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CHARACTERIZATIONS OF MEASURES 
WHOSE FOURIER-STIELTJES TRANSFORMS 

VANISH AT INFINITY 

BY RUSSELL LYONS1 

We denote the class of complex Borel measures on the unit circle T = R/Z 
by M(T). Those measures \i whose Fourier-Stieltjes coefficients 

A(n) = / i e"27rmt df4t) 

tend to 0 as \n\ —• oo form the class R. The class of Borel sets E such that 
fj,E = 0 for all // G R is denoted C/0. We announce relations of R to certain 
subclasses of Uo- Full proofs will appear elsewhere. 

THEOREM 1. A measure /J, lies in R if and only if fj,E = 0 for all E G Uo. 

This result is a corollary of our principal result, Theorem 3 below. Let J 
be the class of measures concentrated on a Uo-set. An immediate consequence 
of Theorem 1 is 

COROLLARY 2. Each measure // G M(T) can be uniquely represented as 
M = A*K + M J> where [iR eR, fijE J, and /J,R ± [ij. 

Our method of proof of Theorem 1 involves a subclass of Uo, called W-sets. 
We first recall some facts from the theory of asymptotic distribution. 

DEFINITION. A sequence {xn}J° c T is said to have an asymptotic distribu­
tion if there exists v G M(T) such that for every arc / C T whose endpoints 
are not mass-points of v, 

lim ^-T#{n<N:xneI} = vL 

In this case, v is called the asymptotic distribution of {xn}. If v is normalized 
Lebesgue measure, then {xn} is said to be uniformly distributed. 

The principal theorem associated with asymptotic distribution usually goes 
by the name of "Weyl's criterion" (see [6, I, p. 142] for a proof). 

WEYL'S CRITERION. A sequence {xn}J° c T has an asymptotic distribution 
if and only if for every m€Z, 

1 N 

lim — Y e-
2"mXn exists. 

n = l 

In this case, the limit is 0{m), where v is the asymptotic distribution. 
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DEFINITION [5]. If {xn} has an asymptotic distribution but is not uniformly 
distributed, then we say {xn} is Weyl-distributed. A Borel set E c T is called 
a W- set if there exists a strictly increasing sequence of positive integers {n^} 
such that for every x€E, {n^x} is Weyl-distributed. 

Srelder [5] made the following unproved claim, which we have established. 

THEOREM 3. A measure // lies in R if and only iffiE = 0 for all W-sets E. 

The proof of Theorem 3 depends on Weyl's criterion and the well-known 
fact [6, II, p. 145] that if // G R and \v\ is absolutely continuous with respect 
to |/i|, then v G R. The crucial ingredient of our proof, however, is a new 
remarkable lemma. 

LEMMA 4. Given /z G M(T) and {nic}™ C Z, there exists a subsequence 
{n'k} c {rifc} such that {n'kx} has an asymptotic distribution for \/J>\-almost all 
x. 

A sketch of the proof of Lemma 4 follows. Choose a subsequence {e_27rm*x} 
of {e~

2™nkx} which weakly converges in L2(|//|). We may find a further 
subsequence {e~

27rmfcX} such that if f(x) is the weak limit of e-2™1**, then 

I 1 K . II 

**-1—1 /c=i ^ 2 ( IMI ) 

It follows that 
K 

_L^e-2*inkX^f{x) MM] 

as K —> oo, from which we deduce that also 
K 

^ E ^ ^ / W a.e.[|M|]. 

By a diagonal argument, we may choose n'k so that, likewise, for every m G Z, 

lim ± ^ c - 2 i r < m n * s exists a.e.[|/z|]. 

Weyl's criterion now implies that {n'kx} has an asymptotic distribution for 
|/x|-a.e. x. 

Theorem 3 extends in a natural way to all locally compact abelian groups. 
Other attempts have been made in the past to characterize R by a theorem 

of the form of Theorem 3. Rajchman had conjectured (see [2, pp. 85-86]) 
that the class of if-sets, defined below, could be taken in place of the class 
of VK-sets. On the other hand, Kahane and Salem [3, 4] asked whether UQ 
contains the class of VK*-sets, to be defined presently. As we shall see, this 
amounts to the question of whether W-sets can replace H^-sets in Theorem 
3. However, neither i^-sets nor W-sets can replace VK-sets (see Theorems 7, 
6 below). 

DEFINITION. A Borel set E c T is a W*-set (or nonnormal set) if there 
exists Uk t °° such that for every x G £", {n^x} is not uniformly distributed. 

Since VK-sets are clearly W*-sets, Theorem 3 implies 
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THEOREM 5. IffiE = 0 for all E G W*, then /j,eR. 

Actually, Theorem 5 has an elementary proof. Briefly, if ji fc R, take 
A(nfc) —• OL T* 0. Let 

E = {x: {rifcx} is not uniformly distributed}. 

Then one may show that 

K-+oo JE K £ZX 

whence \/J,\E # 0. Since E is a W*-set, Theorem 5 follows. We remark that 
the ideas here are those necessary to prove Theorem 3 using Lemma 4. 

Thus, we see that Kahane's and Salem's question of whether W* C UQ 
is equivalent to asking if W*-sets characterize R in the manner that W-sets 
do. As we have said, this is untrue. We may, in fact, give precise conditions 
on the rate of decay of p, at infinity in order that \i annihilate all W*-sets 
corresponding to a sequence {n/J with liminf/c_oo nk+i/nk > 1, the so-called 
lacunary W*-sets. 

THEOREM 6. If (j){n) is a decreasing function on the nonnegative integers 
such that 

if2 »log n 

and if [i is a positive measure such that 

(2) \Hn)\<<K\n\) 

for all n, then \iE = 0 for all lacunary W* -sets. However, if <j) is decreasing 
and (1) fails, then there exists a positive measure /J, satisfying (2) and such that 
/i is concentrated on the set of nonnormal numbers base 2, i.e., on the lacunary 
W*-set 

E = {x G T: {2fc_1x}^L1 is not uniformly distributed}. 

The first part of Theorem 6 is a slight extension of a result of Baker [1]. 
The proof of the second part involves infinite convolution measures. 

We now turn to Rajchman's conjecture about H-sets. 
DEFINITION. A Borel set E c T is called an H-set if there exists Uk t °° 

and a nonempty open arc / C T such that for all x G E and all A:, n^x £ I. 
It has long been known that H cUo. Rajchman's conjecture asserts that 

also [i G R if fiE = 0 for all //-sets E. A counterexample to this assertion is 
given by the next result. 

THEOREM 7. Let \i be the Riesz product 
oo 

dfji = JJ (1 + a/c cos 27r(n/cX -I- <j>k)) dx, 
fc=i 

where — 1 < a^ < 1. Ifnk+i/nk —• oo, then \xE = 0 for all H-sets E. 
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Note that if dk 7^ 0, then fj,£R. It can also be shown that Riesz products 
not belonging to R are concentrated on W-sets and hence belong to J. Thus, 
Riesz products \i are pure: \i G R or \x E J> The same holds for infinite 
convolutions of discrete measures, extending the Jessen-Wintner purity law. 

Extensive discussions with Professor Hugh L. Montgomery have been in­
valuable in attaining these results. The author is also indebted to Professor 
Allen L. Shields for raising the question of whether Theorem 1 is true and for 
giving reference [5]. 

REFERENCES 

1. R. C. Baker, A diophantine problem on groups. IV, Illinois J. Math. 18 (1974), 552-564. 
2. N. K. Bari, The uniqueness problem of the representation of functions by a trigonometric 

series, Amer. Math. Soc. Transl. No. 52, (1951), 1-89. 
3. J.-P. Kahane, Sur les mauvaises repartitions modulo 1, Ann. Inst. Fourier (Grenoble) 

14 (1964), 519-526. 
4. J.-P. Kahane and R. Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer. 

Math. Soc. 70 (1964), 259-261. 
5. Ju. A. Sreftier, On the Fourier-Stieltjes coefficients of functions unth bounded variation, 

Dokl. Akad. Nauk SSSR 74 (1950), 663-664. (Russian) 
6. A. Zygmund, Trigonometric series, 2nd ed., reprinted, Vols. I, II, Cambridge Univ. 

Press, Cambridge, 1979. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, A N N ARBOR, MICHIGAN 

48109 
Current address: Batiment de Mathematique, No. 425, Universite de Paris-Sud, 91405 

Orsay, France 


