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APPROXIMATION BY POLYNOMIALS 
IN TWO DIFFEOMORPfflSMS 

BY A. G. O'FARRELL AND K. J. PRESKENIS 

We denote by C the complex plane. If / and g are complex-valued functions 
on a set S, then C[f,g] denotes the algebra of polynomials in / and g, with 
complex coefficients, regarded as functions on S. 

THEOREM. Let l<k€Z, and let f and g be Ck diffeomorphisms ofC into 
C, having opposite degrees. Then C[f,g] is dense in the Frechet space Ck(C), 
i.e., given h € Ck(C), and X c C compact, there is a sequence hn G C[f,g] 
such that hn and its derivatives up to order k tend to h and its derivatives, 
uniformly onX. 

In case f(z) = z and g(z) = IS, the Theorem reduces to a result of Weierstrass. 
Since each diffeomorphism of the closed unit disc D into C extends to a 

diffeomorphism of C into C, we deduce the following. 

COROLLARY. Let f and g be C1 diffeomorphisms of D into C, having 
opposite degrees. Then C[f,g] is dense in C(D). 

This settles an old chestnut in the field of uniform algebras. It remains open 
whether the Corollary works for k = 0, i.e., for all pairs of homeomorphisms 
of opposite degrees. 

PROOF OF THEOREM. Without loss of generality, we may take g = z, 
because the chain rule for D3(h o g) is linear in h and involves only Dlh and 
D^ for 0 < i < j . 

Since / has degree —1, we deduce that | / j | > \fz\ on C. In particular, 
f-2 # 0, so the graph G = {(z, f(z)) E C2: z € C}, which is a Ck submanifold 
of C2, has no complex tangents. By the Range-Siu theorem [2], Ck(G) is the 
closure of the space 0(G) of all functions holomorphic in a neighbourhood of 
G. If we can show that G has an exhaustion by polynomially-convex compact 
sets, then by the functional calculus [4, Chapter 8], it will follow that C[2,w] 
is dense in 0(G), and hence in Ck(G)\ since z •-• (z, f) is a Ck diffeomorphism 
of C —• G, this will imply that C[2,/] is dense in Ck(C). Thus it suffices to 
show that X = {(z, f(z)): z G K} is polynomially-convex whenever K c C is 
a closed disc. 

Fix a closed disc K c C. By modifying / off K, if need be, we may assume 
/ maps C onto C, that Df and Df~x are bounded and uniformly continuous, 
and that |/^| and 1 — \fz/h\ are bounded away from zero. We need two 
lemmas, which are essentially classical results of Wermer. 
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LEMMA 1. There exists a constant Xi > 0 such that 

(*-«»)(/(*)-/(a))+ X/Ko) 

is nonzero whenever 0 < X < Xi, a € C, and z€C. 

PROOF. Pick 6 > 0 such that the modulus of continuity u>(6) of Df at 6 is 
less than half (inf |/y|)(l — supc \fzlh\- Applying the mean value theorem to 
the real and imaginary parts o f / w e deduce that for 0 < \z—a\ < £, the value 
f(z) — f(a) differs from fz(a)(z — a) + fz(a)(z — a) by less than 2u(6)\z — a\. 
Thus 

R e ( , - a ) ( / ( , ) - / ( a ) ) > 0 

whenever \z — a\ < 8. But for \z — a\> 6, 

(z-a)(f(z)-f(a)) 

M°) inf|/d -

Denoting the right-hand side by Xi, we see that (z—a)(f(z)—f(a))/f-z(a) omits 
{—X: 0 < X < Xi}, for all a and z, so the lemma is proved. 

Let us denote the uniform closure of C[z, f] in C(K) by A. 

LEMMA 2. Suppose that for each a€K, there exists a sequence Xn I 0 such 
that (z — a)(f(z) — f(a)) + \nfz(a) is invertible in A. Then A = C(K). 

PROOF. Briefly, let // be a measure on K, annihilating A. It suffices to 
show that the Cauchy transform fi(a) = f d//(f )/f — a vanishes at every point 
a 6 K at which the Newtonian potential / d|//|(f)/|f — a\ is finite. But the 
hypothesis, together with Lemma 1, yields a sequence fnGA such that fn —• 
(2 — a)"1, pointwise on K ~ {a}, and |/n(^)| < const |z — a|_1. Thus the 
dominated convergence theorem yields the desired result. 

We remark that the hypothesis of Lemma 2 can be weakened to "almost 
all a elf". 

CONCLUSION OF PROOF OF THEOREM. Suppose X is not polynomially-
convex. Then A ^ C{K), so by Lemma 2, there exists aEK and X2 > 0 such 
that for every X with 0 < X < X2, the polynomial (z — a)(w — f(a)) + X/^(a) 
has a zero somewhere on the polynomially-convex hull of X. Fix X, with 
0 < X < min{Xi,X2}. Then the family of algebraic curves 

{z - a - t)(w - /(a + *)) + \fc{a +1) = 0 (0 < t < 00) 

is a curve of algebraic hypersurfaces which meets the hull of X, does not meet 
X (by Lemma 1), and goes to the hyperplane at infinity (since / maps onto 
C, and fe is bounded). This contradicts Oka's characterization of polynomial 
hulls, as given in [3, (1.2), p. 263]. Thus X is polynomially-convex, and we 
are done. 

We remark that minor modifications to the foregoing proof permit us to 
strengthen the Corollary, as follows: 

Let / be an orientation-reversing homeomorphism of C into C, which 
is locally C1 and noncritical off a closed set E, having area zero and not 
separating the plane. Then C[z,f] is dense in C(C). 
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Also, for any compact set X in C and for 0 < a < 1, suppose Lip(o;,X) 
denotes the space of bounded functions g of X into C such that for some 
K > 0, \g(z) — g{w)\ < K\z — w\a for all z, w G X with norm sup \g\ +Least K 
and suppose lip(a,X) denotes those functions g G Lip(a,X) such that, given 
e > 0, there exists 6 > 0 such that \g(z) — g(w)\ < e\z — w\a whenever z and w 
satisfy \z — w\<8. In view of the results given in [1, p. 227], the conclusion 
of the above remark implies C[2,/] is dense in lip(a,X) for any compact set 
X i n C . 

Finally, we remark that the Theorem of this paper is sharp in the sense 
that one critical point destroys it. 
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