APPROXIMATION BY POLYNOMIALS IN TWO DIFFEOMORPHISMS

BY A. G. O'FARRELL AND K. J. PRESKENIS

We denote by C the complex plane. If f and g are complex-valued functions on a set S, then C[f,g] denotes the algebra of polynomials in f and g, with complex coefficients, regarded as functions on S.

THEOREM. Let $1 \le k \in \mathbb{Z}$, and let f and g be C^k diffeomorphisms of C into C, having opposite degrees. Then C[f,g] is dense in the Fréchet space $C^k(C)$, i.e., given $h \in C^k(C)$, and $X \subset C$ compact, there is a sequence $h_n \in C[f,g]$ such that h_n and its derivatives up to order k tend to k and its derivatives, uniformly on X.

In case f(z) = z and $g(z) = \overline{z}$, the Theorem reduces to a result of Weierstrass. Since each diffeomorphism of the closed unit disc D into C extends to a diffeomorphism of C into C, we deduce the following.

COROLLARY. Let f and g be C^1 diffeomorphisms of D into C, having opposite degrees. Then C[f,g] is dense in C(D).

This settles an old chestnut in the field of uniform algebras. It remains open whether the Corollary works for k=0, i.e., for all pairs of homeomorphisms of opposite degrees.

PROOF OF THEOREM. Without loss of generality, we may take g=z, because the chain rule for $D^j(h \circ g)$ is linear in h and involves only D^ih and D^ig for $0 \le i \le j$.

Since f has degree -1, we deduce that $|f_{\overline{z}}| > |f_z|$ on \mathbb{C} . In particular, $f_{\overline{z}} \neq 0$, so the graph $G = \{(z, f(z)) \in \mathbb{C}^2 : z \in \mathbb{C}\}$, which is a C^k submanifold of \mathbb{C}^2 , has no complex tangents. By the Range-Siu theorem [2], $C^k(G)$ is the closure of the space $\mathcal{O}(G)$ of all functions holomorphic in a neighbourhood of G. If we can show that G has an exhaustion by polynomially-convex compact sets, then by the functional calculus [4, Chapter 8], it will follow that $\mathbb{C}[z, w]$ is dense in $\mathcal{O}(G)$, and hence in $C^k(G)$; since $z \mapsto (z, f)$ is a C^k diffeomorphism of $\mathbb{C} \to G$, this will imply that $\mathbb{C}[z, f]$ is dense in $C^k(\mathbb{C})$. Thus it suffices to show that $X = \{(z, f(z)) : z \in K\}$ is polynomially-convex whenever $K \subset \mathbb{C}$ is a closed disc.

Fix a closed disc $K \subset \mathbb{C}$. By modifying f off K, if need be, we may assume f maps \mathbb{C} onto \mathbb{C} , that Df and Df^{-1} are bounded and uniformly continuous, and that $|f_{\overline{z}}|$ and $1-|f_z/f_{\overline{z}}|$ are bounded away from zero. We need two lemmas, which are essentially classical results of Wermer.

Received by the editors August 10, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46J10; Secondary 30E10, 32E30.

LEMMA 1. There exists a constant $\lambda_1 > 0$ such that

$$(z-a)(f(z)-f(a))+\lambda f_{\overline{z}}(a)$$

is nonzero whenever $0 < \lambda < \lambda_1$, $a \in \mathbb{C}$, and $z \in \mathbb{C}$.

PROOF. Pick $\delta>0$ such that the modulus of continuity $\omega(\delta)$ of Df at δ is less than half $(\inf|f_{\overline{z}}|)(1-\sup_{\mathbf{C}}|f_z/f_{\overline{z}}|$. Applying the mean value theorem to the real and imaginary parts of f we deduce that for $0<|z-a|<\delta$, the value f(z)-f(a) differs from $f_{\overline{z}}(a)\overline{(z-a)}+f_z(a)(z-a)$ by less than $2\omega(\delta)|z-a|$. Thus

$$\operatorname{Re} \frac{(z-a)(f(z)-f(a))}{f_{\overline{z}}(a)} \geq 0$$

whenever $|z-a| < \delta$. But for $|z-a| \ge \delta$,

$$\left|\frac{(z-a)(f(z)-f(a))}{f_{\overline{z}}(a)}\right| \geq \frac{\delta^2(\sup|Df^{-1}|)^{-1}}{\inf|f_{\overline{z}}|}.$$

Denoting the right-hand side by λ_1 , we see that $(z-a)(f(z)-f(a))/f_{\overline{z}}(a)$ omits $\{-\lambda: 0 < \lambda < \lambda_1\}$, for all a and z, so the lemma is proved.

Let us denote the uniform closure of C[z, f] in C(K) by A.

LEMMA 2. Suppose that for each $a \in K$, there exists a sequence $\lambda_n \downarrow 0$ such that $(z-a)(f(z)-f(a)) + \lambda_n f_{\overline{z}}(a)$ is invertible in A. Then A = C(K).

PROOF. Briefly, let μ be a measure on K, annihilating A. It suffices to show that the Cauchy transform $\hat{\mu}(a) = \int d\mu(\varsigma)/\varsigma - a$ vanishes at every point $a \in K$ at which the Newtonian potential $\int d|\mu|(\varsigma)/|\varsigma - a|$ is finite. But the hypothesis, together with Lemma 1, yields a sequence $f_n \in A$ such that $f_n \to (z-a)^{-1}$, pointwise on $K \sim \{a\}$, and $|f_n(z)| \le \text{const } |z-a|^{-1}$. Thus the dominated convergence theorem yields the desired result.

We remark that the hypothesis of Lemma 2 can be weakened to "almost all $a \in K$ ".

CONCLUSION OF PROOF OF THEOREM. Suppose X is not polynomially-convex. Then $A \neq C(K)$, so by Lemma 2, there exists $a \in K$ and $\lambda_2 > 0$ such that for every λ with $0 < \lambda < \lambda_2$, the polynomial $(z - a)(w - f(a)) + \lambda f_{\overline{z}}(a)$ has a zero somewhere on the polynomially-convex hull of X. Fix λ , with $0 < \lambda < \min\{\lambda_1, \lambda_2\}$. Then the family of algebraic curves

$$(z-a-t)(w-f(a+t))+\lambda f_{\overline{z}}(a+t)=0 \qquad (0\leq t<\infty)$$

is a curve of algebraic hypersurfaces which meets the hull of X, does not meet X (by Lemma 1), and goes to the hyperplane at infinity (since f maps onto C, and $f_{\overline{z}}$ is bounded). This contradicts Oka's characterization of polynomial hulls, as given in [3, (1.2), p. 263]. Thus X is polynomially-convex, and we are done.

We remark that minor modifications to the foregoing proof permit us to strengthen the Corollary, as follows:

Let f be an orientation-reversing homeomorphism of C into C, which is locally C^1 and noncritical off a closed set E, having area zero and not separating the plane. Then C[z, f] is dense in C(C).

Also, for any compact set X in ${\bf C}$ and for $0<\alpha<1$, suppose ${\rm Lip}(\alpha,X)$ denotes the space of bounded functions g of X into ${\bf C}$ such that for some $K>0, |g(z)-g(w)|\leq K|z-w|^{\alpha}$ for all $z,w\in X$ with norm $\sup|g|+{\rm Least}\ K$ and suppose ${\rm lip}(\alpha,X)$ denotes those functions $g\in {\rm Lip}(\alpha,X)$ such that, given $\epsilon>0$, there exists $\delta>0$ such that $|g(z)-g(w)|\leq \epsilon|z-w|^{\alpha}$ whenever z and w satisfy $|z-w|<\delta$. In view of the results given in $[1,\ p.\ 227]$, the conclusion of the above remark implies ${\bf C}[z,f]$ is dense in ${\rm lip}(\alpha,X)$ for any compact set X in ${\bf C}$.

Finally, we remark that the Theorem of this paper is sharp in the sense that one critical point destroys it.

References

- !. A. G. O'Farrell and K. J. Preskenis, Approximation by polynomials in two complex variables, Math. Ann. 246 (1980), 225-232.
- 2. M. Range and Y.-T. Siu, C^k approximation by holomorphic functions and $\bar{\partial}$ -closed forms on C^k submanifolds of a complex manifold, Math. Ann. 210 (1974), 105–122.
- 3. G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289.
 - 4. J. Wermer, Banach algebras and several complex variables, Springer, 1976.

DEPARTMENT OF MATHEMATICS, MAYNOOTH COLLEGE, CO. KILDARE, IRELAND DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE COLLEGE, FRAMINGHAM, MASSACHUSETTS 01701