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readily comprehensible to the mathematically informed reader. This problem 
arises in part from the narrative and notational difficulties of explaining 
outmoded mathematics in modern language. A related problem, one connected 
to the authors' historical methodology, is their practice of examining a given 
mechanical argument in isolation from the wider text in which it appears. 
These difficulties are apparent in the opening chapter where Cannon and 
Dostrovsky discuss Newton's analysis of the pressure wave in Propositions 
XLVII-XLIX of Book Two of the Principia. These propositions contain 
Newton's celebrated calculation of the speed of sound, an estimate that was for 
lack of an adiabatic correction 20% below the true value. The authors' 
discussion is marred by an inadequate description of two of the original 
propositions, a failing which makes their account very difficult to follow. This 
is especially unfortunate since their conclusion, that Newton had at this early 
date grasped clearly the concept of mechanical strain, is new and ultimately 
convincing. 

The evolution of dynamics', vibration theory from 1687 to 1742 is a substantial 
addition to the survey of early 18th century mechanics provided three decades 
ago by Clifford Truesdell in his extensive introductions to the collected works 
of Leonhard Euler. Despite its occasional narrative weaknesses the book is 
destined to become a standard source. It will be of assistance to the specialist 
in the history of the exact sciences who wishes to contribute to our under­
standing of the still largely unexplored world of 18th century mathematics. In 
addition, the nonspecialist with some background in vibration theory will be 
rewarded by a close study of its contents. Cannon and Dostrovsky state in the 
preface that mathematics "provides a powerful tool with which to grasp modes 
of thought from former times". To this one might add that the converse is also 
true: knowledge of earlier modes of thought provided by historical investiga­
tion serves to heighten our appreciation for the mathematics of today. 
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The objects studied in differential geometry can alternatively be defined by 
using or by avoiding local coordinates. There are even definitions which can be 
thought of as both using and avoiding coordinates. Consider, for example, a 
first order partial differential operator 
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on some open set in R". The same operator in different coordinates on the 
same open set is 

n Q 
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where 

9x 

(summation convention henceforth). Thus a tangent field in some manifold 
may be defined by assigning to each coordinate chart a set of functions at{x) 
in such a way that the above equation is valid on overlapping coordinate 
charts. Of course, one could also define a tangent vector at a point without 
explicitly choosing local coordinates by considering equivalence classes of 
parametrized curves and then letting the vector vary "smoothly" as a function 
of the point to define the vector fields. Let us use "intrinsic" to refer to 
methods and definitions such as this last one which do not rely on any explicit 
coordinate choices. 

An intermediate approach incorporates all coordinate changes into an 
intrinsic space associated to M and uses that space to define the object. In this 
sense it both uses and avoids local coordinates. In our example of a tangent 
vector field only the first derivatives of the coordinate changes are relevant. So 
let P\(M) be the bundle of 1-jets at the origin of nonsingular maps/: Rn -» M. 
The group G = GL(w) acts on PX(M) by j\(f)g =j\(f° g), i.e. by matrix 
multiplication on the right in each fibre. We also have the usual left action of G 
on Rw. Thus we may define an action of G on PX(M) X Rn by g(j\(f)9 v) — 
(j\(f)g~\ gv). Let P\(M) XGRW denote the orbit space of this action. This is 
a bundle over M with fibre dimension equal to n. Let us show that a tangent 
vector may be considered as a point of this bundle. Take (tX9...9tn) as the 
standard coordinates on Rn and choose some local coordinates (x1 ? . . . 9xn) on 
M. Theaj\( ƒ ) = (/(O), 9/'(0)/8^) and so (JC, Fij9 va) may be taken as local 
coordinates for PX(M) X Rw. In the orbit given by (x, Fik(g~l)kj9 gapVp) there 
is precisely one point with coordinates (x, I, aa) where I is the identity matrix. 
So we take these as coordinates on P{(M) XGRn. Let the tangent vector 
aa(d/dxa) at x correspond to the point (x, I, aa(x)) of PX(M) XGRn. This uses 
so far only that PX(M) XGRn and the tangent bundle T(M) have the same 
dimension. But we mean to say more: The map 

<*afa~-*(x>l><*a) 

does not depend on the choice of coordinates for M. Or said another way, 
points of PX(M) XGRn and of T(M) when written in local coordinates 
transform in the same way. This is easily seen from the fact that ifj\(f) = I 
when expressed in x coordinates in the range, then jx(f) = 3x/3x when 
expressed in x coordinates in the range. Thus we could have defined a tangent 
vector as a point of this intrinsic bundle. This would be an example of an 
intermediate definition. 
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Now that we have vectors and vector fields, let us try to define a derivative. 
We seek to define a new vector field X V Y which should act like the 
"derivative of Y in the direction X". So we choose some coordinates and also 
some functions Tt

k(x). Then we may set 

3 , 3 ^ 3 
= rA 

dxt dxj lJ dxk 
and 
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Now this same object in different coordinates must be given by 

iJ dx( dXjdXj dxc dxt dxj ab' 

So an "affine connection" may be defined as a collection of functions Tfi(x) 
which transform in a certain way under change of coordinates. 

Again we also have an intrinsic definition: An affine connection is a map 
from triples (/?, X9 Y\ where/? E M, X G TMp9 and Y is a vector field near/?, 
to vectors in TMp. This map is linear with respect to X and acts as a linear 
derivation with respect to Y. The image of (/?, X, Y) may be denoted V ^ . 

There is also an intermediate definition, at least if we restrict ourselves to 
torsion-free connections. (Recall that this means Tjj = Tfi in one coordinate 
system and hence in all or, alternatively, VXY — VYX= [̂ > Y].) The trans­
formation law for T/j shows that we must work with the bundle of 2-jets at the 
origin of nonsingular maps of R into M. Call this bundle P2(M). Following [1, 
p. 147], we shall essentially represent a torsion-free affine connection as a 
section of a quotient of this bundle; that is, as P2(M) XGR°. We fix coordi­
nates on M and take 

A(/ ) = ( A O ) , ^ ( O ) . ^ ( O ) 

Thus for coordinates on P2(M) we have (x, wj, Ujk). Again let G = GL(n) act 
by composition. So if g = (gab) then 

(*, WJ, U^)g = (x, Ul
a%aJ, U'^gajgu). 

Note there is a unique g EL G which takes the point (x, wj, wĵ ) to a point of 
the form (x,I, zjk). Here zl

Jk = zj^. Thus (x, zl
jk) serve as coordinates for the 

orbit bundle P2(M)/G. It is easy to see that when we start with different 
coordinates x = x(x) on M then the section (x, zfj(x)) becomes (x, zfj(x)) 
with 

17 3xc BjCj-BiCy 3xc 3x, 33c7
 a*' 

Thus a torsion-free affine connection may be defined as the "negative" of a 
section of P2(M)/G. 
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Finally let us consider tensors. Classically an (r, s)-tensor written with 
respect to some coordinate system (xu... ,x„) is given by 

Ajy ''Jr..i where 1 < i„ < n, 1 <j' < n. 

In another coordinate system (xl9... ,xM) we have the same object represented 
by 

Â{;r^.,, = 4','•'"'••* c,,, • • • cMc*>* • • • c*-'-

where C -̂ = 9.x ̂ /Bx, and CAy = dxh/dxj. See (2). 
Now for an invariant definition. For any vector space V let T/(M) be the 

tensor product V®--®V<8>V*®---®V* where there are r factors of V 
and s factors of its dual. Construct a new bundle on M by doing this for each 
fibre of T(M). A section of this bundle is a tensor field of type (r, s). 

Again there is an intermediate definition which uses the frame bundle 
PX(M). Our definition for r = 1, s = 0 will coincide with the intermediate 
definition of the tangent bundle. Consider Rn as a vector space and let T/(Rn) 
be the tensor product, as above. Let G = GL(n) act on T/(Rn) in the usual 
way: It acts on the left on each V = R factor and its adjoint acts on the left oh 
each V* factor. Then 

T/(M) = P1(M)XCT;(R"). 

Now of course this can be generalized. For instance let P = Pk(M) be the 
bundle of /c-jets at the origin of nonsingular maps of Rn to M, G — Gk the 
group of A:-jets at the origin of diffeomorphisms leaving the origin fixed, and 
E = Ek any vector space upon which G acts. Then the associated bundle 
P X G E is a generalized tensor bundle. 

The book under review is based on the observation that for an appropriate 
choice of E we have that P XG E is T(T( • • • T(M)) • • • ), the &th iterated 
tangent space of M. The author generalizes to sections of P XGE and of 
related bundles the operations so useful for tensors such as contractions, duals, 
and Lie derivatives. There is a notational difficulty in working with these 
iterated tangent spaces. The author handles this by some clever conventions 
and his notation is probably no more complicated than is necessary. As 
applications he considers some standard topics such as curves in the plane, 
surfaces in Euclidean 3-space, geodesies, and the Riemannian curvature tensor. 

Although the author cautions us in his preface that he claims no originality 
in discovering uses for iterated tangents it is nevertheless disappointing to see 
such meager results after such a careful and detailed presentation of the 
associated algebra and calculus. Perhaps the author should have published 
some of his work in a journal or as a set of lecture notes and deferred the 
research monograph until his methods had proved their usefulness. As it is, 
this book can be recommended only to those mathematicians who already have 
a particular interest in iterated tangent spaces and are willing to pay a 
reference book price for material which might be more at home elsewhere. 
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A group representation is a homomorphism G -> GL(F), from a given group 
G into the group of invertible linear operators on some vector space V 
(usually, but not always, over C). The modern theory of such representations 
first came into being in a remarkable series of papers by Frobenius in 
1896-1900 (which, incidentally, still make excellent reading today; see [4]). 
Frobenius and his immediate followers (notably Schur and Burnside) dealt 
with finite groups, but their ideas were soon carried over to compact groups, 
where they blossomed in the 1920s into the beautiful Cartan-Weyl theory of 
representations of compact Lie groups. 

Since then, group representations have cropped up in virtually every major 
area of mathematics, not to mention large chunks of theoretical chemistry and 
physics. Thus representation theory (especially of finite groups and of Lie 
groups) has become not only a specialty in its own right, but also a tool that 
almost every mathematician or physicist can make use of. It is not surprising, 
therefore, that one sees more and more basic textbooks on group representa­
tions these days, written from all sorts of perspectives and for all sorts of 
audiences. 

The late Professor M. A. Naïmark was one of the most important pioneers 
in several areas of functional analysis. He is probably best remembered for his 
work with I. M. Gel'fand in the 1940s on the foundations of C*-algebra theory 
and on the unitary representations of the classical semisimple Lie groups. As 
explained in the translators' preface, this monograph on representation theory 
was Naïmark's last major project before his death in 1978. He enlisted as a 
collaborator in this effort one of his former students, A. I. Stern, who has 
worked mostly on unitary representations of locally compact groups. 

This book is "written for advanced students, for predoctoral graduate 
students, and for professional scientists—mathematicians, physicists, and 
chemists—who desire to study the foundations of the theory of finite-dimen­
sional representations of groups". A broad audience indeed! No wonder, then, 


