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REAL AND COMPLEX CHEBYSHEV APPROXIMATION 
ON THE UNIT DISK AND INTERVAL 

BY MARTIN H. GUTKNECHT AND LLOYD N. TREFETHEN1 

We announce the resolution of a number of outstanding questions regarding 
real and complex Chebyshev (supremum norm) approximation by rational 
functions on a disk and on an interval. The proofs consist mainly of symmetry 
arguments applied to explicit examples. The most important results: complex 
rational best approximations on a disk are in general not unique; real functions 
on an interval can in general be approximated arbitrarily much better by 
complex rational functions than by real ones. Details will appear in [3, 8]. 

1. Notation. Define A = {z: \z\< 1}, A& = {ƒ : continuous on A, analytic 
in the interior}, ||ƒ ||A = sup{| f(z)\ : z G A}. Let m > 0, n > 1 be integers (all 
questions considered below become trivial for n — 0), and let jRmn be the space 
of complex rational functions of type (ra, n). Define Ar

A = {ƒ G AA : ƒ {z) = 
W)}> Kan = {re Rmn : r(z) = KÏ)}, and for ƒ G AAl 

£ m n ( / ; A ) = jnf | | / - r | U , ^ n ( / ; A ) = inf | | / - r | | A . 

It is known that these infima are attained (proof by a normal families argu
ment due to Walsh [10]), and we let iVmn(/; A) and Nr

mn(f;A) denote the 
number (finite or infinite) of best approximations (BA 's) to ƒ. 

Finally, set I = [-1,1], and let Ah A\, || • \\h Emn{f;I), Er
mn(f;I), 

Nmn(f; I), Nr
mn(f) I) be defined analogously. (Aj and A} are just the sets 

of continuous complex and real functions on J, respectively.) 

2. Nonuniqueness. It is a classical result due to Achieser that N^^f'jl) = 
1 for all m, n and all ƒ G A}. But Lungu [4] (on proposal of A. A. Gonëar) and 
independently Saff and Varga [6, 7] found that for all m and n there exists ƒ G 
A} with Emn(f;I) < £'Jnn(/;7), so that by symmetry necessarily Nmn(f)I) > 
2. Ruttan [5] even gave an example with Nu(f;I) = oo. However, the 
analogous questions for the disk have been open [2, 9]. We claim [3]: 

T H E O R E M 1. Vm; n, VK >l,3fe AA such that Nmn(f) A) > K. 

T H E O R E M 2. Vra, n with m = 0 or n = 1, 3 ƒ G Ar
A such that Emn{ ƒ ; A) 

<£ rmn(/;A). 

T H E O R E M 3. Vra, n, 3f e Ar
A such that Nr

mn(f; A) > 1. 
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(We believe that the assertion of Theorem 2 probably holds for arbitrary m 
and n.) For (ra,n) = (0,1) and K = 2, these claims can be established as 
follows. The function ƒ(z) = z + zz attains maximum modulus at the points 
±1, with /(I) = — ƒ(—1) = 2. An approximant from R^ with no pole on 
A must have the same sign at —1 as at +1, which implies that 0 is a BA 
in Rr

01, hence Er
01{f; A) = 2. On the other hand r{z) = l/{z - 2%) e R0i 

has Rer(l) > 0, R e r ( - l ) < 0, so for small enough 6, \\f - 6r\\A < | | / | |A , 
hence E01(f;A) < Er

01(f;A) (Theorem 2); hence by symmetry iV0i(/; A) > 2 
(Theorem 1). Similarly with f(z) = z — z3 one shows that any BA from R^ 
necessarily has a finite pole at z$ with either ZQ > 0 or ZQ < 0, and then 
symmetry implies that there is another BA with a pole at — z$ (Theorem 3). 

3. Padé approximation; small disks and intervals. Let J be the interval 
[0,1]. For ƒ analytic in a neighborhood of the origin, and for fixed m, n and 
any sufficiently small e > 0, let r*A, r*7, and r*7 denote BA's to ƒ in Rmn 

on e A, el, and eJ, respectively. Let rp be the Padé approximant to ƒ of 
type (m, n), whose coefficients have a connection to the nxn Hankel matrix 
H = ( a m _ n + i + j - i ) ^ = 1 > where f(z) = a0 + a1z+a2z

2 + -- (ak = 0 for k < 0). 
Walsh showed in 19Ó4 and 1974: 

THEOREM [11, 12]. IfdetH # 0, then r*eJ -+ r* and r*A -+ rp as e -> 0. 

By r* —• rp we mean that the functions r* approach rp uniformly on compact 
sets containing no poles of rp. 

Walsh did not determine whether the condition detH # 0 is necessary, and 
Chui et al. [1] have shown that if attention is restricted to approximation in 
Rr

mn of a real function on J, it is not. But we claim [3] 

THEOREM 4. Mm, n, 3f € A& for which r*A y^rp as e - • 0. 

T H E O R E M 5. 3m, n, ƒ e Aj for which r*eI ƒ• rp as e -> 0. 

These theorems are proved by picking ƒ as in the nonuniqueness proofs such 
that rp = 0, but such that r* has a pole. One then shows that as e —• 0 this 
pole approaches the origin, which implies r\-/>rp. 

4. Degree of approximation. Since E <Er can occur on both I and A, it 
is natural to ask whether the ratios 

i = • f Emn(f)I) A = ffmn(/;A) 
7 ™ feAr^E^f-jy 7 ™ / € A i \ ^ m w B U ( / ; A ) 

are zero or positive, and if positive, how small. Such a question was raised by 
Saff and Varga for the interval / [6, 7, 8] and considered further by Bennet, 
Rudnick, and Vaaler, and by Ruttan [5] in the case m = n = 1 and by EUacott 
[2] in the case m>n. No examples have been found heretofore with E/Er < 
1/2, but we claim [8] 

T H E O R E M 6. 7 ^ n = 0 forn>m + 3. 

T H E O R E M 7. "y£n = 0 for n > 4. 
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The idea behind the proofs is that one or more complex poles near the 
domain of approximation can introduce an approximate sign change, thereby 
simulating the behavior of a real zero. Thus for Theorem 6 with m = 0, 
consider 

2e 
<j>{x) = G Ros 

[x + (l + e)][z-(l + e)][x-iy/€\ 
and f(x) = Re0(x). Then | | / | | j = / ( - l ) = - / ( l ) = 1 + 0(e), so the equioscil-
lation theorem implies that 0 is the BA in R^n, with Eln(f;I) = 1 + 0(e), 
while on the other hand EQn(f;I) < \\f - 0||j = ||Im</>||/ = 0(v

/ë). Taking 
e -+ 0 gives -y£n = 0. 

However r^rnn = 0 cannot hold for all (m, n), for we have also shown [8]: 
T H E O R E M 8. 7 ^ > 0. 

We suspect that the result of Theorem 6 is sharp. 

C O N J E C T U R E . ^mn = 0 if and only ifn>m + 3. 

5. General regions. The same ideas can be applied to obtain various results 
for approximation on more general regions in C. For example, let Q be a 
Jordan region with Q = Ö whose boundary dQ is differentiable at its two 
points of intersection with R, hence forms a right angle to R at these points. 
Then Theorem 7 (hence also Theorems 1, 2) extends as follows [8]: 

T H E O R E M 9. ^n = 0fom>4. 

On the other hand Theorem 8 can also be generalized. 

T H E O R E M 10. 7 ^ > 0; in particular, 7 ^ > 0. 

NOTE ADDED IN PROOF. Several additional results have been obtained 
concerning the Padé and best approximation questions discussed in §3. In 
particular, further explicit examples show that r*eJ -/> rv and r*7 7^ rv can 
occur even for real approximation of real functions; thus the result of [1] 
quoted above is false. These matters will be discussed in a future publication. 
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