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A p-ADIC REGULATOR PROBLEM IN ALGEBRAIC if-THEORY 
AND GROUP COHOMOLOGY 

BY J. B. WAGONER1 

Let 0 be the ring of integers in a number field F. Let p c 0 be a prime 
ideal and Op =pmO/ps be the p-adic completion of 0 . Let 

Kn{0) — Kn(0) mod torsion, 

Kc
n(0p) = Kc

n(0p) mod torsion, 

where Kn(0) is the algebraic If-theory of Quillen [Q] and 

K°n(0p)=)mKn(0/p°) 

is the "continuous" or "p-adic" algebraic If-theory of Op studied in [Wl] by 
Milgram and the author. Results of [B] and [Wl] suggested asking whether 

(i) *p:kn(0)-+ke
n(0p) 

or 

(2) • :£ n (0)-e<(0p) 
P\P 

is injective, where p is a fixed rational prime and n > 1 is odd. Observe that 
each $p is clearly injective for n = 1, because Ki(0) = 0* and K{{Op) = Op. 
A much harder problem is whether $<8>ZP is injective. For n — 1 and F totally 
real abelian, injectively of $ ® Zp on the subgroup of 0* consisting of those 
elements congruent to lmodp for each p \ p is equivalent to nonvanishing 
of the p-adic regulator [Br, C]. As an example of (1) let F be quadratic 
imaginary. Then is 

(3) *p:Z~K3(0)^KC
3(0p)~Zp 

injective when p = char(0/p) is unramified with Op = Zp? J.-P. Serre asked 
an equivalent cohomological version of (1) and (2) prior to the circa 1975 K-
theory formulation. For special case (3) injectivity is equivalent to showing 
®p 0 Qp is an isomorphism, which in turn amounts to showing 

(4) Qp & H3
c(SLn(0p); QP) - H3(SLn(0); QP) s Qp 

is an isomorphism for n large. H\ denotes the continuous cohomology of 
the p-adic group SLn(0p) and H3 is the Eilenberg-Mac Lane cohomology 
of the discrete group SLn(0). Compare [L]. Numerous examples of (4) 
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result from nonvanishing of the Gross-Coleman Qp-regulator as formulated 
in [Co]. This regulator connects the p-adic dilogarithm and the L-function 
values Lp(2,x^_1). 

There is the companion Zp-regulator question to (3): namely, determine 
the index Ftp of 

(5) $p 0 Zp: Zp s #3(0) 0 ZP -> #s(0p) = Zp. 

For F = Q{V-~S) = Q(IJL), where /z3 = 1, we give examples for which Rp = 
1, i.e., for which $p 0 Zp is an isomorphism. This is done with the aid of 
a homomorphism Chp : K3{0) —• Z/p constructed by elementary methods, 
and the values of Clip turn out to be related experimentally to the values 
Lp(2, x^ - 1)mod p, where x is the Dirichlet character of conductor 3 and w is 
the Teichmuller character on Z*. The details are in [W2]. 

Aisbett [A] has shown K3(Z/pn) = Z/p2^"1) 0 Z/p2 - 1 for p > 2. To test 
for examples where (5) is an isomorphism it is sufficient to 

(a) find an explicit element B € K3(0), 
(b) find an explicit formula for a homomorphism 

Chp : K3(0) - Kc
3{0p) - K3(Z/p2) - Z/p, 

(c) determine Chp(B) # 0 in various cases by machine computation. 
In the case F = QCv^), Tate has shown K2(0) = 0. Hence K3(0) 
= H3(Stn{0)) = H3{En(0)) for n large enough, where En(0) is the group of 
nxn elementary matrices. The class B€H3(En(0)) is represented as an ex­
plicit sum of 30 simplices in the bar resolution of E3(0), and the construction 
of B makes use of Riley's hyperbolic representation of the fundamental group 
of the complement of the figure eight knot [R, M]. As a cohomology class, 
the homomorphism Cbp : K3(0) —> Z/p comes from the diagram 

Kz{0) - K%{0p) - K3(0/p2) & K3(Z/p2) 

i I i 
H3(E(0)) - H3(S(0/p2))-^3(S(Z/p2))- rZ/p 

ch 

The explicit formula for the E(Z/p2) invariant cocycle ch on a three simplex 
<7[a|6|c] in the bar resolution arises from examination of the standard cohomol­
ogy class A G H2(GLn(Z/p); Mn(Z/p)) of the extension 

0 - Mn(Z/p) - GLn(Z/p2) - GLn(Z/p) -> 1. 

The class ch is a special case of a class constructed in H3(GLn(A/I2);I2/I3) 
when A is semilocal with radical I such that A/1 is finite. 

Let F = Q{V—3) and recall [Coh] that a rational prime p > 3 is split iff 
—3 is a quadratic residue mod p. In this case solve x2 = —3 mod p. Then 
(p) = pp, where p = (p, x + v71^), P = (p, -x + v71^), and Op s 0p = Zp. 
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THEOREM. In the following cases $p ® Zp is an isomorphism because 
Chp(£)#0: 

p x Chp(B) for p = (p, x + v ^ ) 
7 2 1 

13 6 2 
19 4 3 
31 11 22 
37 16 2 
43 13 9 
61 27 27 
67 8 33 
73 17 19 

In general we have Ch^(B) = — Chp(B) so there are nine more cases where 
Chp T* 0. The above examples were the only one computed. To make the 
computation for Chp we use the isomorphism ip: 0/p2 —• Z/p2 arising from 

a + bv - • a + 6((3 + 2x - x2)/4x) mod p2, 

where i/ = (14- v / z3)/2 and a, 6 € Z. 
In [Co] Coleman uses the p-adic dilogarithm to define a homomorphism 

Dp: 1̂ 3 (Cp) —• Cp, where Cv is a completion of the algebraic closure of Qp. 
When 0 is the integers in the number field of rath roots of unity, he proves 
a regulator formula for K${0) involving D* and Lp(2,x^_1), where x n a s 

conductor ra and UJ is the Teichmuller character on Z*. In the case ra = 3, 
Theorem 8.1 of [Co] suggests, after simplification, that we should have 

(6) Lp(2,x^~1) = -rBip(x)Chp(JB) mod p 

for some rational number re depending only on B and having denominator 
prime to p. The factor rs occurs because we only know B G K$(0) is some 
integer multiple of the generator. Machine computation verifies (6) holds for 
rs = 1/18 in all cases of p = (p, ±x + >/—3) considered above. 

It is a pleasure to acknowledge the assistance of R. Fateman, K. Sklower, 
and others of the Berkeley Computer Science Department as well as O. Lanford 
and J. Wolf in the Mathematics Department. Their help in introducing the 
author to Berkeley's computer facilities was invaluable in expediting this 
project in a timely fashion. We would also like to thank K. Ribet for stimulat­
ing discussion on /^functions. 
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