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impression that the authors have had little contact with the general mathemati­
cal community. This feeling is amplified by the authors' English, which is often 
far from the spoken language. 

The book will probably be of most interest to people with a background in 
finite dimensional convexity, because they will at least see how that theory is 
related to C*-algebras. I do not recommend a serious student of C*-algebras to 
spend much time with the book. 
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Let me begin by remarking that this book may not be well served by the 
particular conjunction of title and series (ACM monograph series) which 
suggest to me that the authors believe that their main audience will be found 
among computer scientists. I must disagree with this appreciation. In my 
opinion this is a book about certain aspects of applied mathematics, an 
ambitious, largely successful and therefore important book; and it is somewhat 
unfortunate that it is being noticed here several years after initial reviews 
appeared in computer science journals. 

These remarks touch on the demarkation dispute between computer science 
and applied mathematics and perhaps deserve more explanation. One char­
acteristic feature of the rapid evolution of computer science has been the way 
in which it has drawn on quite diverse subject areas as these become major 
sources of applications interest or of necessary development techniques, ab­
sorbed what has been needed, and passed on to other applications areas with 
new technological requirements and different problems. Interaction between 
computer science and the mathematical sciences has proved to be of continu­
ing mutual benefit. Historically it has provided much of the impetus that has 
transformed such subjects as numerical analysis, formal systems, and complex­
ity theory into important and flourishing branches of applied mathematics. 
However, many of the participants have understood neither the dynamics nor 
the strong pragmatic component in the computer science side of the inter­
change. It seems that as they become more deeply involved in the formal 
questions raised by their subject specialty they argue with increasing per­
sistence that they are providing the theoretical basis for computer science. 
Unfortunately their chosen audience has not always taken note. 

Numerical analysis and approximation theory seem the categories most 
appropriate to the present work. A general theory of optimal algorithms is 
certainly a tempting title, and the authors claim to subsume most, if not all of, 
computational complexity into their thesis; but the problem domain is analytic 
computational complexity or the complexity of problems which can only be 
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solved approximately. Typical of their considerations is the problem of finding 
an optimal estimate of the value of a linear functional (of an unknown 
function) given certain data which is of two kinds: (a) the values of a finite 
number of other linear functional which make up the problem information, 
and (b) a nonlinear restriction which limits the set of possible competing 
functions and which is available a priori. Here we think of the candidate 
functions being inside a ball defined by the restriction operator and inter­
cepted by the hyperplane defined by the problem information. The possible 
values that the unknown functional can have are restricted by its intersection 
with the hypercircle defined in the above construction, and estimates, bounds, 
and optimality properties now follow easily. Perhaps the first use of this 
approach was due to Synge (1948), but the seminal paper was that of Golomb 
and Weinberger (1959) who described it in detail in a Hubert space setting and 
showed how to find the solution explicitly in several cases. We now recognise 
they were constructing spline functions in the generalised sense introduced by 
Anselone and Laurent (1968) and others. 

The first part of the book establishes a general framework into which the 
above example and much recent work (a suitable reference is Micchelli and 
Rivlin (1977)) fits easily. A very complete treatment is given, including some 
consideration of the problems introduced by nonlinearity in the information 
specified, and it seems likely that the extensions to include complexity consid­
erations to permit discussion of optimal complexity algorithms for computing 
estimates to within a specified accuracy have been presented together for the 
first time. The importance of spline algorithms is underscored by providing a 
quantitative sense in which they are effective. 

The second major topic treated is iterative information models for algo­
rithms (a simple example is provided by Newton's method for finding a zero of 
a function). Here optimal order plays a role somewhat analogous to that of 
optimal approximation in the first section, and now exploration of the relation­
ship between information and order is a major part of the development. The 
book concludes with a brief survey of the history of the subject and an 
annotated bibliography which provides extensive references to the Russian 
literature. 

Inevitably there are restrictions to the general coverage promised in the title, 
and perhaps the most important of these are restrictions to exact information, 
to a restriction operator imposed a priori, and to exact arithmetic. The first is 
the most important because it excludes a whole spectrum of important prob­
lems in which the manner of specifying the set of allowable perturbations in 
recording the information may go a long way towards making the choice of 
restriction operator natural. Recent work in this direction is encouraging (for 
example, Wecker and Ansley (1983)). However, it is exciting that the authors 
have been able to treat such a wide range of problems with considerable 
authority. The book is a major contribution to research in numerical analysis 
and will prove of considerable interest to workers in approximation theory. If 
it has a defect it is that it makes few concessions to its readers, in particular in 
the choice of notation. 
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The author of this book states his purpose clearly: "W[e] have tried to 
present to the non-specialist a view into the subject by means of its most 
striking theorems." He does not even hint at the vast range of the subject but 
merely covers a few things well. In a similar vein this review is directed not at 
the expert but at those who want to know why so many mathematicians study 
(and write books about) C*-algebras. The review will follow the book in 
requiring C*-algebras to be unital (i.e. to have multiplicative identity elements). 
It will also assume complex scalars except to discuss the real case. 

The story begins with two classes of concrete examples: one commutative 
and the other not. Let S be a compact Hausdorff space. Let C(S) be the space 
of all continuous complex valued functions on S. Under pointwise addition 
and multiplication C(S) is a commutative algebra. That is, it is a linear space 
which is also a commutative ring under the same additive structure and with 
the scalar and ring multiplications agreeing as one would expect. In addition 
C(S) has two other elements of structure which turn out to be crucial to its 
study. It has a norm (the supremum or uniform norm) defined by 

| | / | | - s u p { | / ( j ) | : 5 e S } Vf^C(S) 

under which it is a complete normed algebra or Banach algebra. It also has an 
involution *: C(S) -> C(S) defined by 

f*(s)=f(sy V / e C ( 5 ) , V j € S , 

where the bar denotes complex conjugation. We will say more about involu­
tions below, but for now we remark that an algebra with a (fixed) involution is 
called a *-algebra (pronounced star-algebra) and a Banach algebra with an 
involution is called a Banach * -algebra. 


