RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 3, May 1983

UNIVERSAL KNOTS

BY HUGH M. HILDEN, M. T. LOZANO AND JOSÉ MARÍA MONTESINOS

ABSTRACT. We demonstrate the existence of, and show how to construct, a knot K in S^3 such that every closed orientable 3-manifold is a branched covering space of S^3 with branch set K.

In January 1982, William Thurston [1] gave an example of a six component link, T in S^3 such that every closed orientable 3-manifold is a branched covering space of S^3 with branch set this link T. He called links with this property "universal" and raised the question as to whether there was a universal knot.

The purpose of this paper is to answer this question in the affirmative. This result follows immediately from Thurston's result and the following theorem.

THEOREM 1. Let L be any m+1-component link in S^3 . Then there is a 2m+4 component link L' in S^3 and a map $p\colon S^3\to S^3$ such that

- 1. L is a sublink of L'.
- 2. p is a 2m + 5 to 1 branched covering space map.
- 3. The branch set is a knot K.
- 4. $p^{-1}(K) = L'$.

SKETCH OF THE PROOF. We begin with a 2m+5 to 1 simple branched covering $p\colon S^3\to S^3$ branched over a knot $\tilde K$. We also assume that the preimage of $\tilde K$ is a 2m+4 component link with one component having index of ramification two and the rest index one. (This is not difficult to arrange.) We designate any m-component sublink having only index of ramification one components, as "important", we call it M and we call the rest N.

Next we study lifts of arcs having both endpoints in the branch set \tilde{K} . Certain arcs have as their preimages sets of 2m+3 arcs, 2m+1 of which are

Received by the editors December 15, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M12; Secondary 57M25.

mapped homeomorphically and two of which are mapped by a folding about the midpoint. We can do surgery in a ball neighborhood of such arcs and using this type of surgery it is possible to change any undercrossing in M to an overcrossing. The price we pay is that N is radically altered as is \tilde{K} . However \tilde{K} is changed to another knot, not a link.

By a series of such surgeries we gradually change M to L and this completes the proof.

Using this method, and a somewhat different approach than Thurston's to obtain a universal four component link, we obtain a universal knot K. The knot K turns out to be the (7,6) torus knot with clasps.

REFERENCES

1. W. Thurston, Universal links (preprint).

FACULTAD DE CIENCIAS, UNIVERSIDAD DE ZARAGOZA, SPAIN

Current address (Hugh M. Hilden): Department of Mathematics, University of Hawaii,
2565 The Mall, Honolulu, Hawaii 96822