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IMBEDDING ESTIMATES INVOLVING NEW NORMS 
AND APPLICATIONS 

BY MARTIN SCHECHTER 

Let Ha'p denote the Sobolev space with norm 

(i) |MU,p=||F(i + | | | 2 ) s / 2^| |P ) 
where F denotes the Fourier transform, F its inverse and ||w||p is the Lp(Rn) 
norm. In many linear and nonlinear problems one comes across the question: 
For which functions V(x) does there exist an estimate of the form 

(2) HV«||,<c|M|.,pf « e f f « 
In this note we find a large class of functions V for which (2) holds. To do 
this we introduce a new family of norms Mafrttf6{V) for 0 < a, 0 < 6 < 1, 
1 < r < oo and 1 < t < oo. For x e Rn let 

u;a(x) = | x | a - n , 0 < a < n , 

= 1 —log|x|, a = n, 

= 1, n < a. 

When 0 < a we define 

, 1 < t < oo, Ma,r,t,s(V) = | ƒ ( / x _ y | < , \V(x)\rua(x~y) dxj * dy 

^ ^ p f / , \V{x)\ruCl(x-y)dx) , 
y \J\x-y\<6 J 

t = oo. 

For a = 0 we put 
Mo,r,tAV) = \\V\\t. 

We also set 
Ma,r,t(V) = Mafr)t}1(V) 

and make the following basic assumption. 
HYPOTHESIS A. The parameters a, r, 5, t, p, q satisfy: 
Al. 0 < a, s; 1 < q < r < oo; 1 < p < oo; 1 < t < oo. 
A2. l/q<l/p + l/t. 
A3, a/nr < s/n + 1/q - 1/p - 1/t. 
A4. We do not have both q — t and n = sp or both p = 1 and s/n = 

i/t + W. 
Let Ma;T.)t denote the set of those functions V(x) such that Mafr)t{V) < oo. 
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THEOREM 1. Under Hypothesis (A) assume that 
(s)Ifq<r and s<n, then either p ^ 1 or inequality A3 is strict 
(b) Ifq = r and s<n, then either r <t<p' or inequality A3 is strict 
Let V(x) be a function in Ma}r}t. Then multiplication by V is a bounded 

operator from Hs>p to Lq. There is a constant Co depending only on the 
parameters such that 

(3) \\Vu\\q < C0Mafr}t(V)\\u\U,p, u E H°*. 

Moreover, there are constants C\, C% depending only on the parameters such 
that 

(4) \\Vu\\q < CiMa.r.tXniMU.P + C2Mafr>t(V)\\u\\p, u e Hs>*>, 

and C\ does not depend on 6. 

COROLLARY 2. If in addition, 

(5) Ma}r)tt6{V)-+0 zs6-+0 

then for every e > 0 there is a constant K such that 

(6) l|Vu||,<É||«||.,p+jq«||p> tt€fl*-". 

Ift^oo, then multiplication by V is a compact operator from Hs,p to Lq. The 
same conclusion holds when t = oo if 

(7) f \V{x)\rua{x-y)dx^0 a s |y | -K» . 
J\x—y\<l 

THEOREM 3. Let i/>(p) be a positive function such that f0
 /^{p)p~1 dp < oo. 

Under Hypothesis A, inequalities (3) and (4) hold without the restrictions (a) 
and(b) of Theorem 1 provided we replace u)a(x) by oja(x)il)(x)~b in the definition 
of Ma,r,t(y), where b = r(l + 1/q - 1/p - 1/r - 1/t). 

We apply these results to a nonlinear problem. Let m be a positive integer, 
Q an arbitrary (bounded or unbounded) domain Rn and let W = H™'2(Q) be 
the completion of CQ{VI) in H™'2. Let a(u,v) be a hermitian bilinear form 
on W satisfying 

*r2ll<C,2 <«(«) = «(«,«)<cPM&j, new. 
Let ƒ (x, v), g(x, v) be continuous functions on fi x R such that ƒ (x, v) = 
dg(x,v)/dv. We assume that 

N 

(8) g(x, v) < B{x, v) = £ Vk{x)\v\^y x G fi, v € R, 
fc=i 

and 
Mak,rk,tkAVk)^0 as£-+0, l<k<N, 

where 
1 < qk/2 + 1/tfc, ak/nrk < mqk/n+1 - q k / 2 - l / t k . 
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If tk = oo, we assume that (7) holds for Vk, a/c, r̂ . By Theorem 1 there are 
constants M& such that 

N 

(9) [ B(x,u(x)) dx<JT Mfc||ti||£ |2, u e W. 

&2= I g{x, 0) dx 

Assume that 

exists, and put 

M{R) = R-2(y£Mk{K1R)qk -K2\ V * = mfRM{R). 

Let A be the operator associated with a{u,v) (cf. [8]), and let X > 0. We are 
looking for a solution of 

(10) Au = X/(x,u). 

THEOREM 4. If X < Xo, then, for any R such that \M(R) < 1, (10) has a 
solution satisfying a(u) <R2. 

There is a connection between the spaces Majr>t and the Lorentz spaces 
La'* (for the definitions cf. [3, 11, 13]). 

THEOREM 5. If 0 < 1/a — 1/t = a/nr, r < a < t < oo, then 

(11) Ma>r}t(V) < C\\V\\L..t, V e If*. 

If we combine this with Theorem 1 we obtain 

THEOREM 6. If t < oo and 1/q - 1/p < 1/t < 1/a < 1/q, 1/a + 1/p < 

s/n -f 1/q, then 

(i2) l iv« | | ,<q |y | |^ . | | t t | | . , p . 

Special cases of inequality (2) were proved by Stummel [12], Balslev [2], 
Berger-Schechter [4] and Schechter [7, 8, 9]. Our solution of (10) avoids some 
of the hypotheses of Noussair-Swanson [6]. The suggestion that there should 
be an inequality of the form (12) is due to H. Brezis. 

Theorem 1 is proved by using Bessel potentials as investigated by Aronszajn-
Smith [1]. Inequality (3) is equivalent to 

l (G.*/ ,V«) |<C| | / | |p |M| , 
1/t 

x C " -: ( ƒ ( ƒ \V(*)\rG,(x-yjcjix-y)~r dxj * dy\ 

holding for a suitably chosen function <\>. This is derived by tedious and tricky 
estimates. Corollary 2 follows by standard arguments and Theorem 3 is a 
slight variation. Theorem 4 is proved by variational techniques using (8) and 
(9). Theorem 5 is proved by using the fact that Hs>p c If for certain values 
of s, p, q. By real interpolation we find that H3>p C If*v for specific values. 
This leads to (11). Theorem 6 is merely a combination of Theorems 1 and 5. 
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