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SINGULAR ASYMPTOTICS APPROACH TO PARTIAL 
DIFFERENTIAL EQUATIONS WITH ISOLATED SINGULARITIES 

IN THE COEFFICIENTS 

BY CONSTANTINE J. CALLIAS1 AND GUNTHER A. UHLMANN2 

1. Introduction. In this note we announce some results on the heat 
equation (§3) and scattering theory (§4) associated with some differential 
operators with isolated singularities in the coefficients. The results are based 
on recent joint work by the authors [CU] and on independent work by the 
first author [CI, C2, C3]. We study the small time asymptotics of the heat 
kernel and the large frequency asymptotics of the scattering amplitude. These 
questions are classical but need reinterpretation because of the singularities. 
Our general approach is to solve the differential equation in question away 
from the singularity and then try to extend it across. In all of our problems, 
we found that we can handle the situation by using a singular asymptotics 
lemma in P'(R) (§2) for functions of the form f(s/x,x) as s —• 0 with certain 
quite general conditions on ƒ. We believe that the latter result is of general 
interest and wide applicability [CI, C2, C3, CM, CU, U]. 

2. Singular asymptotics. (This is based on [CU].) 

THEOREM 2.1. Let f(y, x) G C°°((0, oo)xR) be such that there exist functions 
fnjfa) G C°°(R), a sequence of complex fcn, Refcn Î oo; and nonnegative inte­
gers ln such that 

(2.1) %f{v,x)- £ EtëfnAxVy^ilnyY 
n=0 j=0 

<Ct,k,ByRekN+1-€ 

asy-*0+ for all k,N,e> 0, and for all \x\ < B. Assume further that 

\dk
xf(y,x)\<cky

kgk{y) 

for all x in a neighborhood ofQ,y —• oo, where /0
C gk{l/x)dx < oo for some 

c > 0. Let oo G C, Re w < 0. Then for all <f> G Cg^R) we have an asymptotic 
expansion as s —• 0+ : 
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J0 KX ' n=0 j=0 
a=kn 

fcn+u>#m+l€N 

+ £ E1«°0»»),"+1K»^) 
«n=t, >=° 

fcn+u;=m+l€N 
wtoere ^a,j(^)^ v0)J(a;) G P'("-°°>oo), Rear < 0. Moreover, 

sing supp iza,j (u) C {0} and supp v0|>7 (a;) Ç {0}. 

Note that (2.1) implies an obvious asymptotic expansion of 

for 0 G CQ^O, oo) as s —• 0+. The theorem gives an extension of the expansion 
for (j> G CQ^—OO, OO). We can also get explicit formulas for uafj(u>), v0jJ(u;). 

The theorem can be used in Rn by using polar coordinates and treating the 
angular coordinates as parameters. The theorem generaUzes various results 
of the authors (see [CI, C2, C3, U]) and is closely related to a recent result 
of Seeley [S], obtained independently. The proof is very classical in spirit and 
uses fundamentally the Mellin transform and its properties. 

3. Asymptotics of the heat kernel. The heat equation (dt + H)ipt = 0, 
associated with a positive elliptic differential operator H, is a powerful tool 
in the study of spectral properties of such operators. The heat operator is 
an operator solution subject to l i m ^ o ^ t = I and is usually represented by 
the so-called heat kernel. In this section we give a reinterpretation of the 
classical small-time asymptotic expansion [G] of the diagonal of the heat 
kernel for some elliptic differential operators with a finite number of isolated 
singularities in the coefficients, and we outline an existence proof for the 
expansion (Theorem 3.1). The results below are based on [CI], which gives 
the basic ideas in the context of a one-dimensional example, [C2] and [C3]. 

A typical operator from our class is the Schrödinger operator H on Rn 

with coefficients singular only on a finite set S = {y±,..., ym} C R n [C2]. Let 
U\,...,Um be open, R n = (J^Li Uj, yj G Uj, y%±j £ Uj. Then H, assumed 
formally selfadjoint, is of the form 

(3.1) H = - A + f ] bk{x)idk + b(x), 

where bk{x), b(x) G C°°(Rn\S) are compactly supported, and, for x G Uj, of 
the form 

respectively, for some ipj,k{y, x)i ^jiVix) € C°°(Sn~1 X Uj). Results have 
been obtained for (3.1) and are expected to apply to analogous operators on 
manifolds. 
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Under suitable conditions on the coefficients of H, roughly speaking if b(x) is 
not too unbounded from below, H will be bounded from below on Co*(Rn\S). 
By strengthening the conditions, H can be made essentially selfadjoint on 
Co>(Rn\5). For example, if bk(x) — 0, n > 4, H is essentially selfadjoint if 
b(x) > 0 in a neighborhood of S. In our work we assume that H is essentially 
selfadjoint, although we do not consider this restriction fundamental from the 
point of view of both the technicalities and the results. The heat operator 
is now constructed by the spectral theorem as e~tH, and we can show that 
<t>e-tH is Hilbert-Schmidt for <j> G CJ>(Rn) and e~tH has a kernel function 
e~tH{x,y) which is C°° for x,y G R n \S . 

We now want to study 

Tr e-tH(j> = ƒdx <£(x)e-tH(x, x) 

as t —• 0 + to 0(t°°), which is equivalent to the asymptotics of e~tH(x,x) 
as t —• 0+ in the sense of distributions. (See [C-T, CI] for discussion and 
applications.) The main result which makes it possible to derive the theorem 
below from the singular asymptotics lemma is that e~~tH(x,x) can be written 
as a function of the form 

for x near yó where /^(t, r, x, y) e C°°(R+ X R+ X Rn X 5 n _ 1 ) for each j . 
This statement about the behavior of the heat kernel is of course of interest 
in itself; it is motivated by looking at small t behavior for x £ S, which is 
classical, and is proved by a good deal of operator theoretic estimating. Using 
Theorem 2.1 we obtain 

THEOREM 3.1. We have ast-+ 0+, for each </> e C^(Rn); 

e~tH(XjX)<l>(x)dx [ 
• rn>2 E M<t>)tk + E tk(M<t>)t1/2 + M<t>) in t) 

fc>0 fc>(n-l)/2 

where Uk,Uk,wkE D'{Rn), fork>0 singsupp(ufc, Vk,Wk) = S and Vk,Wk o,re 
combinations of Dirac distributions at y\,..., ym. 

A similar analysis will apply if we assume that near a singularity, say x — 0, 
b(x) has an asymptotic expansion 

n=0j=0 \\£\J 

where ko = —2, kn f oo, ln > 0 are integers, tpnj are smooth. In Theorem 3.1 
we would obtain more general powers of t and powers of logarithms. 

Theorem 3.1 is purely an existence result and cannot be used to determine 
a computational scheme for the distributional coefficients. A method of 
calculation has been devised [C3] which again relies on Theorem 2.1. 
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4. Scattering by a singular potential. (This is based on [CU].) We study 
scattering by singular potentials with isolated singularities at the origin using 
wave equation methods. We describe our result, for simplicity, for a potential 
with the singularity of the Coulomb potential in three dimensions: 

(4.1) y(x) = 6(x)/|x|, beC%(R3). 

An incoming plane wave with direction 0 and frequency X interacts with the 
potential. The amplitude of the scattered wave in the direciton u> is, roughly 
speaking, the scattering amplitude a(X,0,w), X E R, 0,u E S2 . We prove 
that the scattering amplitude at forward peak a(X, 0,0) has a full asymptotic 
expansion for large frequencies. From this expansion one can determine the 
full singularity of the potential at the origin. 

THEOREM 4.1. 

X » 0; where Uj, Vj E C°°(S2). From the Vj 's we get d%b(0) for all a. 

In the case of a smooth compactly supported potential, no log terms appear 
in the expansion (see [M]). The log terms come from the singularity of 
the potential, and one can get extra information in that case, namely, the 
singularity of the potential. 

We now explain briefly how Theorem 2.1 is used in the proof of Theorem 
4.1. We solve the wave equation plus potential with data a plane wave in the 
far past: 

(4.2) Ovu = (-^2 - A + VV = 0 (modC00), /* = £(*- xw)t « 0, u; E S2. 

We write a solution of (4.2) as an oscillatory integral with distribution-valued 
classical symbols: 

(4.3) /x = J' é**-*Ma(x,t)dt, 

where 

(a(x, 0 , <t>) ~ £ M * ) i *)& W> € C?(R3), a0{x) E D'(R3). 
i<o 

Using the standard methods of geometrical optics (see [L]) we get 

6(8, X') 
•ds. (4.4) ao(z) = l, a_1(x) = / _ M ( s 2 + | i / | 2 ) 1 / 2 , 

x = (xi, x') 6 R x R2 (here xi = xw, x' = x — (xw)w). We write 

a - i ( x ) = L &+lx?)*/*)ds+4R |J '' w\ ) 
with 

.( . ,. x'\ fXl 6(s|x'|,x') . 
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Clearly, fifa^RJ) € C°°(R X R+ X S2), where R = \z'\, 0 = x'/\x'\. A similar 
statement is valid for a_j(x), j > 1, with / i replaced by fj. 

To obtain Theorem 4.1 we need to expand fj(xt, \x'\, x /\x'\) asymptotically 
as xi —• 0 with coefficients in distributions in x'. This is provided by Theorem 
2.1. The proof of Theorem 4.1 follows now, more or less, the Unes of [M], using 
the extension of the Lax-Phillips theory to short range potentials developed 
by Phillips [Ph]. 
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