
2 5 2 BOOK REVIEWS 

subject of interpolation itself. The translation is lucid, professionally done, and 
reads well. All in all, the book is a welcome addition to the literature. 
Wordsworth, we are sure, would have approved. 
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Introduction. The Hamilton-Jacobi equation is probably known to most 
engineers and physicists as a partial differential equation which pops up in the 
study of (Lagrangian or Hamiltonian) mechanics, yielding solutions of a 
system of ordinary differential equations, as its characteristics, after a varia­
tional procedure is used. It is also known, again through its relation to the 
calculus of variations, to people studying control theory, differential games, or 
other optimization problems, although it is sometimes referred to as the 
" Bellman equation" in these contexts. 

The last thirty years has seen the rise of a new interest in the Hamilton-Jacobi 
equation. With the rise of computers and new numerical techniques, the failure 
of classical smooth solutions to describe physical situations except in limited 
(local) domains, and the needs of mathematical modeling, aerospace engineer­
ing, and other applications to have solutions described everywhere, many 
mathematicians have become interested in global solutions (whatever that 
means). As nearly the most general first order partial differential equation, and 
as an equation for which global results were possible, the Hamilton-Jacobi 
equation became a natural target for mathematicians studying global solutions. 

In order to clarify the object of interest a little better, let us define the 
Hamilton-Jacobi equation. In its most familiar classical form, the Hamilton-
Jacobi equation is 

U/dt + H(t,x, Du) = 0, 

where H is a given function, called the Hamiltonian, x is in Rn, and Du denotes 
the gradient of the solution, w, with respect to x. Here t is a single variable 
(usually called "time"). The separation of the distinguished variable "f " from 
the gradient, Du, in //, makes the Hamilton-Jacobi equation much easier to 
handle than the general first order equation. The Cauchy (or initial value) 
problem is always noncharacteristic, thus amenable to solution. This same 
separation of t also makes the Hamilton-Jacobi equation essentially an evolu­
tion equation, thus allows a mass of evolution equation techniques to be 
brought to bear. 

The Hamilton-Jacobi equation, as defined by Professor Lions, is 

H(x, w, Du) — 0, 
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where "f " has been absorbed into x. That is, there is no distinguished variable, 
and we have the most general first order partial differential equation. Global 
results for this most general equation are much more recent, several of them 
being presented for the first time in Professor Lions' book. 

Brief history. In the early 1950s, Hopf [21], and Cole [9], among others, 
began the study of global solutions of partial differential equations. Actually 
A. R. Forsyth did some such studies about fifty years sooner (see [20]), but his 
work was buried in a voluminous six-volume treatise, and was largely ignored. 
P. D. Lax contributed several papers during the 1950s, particularly in the area 
of hyperbolic systems and shocks. O. A. Oleinik obtained the first global 
results applicable to the Hamilton-Jacobi equation, giving both existence and 
uniqueness theorems, in the late 1950s (see [28]). The mid 1960s saw much 
activity in this area. Conway and Hopf [10] introduced the variational method 
in global problems, Hopf [22] used a very general envelope lemma and even 
obtained some results in a nonconvex case. Aizawa and Kikuchi obtained some 
results for more general boundaries (mixed problems), and Kruzkov gave 
results for quite general Cauchy problems in several variables (see [23]). Several 
other authors produced significant papers during the 1960s. A few of these are 
included in the references. Perhaps two of the most significant papers of this 
period were those of Fleming [19], and Doughs [12]. Doughs used a differen­
tial-difference scheme to give both existence and uniqueness results for very 
general Cauchy problems, and Fleming used both the variational method and 
" vanishing viscosity" techniques to solve quite general Cauchy problems. 

In the early 1970s, Benton [4,5,6] developed general existence theorems for 
the convex case by pushing the variational method about as far as it would go. 
These results handled completely general boundaries (including the Cauchy 
and "mixed" problems), and clarified the role of various "compatibility" 
conditions between the Hamiltonian and the boundary data. However, this 
work included no uniqueness results, and did not consider the nonconvex case. 
But Feltus [18] did obtain some uniqueness results for boundary value prob­
lems. Elliott and Kal ton [14-17] produced interesting results in the study of 
differential games. Perhaps the most interesting development of the mid 1970s 
was the introduction of modern functional analysis into the arena of Hamil­
ton-Jacobi equations by treating them as evolution equations and applying the 
semigroup methods of Crandall and Liggett. Tulane University students, 
particularly Burch [7,8], working under J. A. Goldstein led the way here, along 
with Aizawa [1,2]. 

The last few years have seen most of the methods of partial differential 
equations brought to bear upon the Hamilton-Jacobi equation, including 
difference schemes, differential-difference schemes, variational methods, semi­
group methods, layering methods, smoothing, and " vanishing viscosity". (This 
last is a sort of pertubation method, introducing a small second-order term 
which goes to zero, solving the resulting equation, perhaps by stochastic 
methods, and studying the limiting case.) Some of the above-mentioned 
authors have been active in these areas, as we have several others, including, of 
course, Professor Lions himself. As the list of 132 references in Professor 
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Lions' book is quite adequate, no further authors will be mentioned here. It 
might be pointed out though, that this profusion of methods in itself makes the 
Hamilton-Jacobi equation an interesting object of study. 

This brief history has not been intended to be complete, and several 
interesting papers have been omitted, particularly some of the more recent 
ones. This reviewer apologizes to those authors who escaped mention because 
of the reviewer's unfamiliarity with their work. The references of Professor 
Lions, and of Benton [6], should offer a much more complete view of this area 
of mathematics. 

Results. Professor Lions' book covers the whole range of studies of the 
Hamilton-Jacobi equation, although several other references will need to be 
studied before the novice can understand all of the work completely. The book 
begins by summarizing the major techniques used in this area, including 
optimal control theory and the vanishing viscosity method, as well as a brief 
look at the possibility of using semigroup methods on the Hamilton-Jacobi 
equation. 

The major part of the book is divided into two sections. The first studies the 
boundary value, or Dirichlet, problem, while the second studies the initial 
value, or Cauchy, problem. These two sections get approximately equal cover­
age. However, by Cauchy problem, Professor Lions refers to "cylindrical" 
domains, with boundary data given both for t = 0, and on a fixed spatial 
boundary for all t > 0. Thus he uses the word "Cauchy" to mean the less 
general Hamilton-Jacobi equation with the variable " / " separated out. There­
fore all of his results for the Dirichlet problem apply equally to the Cauchy 
problem, and the Cauchy problem can be carried even further than the 
Dirichlet problem. 

For the Dirichlet problem, the book treats convex Hamiltonians first. For 
the uninitiated, we should mention that "convex", in the world of Hamilton-
Jacobi equations, means convex (in the usual sense) in the variable p = Du. 
Most of the theorems are proved for a simplified Hamiltonian, and the general 
case given as references or by noting the necessary extensions to the proofs. 
This is no restriction in the generality of the results, but rather is introduced 
simply for ease of presentation. Quite general existence results are given, then 
uniqueness and stability are covered. The author then moves on to general 
(nonconvex) Hamiltonians, and gives general existence and uniqueness results. 
Various related problems, such as the existence of classical solutions, Neumann 
problems, regularity of solutions near the boundary, and the relations to 
optimal control theory, are then presented. 

The treatment of the Cauchy problem is similar, handling existence, unique­
ness, and stability of solutions, first for convex Hamiltonians, and then for the 
general case. This section also studies the propagation of singularities, which 
has been an area of interest since the early 1950s, as well as relations to specific 
hyperbolic systems of equations. 

Both sections of the book include mention of questions not addressed by the 
book, such as numerical solutions, and various applications. 
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Summary. Professor Lions' book is probably the only comprehensive treat­
ment of first order partial differential equations now available. Although first 
order equations are not the equations traditionally studied in courses on partial 
differential equations, physics, or engineering, they do have many applications, 
and offer a rich variety of methods. Thus anyone interested in partial differen­
tial equations should find the first order equation of interest, and Professor 
Lions' book a good introduction to this area. The format (basically typed, with 
no right justification or italics, but underHning) makes some complicated 
hypotheses and equations a little difficult to read. Much more mathematical 
background is needed than some might like. (One should know about mea­
sures, distributions, Banach spaces, Sobolov spaces, stochastic processes, 
strongly continuous semigroups, etc.) However, the comprehensive nature of 
the book, and the depth of the results, require this background. The book 
includes a good bibliography and a detailed table of contents, but no index. 
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There is a basic connection between the study of combinatorial group theory 
and Riemann surfaces which arises as follows: If S is a compact Riemann 
surface of genus g > 2, then its universal cover is U, the unit disc in the 
complex plane, and S can be represented as U/T where T is the group of 
covering transformations. T is generated by 2g transformations a , , . . . , a , 
&!,..., bg which satisfy the relation Tlf^i[ai9bt] = 1. Here [c,d] = cdc~~xd~x 

and al and bi are Möbius transformations which leave U invariant. The group 
T is an example of a planar discontinuous group and T is said to represent S. 
The single relation above gives a finite presentation of T with 2g generators. 
The situation for noncompact surfaces is more complex, but similar. 

The book under review begins with combinatorial group theory and devel­
ops that part of combinatorial group theory which is relevant to Teichmüller 
theory and the theory of Riemann surfaces. Teichmüller theory and Riemann 
surfaces is an interesting field to work in because it lies at the intersection of so 
many fields: complex analysis, topology, algebraic geometry, differential geom­
etry, combinatorial group theory, and geometric topology. Most of the basic 
theorems in the subject can be proved using the methods of any one of these 
fields. When one translates from the language of one field to that of another, 
different aspects of the theory become either more or less clear and elegant. 

An example of where the combinatorial approach is especially nice is the 
application of the Reidemeister-Schreier methods to the theory of automor­
phisms of Riemann surfaces: A homeomorphism of a Riemann surface induces 


