
manifolds modeled on separable Hilbert spaces, and this allowance necessitates 
more formal care than is required in the finite-dimensional situation. Once past 
this slightly forbidding initial development, however, the reader will find a 
mixture of the general and the concrete that to my mind is essentially an ideal 
presentation of the subject. For me, and I imagine for all geometers, there is no 
doubt that the material in this book is some of the "right stuff', in T. Wolfe's 
phrase, and that it is rightly presented as well. 

One caveat is in order: The book is not a history of the subject, and the 
references should be used as a guide to further reading only, not as a complete 
picture of the historical development. The attributions are accurate as such, 
but many important contributions go unmentioned. For instance, in discussing 
the differentiable sphere theorem (p. 239) the author cites only K. Grove, H. 
Karcher and E. Ruh's paper—.76 pinching implies standard sphere. This is 
indeed correct, but the reader is left unaware that Grove-Karcher-Ruh is just a 
small numerical improvement of the fundamental paper of K. Shiohama and 
M. Sugimoto (with improvements by Karcher—.87 pinching), and is also left 
completely in the dark about the earlier history of the theorem, e.g., contribu­
tions by Gromoll, E. Calabi and Y. Shikata. This is not a criticism of the book 
as such—not every book need be a history—but the reader is herewith warned 
that complete, detailed, historical, even recent historical, references are not 
provided. 

The question arises how this book compares with others that cover the same 
material. The answer is that there are essentially no others. S. Kobayashi's and 
K. Nomizu's Foundations of differential geometry covers more topics and does 
more general versions of the basic material, but it does not treat the more 
advanced topics of the present book in anything like the same depth, 
J. Cheeger's and D. Ebin's Comparison theorems in Riemannian geometry does 
treat the topics of Chapter 2 (e.g. manifolds of nonnegative curvature and the 
sphere theorem) of the present book in depth, but its foundational material is 
cursory and it contains no material along the lines of the present book's 
Chapter 3 (e.g., geodesies as a dynamical system). In short, the present book 
presents a unique, and excellent, selection of topics, and it presents them well. 
In my view, it is the best available introduction to those topics in contem­
porary Riemannian geometry centering around the geometry of geodesies. No 
serious student or practitioner of geometry should be without it. 

I noted also that, in a world of mathematics books that often seem to be 
printed on newsprint but priced like first-edition collectors items, this book is a 
happy exception. It is elegantly designed and printed and costs a quite 
reasonable $49.00 (for 380 pp.). 

ROBERT E. GREENE 


