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PHYSICAL SPACE-TIME 
AND NONREALIZABLE CR-STRUCTURES 

BY ROGER PENROSE 

Abstract. Space-time views leading up to Einstein's general relativity are described in 
relation to some of Poincaré's early ideas on the subject. The basic geometry of twistor 
theory is introduced as it arises both from Minkowski space-time and the more general 
curved Einstein models. It is shown how this provides a CR-structure (this being, in 
essence, another of Poincaré's pioneering concepts) in a natural way. Nonrealizable 
CR-structures can arise, and an example is presented, due to C. D. Hill, G. A. J. Sparling 
and the author, of a complex manifold-with-boundary which cannot be extended as a 
complex manifold beyond its C°° boundary. 

1. Introductory remarks. The nature of physical geometry was something that 
held considerable interest for Poincaré, and he often referred to it in his more 
popular writings. Moreover, it was Poincaré who first clearly understood the 
physical transformation group of special relativity—arising as a group of symme­
tries of Maxwell theory—and he suggested that the relativity principle concerned 
might hold for physics generally. This dates back to 1899, six years before 
Einstein's first paper on relativity (cf. Poincaré (1906), (1954) for details). It is 
fitting, therefore, that this symmetry group should be now very commonly 
referred to as the Poincaré group (otherwise known as the inhomogeneous 
Lorentz group, where simply "Lorentz group" now normally refers only to the 
related homogeneous group). 

Poincaré also had interesting and, to some extent, insightful things to say about 
the possibility that physical space might have a non-Euclidean geometry. But here 
his instincts appear ultimately to have let him down. For in "Science and 
Hypothesis" Poincaré (1905) wrote 

"What then, are we to think of the question: Is Euclidean 
geometry true? It has no meaning. We might as well ask if the 
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metric system is true, and if the old weights and measures are 
false; if Cartesian coordinates are true and polar coordinates 
false. One geometry cannot be more true than another; it can 
only be more convenient. Now, Euclidean geometry is, and 
will remain, the most convenient: 1st, because it is the sim­
plest, and it is not so only because of our mental habits or 
because of the kind of direct intuition that we have of 
Euclidean space; it is the simplest in itself, just as a poly­
nomial of the first degree is simpler than a polynomial of the 
second degree; 2nd, because it sufficiently agrees with the 
properties of natural solids, those bodies which we can com­
pare and measure by means of our senses." 

It is, of course, no discredit to Poincaré that he should have had no inkling of 
that extraordinary development, which emerged three years after his death, 
namely Einstein's general theory of relativity. Nevertheless, I find it rather 
remarkable that Poincaré, with his deep geometric and philosophical insights, 
should apparently have had such a rigid feeling that geometries other than 
Euclidean could have no chance of providing accurate and useful descriptions of 
physical space according to some future theory. His remarks on the conventional­
ity of geometry and on the fact that the geometry we use in physics is of necessity 
an idealization are, indeed, quite profound and insightful. But he seems to have 
made a rather bad mistake in his reasoning, his critical faculties being perhaps 
dulled by an erroneous (but natural enough) intuitive presumption that in "our 
world" the geometry actually is Euclidean! 

According to modern cosmology, it is quite on the cards that the large-scale 
spatial geometry of the universe may indeed be closely in accord with 
Lobachevskian geometry—that geometry which held such a fascination for 
Poincaré the mathematician, yet which had been rejected as inevitably physically 
inappropriate by Poincaré the philosopher! It would be interesting to know how 
Poincaré would have reacted to present-day cosmology. Perhaps there is an object 
lesson here for all of us. 

Even if observation finally turns against its present slight preference for the 
Lobacheveskian spatial geometry—and also tells against models with a positively 
curved spatial geometry—leading us to believe that the large-scale spatial struc­
ture is Euclidean after all, we cannot now go back to flatness for the structure on 
a more localized level. Tests of general relativity are now sufficiently good to 
provide direct measurements of deviations from flatness in physical geometry, the 
geometry being defined in a sense that I shall describe in the next section. 
However, it is the geometry of space-time, rather than that of space, which has a 
clear physical interpretation. And we shall see that the space-time geometry of 
(Poincaré's!) special relativity, though flat, is yet not the geometry of Euclid. 
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In §2, I shall outline the contemporary and now well-established (Einstein) 
view of curved space-time geometry. Then in §3, I shall indicate how this 
geometry may be looked at in a different way, and how this new viewpoint 
enables another of Poincaré's pioneering innovations, namely the study of the 
instrinsic structure of boundaries of complex domains, to be applied in an 
unexpected context in physics. Finally, in §4, I shall indicate how, in a sense, 
these ideas also enable the physics to repay its debt to the mathematics and 
provide what appears to be the first established example of a complex manifold 
which cannot be locally extended beyond its C00-smooth boundary. 

2. Structure of space-time. It is to Minkowski (1908) whom we owe the idea 
that physical geometry should be a 4-dimensional space-time geometry, rather 
than a 3-dimensional spatial one. In relativity theory, there is no absolute 
3-geometry, but the 4-geometry of space-time is an absolute objective physical 
structure. In fact, when viewed in the Minkowskian way, relativity theory 
becomes a theory of the absolute. What have become relative are merely the older 
ideas of separate space and time. One further point about Minkowski's absolute 
space-time geometry that will emerge is that it is most directly described in terms 
of measured time-intervals rather than of distances in the ordinary sense, so that 
the geometry is really a "chronometry". This point of view has been emphasized 
particularly by Synge (1960) and Bondi (1965) and it leads to a considerable 
clarification of the meanings of the mathematical structures involved. 

In order to appreciate fully the nature of the space-time provided by Einstein's 
general relativity, it may be helpful first to see how the older physical theories can 
be described in a space-time setting. We shall consider, in turn, five alternative 
space-time structures, which I shall refer to (cf. Penrose (1968)) as 

A : Aristotelean space-time, 
G: Galilean space-time, 
TV: Newtonian space-time, 
M: Minkowskian space-time, 
E: Einsteinian space-time. 
The structure of the Aristotelean space-time A is given by its expression as a 

product 

(2.1) A = ElXE\ 

where Ew denotes Euclidean «-space equipped with its flat metric (and, if desired, 
with an orientation), whence each En possesses a \n{n + 1) group of symmetries. 
For any two events a, b G A, there is both an absolute time-difference T(a, b) Œ M 
and an absolute spatial separation D(a, b) G IR (these being the distance func­
tions in E1 and E3, respectively). It is therefore meaningful to say, of two events, 
whether they are simultaneous in A (i.e. T(a, b) = 0); but it is also meaningful to 
say whether they have the same position (i.e. D(a, b) — 0) irrespective of their 
simultaneity. For in Aristotelean physics the state of rest is distinguished among 
all motions, and this is reflected in the fact that the canonical copies of E1 in 
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E ' X E 3 constitute a distinguished family of curves in A representing the world-
lines of particles at rest, i.e. which have the same position at all times. The space 
A has a 7-parameter symmetry group. 

The structure of Galilean space-time G, on the other hand is not that of a 
product but merely a fibre bundle with E3 fibres and an E1 base space, the 
projection map 

(2.2) G ^ E 1 

being the assignment of a "time" to any event in G. Thus, of any two events 
a, b G G, it is meaningful to speak of their time-difference T(a, b) G U and to 
say when the events are simultaneous (i.e. T{a,b)~ 0), but their spatial separa­
tion only has meaning if they are simultaneous. This reflects the fact that in 
Galilean physics there is no invariantly defined state of rest, and any two 
nonsimultaneous events will be viewed as having the same spatial location with 
respect to some suitably moving reference system. The bundle structure of G is 
not, however, G 's whole structure. We need also to single out a family of curves 
in G which represent inertially moving particles', and these curves may be referred 
to as straight lines in G. The simplest way to specify the particular straight line 
structure that G possesses is, perhaps, to say that G is an affine space and that the 
fibration (2.2) is compatible with this affine structure (in the sense that the fibres 
are all parallel, that the E3 fibres and E1 base all inherit their correct affine 
structures, and that parallel straight lines, transverse to the E3's, provide metric-
preserving maps between the E3 's). The total structure that all this assigns to G is 
somewhat weaker than the structure of A. The symmetry group of G contains that 
of A as a subgroup, and it is a 10-parameter group referred to as the Galilei group. 

We pass now to Newtonian space-time N, the idea here (due to É. Cartan 
(1923), (1924), cf. also Friedrichs (1928), Trautman (1966)) being to treat Newto­
nian gravitational theory as a geometric theory in the spirit of Einstein's general 
relativity. We recall, for example, that a uniform Newtonian gravitational field 
permeating the whole of space would be totally undetectable. All particles would 
accelerate together under this field, so that relative to the particles themselves, the 
field would appear not to be there at all. It is only deviations from uniformity, i.e. 
" tidal forces", which are physically detectable, and the idea is that in the general 
case these supply a kind of curvature for N. As a fibre bundle, N has a structure 
identical with that for G, 

(2.3) A T ^ E 1 

(so simultaneity and time-difference, and lack of a spatial separation concept for 
nonsimultaneous events, are the same as before)—but now there is a different 
family of curves representing inertial motions. " Inertial motion" now means " free 
motion under gravity", and we can refer to the corresponding world-lines in N as 
"geodesies". In fact, while not extremal curves, these geodesies are, indeed, the 
geodesies of a certain torsion-free linear connection T on N. The space N also 
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possesses a co metric g* (symmetric contravariant 2-valent tensor) which is semi-
definite but degenerate (having matrix-rank 3), where g* has the defining prop­
erty of inducing the correct Euclidean metric on each E3 fibre. The connection T 
preserves g*, but this property does not define T uniquely. The different possible 
inequivalent T's correspond to the different possible physically inequivalent 
gravitational fields. Thus, unlike G and A, which have canonical structures, there 
are many different Newtonian space-times N. Indeed, G is a special case, given 
when T is flat. In general, N has no symmetries. 

Minkowskian space-time M, the space-time of special relativity, on the other 
hand, possesses, like G and A, a canonical and uniform structure. Like G (and like 
A), M is an affine space, and inertial motions in M are described by lines which 
are straight with respect to this affine structure. These lines may also be thought 
of as the geodesies of a certain flat connection T, where T is now the unique 
torsion-free connection preserving a certain flat nondegenerate pseudometric g, of 
Lorentzian signature ( + , — , — , — ). (It is the nondegeneracy of g that now enables 
it to determine T uniquely.) The pseudometric g serves to define a quadratic 
squared "distance" function S of signature ( + , — , — , — ), on pairs a, b E M 
(S(a, b) G IR). Thus M is a pseudo-Euclidean space. The physical meaning of S is 
that an (ideal) inertial (i.e. unaccelerated) clock which moves from the event a to 
the event b will register a time-interval between a and b equal to {S(a, b)}l/2. For 
a physical clock (or, indeed, for any massive particle) S(a, b) > 0, and we say 
that the separation between a and b is timelike. When S{a, b) — 0 we say that the 
separation is null, this being the case when a light ray connects a to b. When 
S(a, b) < 0 we say that the separation is spacelike, and in this case a and b will 
appear as simultaneous in some suitably moving inertial reference system, the 
distance between them (using units for which the light-speed is unity) being 
{-S(a, b)}l/2. The symmetry group of M is the 10-parameter Poincarè group. 

The structure of Einsteinian space-time E bears the same relation to M as iV 
does to G. Thus there are many inequivalent spaces E, their different structures 
providing the various inequivalent gravitational fields. The structure, in each case, 
is given by a pseudometric g, with the same ( + , — , — , — ) signature as M, but now 
g is generally not flat. The inertial motions in E (i.e. free motions under gravity) 
are given, as with M, by geodesies of the unique torsion-free connection T 
preserving g. But as with N, a curvature of T provides the physically detectable 
" tidal force". As with M, the pseudometric g provides the definition of time-inter­
val as measured by ideal clocks, but because g is not flat, we normally think of the 
interval as defined only between infinitesimally separated points, the interval (in 
the timelike or null case) being given by {g(8x, 6.x)}1/2, where 8x is the tangent 
vector which "connects" the point to its infinitestimally separated neighbour. The 
world-line of a massive particle has tangent vectors which are all timelike (i.e. 
g(8x, ôx) > 0), the tangent vectors being all null (i.e. g(8x, 8x) = 0) in the case of 
a massless particle. The time-interval between finitely-separated events a and b, as 
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measured by a clock carried from a to b by such a particle is the pseudo-Rieman-
nian "distance", given by 

(h{g(dx,dx)}l/2. 
J a 

Note that this time-interval depends upon the path through space-time from a to 
b. If a and b are not too far apart, this time-interval is a maximum for the 
geodesic (i.e. inertial path) which locally connects a to b. The metric g determines 
(via T) a Riemann curvature tensor R. The direct physical interpretation of R is 
obtained from the Jacobi equation, which describes, in terms of R, the geodesic 
derivation of (say) timelike geodesies, i.e. the tidal effect on inertially moving 
particles. In the general case, E has no symmetries. 

In order to provide a physical theory of gravity, Einstein had to supplement the 
above general geometric structure by his field equations. These state that the 
trace-reversed Ricci tensor constructed from R is a constant multiple of the 
physical energy-momentum tensor, describing the density of matter. Where there 
is no matter, the energy-momentum tensor is zero and the space-time is Ricci-flat; 
and where matter is present, the Ricci tensor is locally determined by this matter 
density. The remainder of the curvature, namely that measured by the Weyl 
conformai curvature tensor C, is governed by differential equations and is thus 
constrained, in a nonlocal way, by the distribution of matter. In the limit when 
velocities are small and the fields are weak (in the sense of small gravitational 
potentials) the theory goes over into the older Newtonian theory. Various small 
deviations from Newtonian theory have been observationally established, and 
these are all consistent with the more accurate Einstein theory. In fact, Einstein's 
theory must now be regarded as an excellently-tested theory of gravity, having no 
serious rival (at least none for which there is any forseeable prospect of observing 
a discrepancy with Einstein's theory). The mathematics of Einsteinian manifolds 
—and including that of the important special case provided by Minkowski 
geometry—is thus something of especial interest for physics. 

3. Twistor geometry and CR-structure. Let us next examine how the geometry 
of Minkowski space M may be reformulated in a new way (cf. Penrose (1975), 
(1977); Penrose and Ward (1980); also Wells (1979)). We shall see how this 
relates M to the theory of boundaries of complex manifolds. An analogous 
construction for the more general curved Einstein spaces will be considered 
afterwards. 

Choose standard Minkowski coordinates x — (r, £, rç, f ) G [R4, for Af, where S 
is given by 

s(*,x) = (T-f ) 2 - (£-ê) 2 - ( î ) -3) 2 -a-n 2 
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where throughout this work " / " stands for v-T (and a bar denotes complex 
conjugation). 

Let (W0,WX,W2,W3) e C4 be coordinates for an element W of an associated 
complex vector space T. called (dual) twistor space where W and x are said to be 
incident whenever 

(3.2) iW,.W,) = ^ W , . W , ) ( ^ « ! * ) . 

This relation can only hold if 2(W) = 0, where the ( + , + , — ,— )-signature 
Hermitian form 2 is defined by 

(3.3) 2 (W) = W^W2 + WX~W3 + W2W0 + W3WX 

(because the Hermiticity of the (2 X 2) matrix in (3.2) entails that postmultiplica-
tion of (3.2) by the conjugate transpose of (W0, Wx) yields a purely imaginary 
result). 

The 3-complex-dimensional projective space IP T., associated with T., whose 
points are labelled by the three complex ratios 

W0:WX:W2:W3 

consists of two open complex manifolds PT + and PT_, given when 2(W) > 0 
and 2(W) < 0, respectively, together with their common boundary, the 5-real-
dimensional manifold PT0, given when 2(W) = 0. Thus the points of PT. for 
which (3.2) holds for some x G M, all lie on PT0. They do not constitute quite the 
whole of PT0, however, since points of the projective line /, given by W0= Wx = 
0, admit no solution for x in (3.2). 

Suppose we choose a fixed 

W G PT0 - / 

(where from now on I use boldface capital letters such as W to denote the point 
of the projective space PT., rather thanT. or C4). Then we can solve (3.2) for the 
Minkowski point x. The solution is not unique, however, the freedom being given 
by 

\è-iv T-S )**{£-iri r-S } \-WQWx W0W0 J 

for arbitrary real k. Note that the final matrix on the right has rank unity and so 
represents, by (3.1), a null (i.e. zero Minkowski length) vector in M. Thus, the 
points x incident with the given W constitute a null geodesic (straight line) in M 
which, without confusion, we can also label by W. Indeed, we may think of 
PT0 — / as the space of null geodesies W in M. Our construction has shown how 
this space may be imbedded as a 5-dimensional real submanifold of a complex 
projective 3-space. 

To interpret a point x G M, conversely in terms of PT., we fix x in (3.2) and 
allow W to vary. This gives us a 2-complex-dimensional linear subspace in T., i.e. 
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a complex projective line in PT.. Clearly this line lies in PT0 — ƒ and, moreover, 
all lines lying entirely in PT0 — / arise in this way from points in M. Thus 

the projective lines lying entirely in PT0 — ƒ 
represent the points of Minkowski space M. 

Note that if we allow the coordinates r, £, 17, f to become complex i.e. x to 
become a point of the complexification CM of M, then the above construction 
yields a projective line lying entirely in PT. —/. We may also consider projective 
lines in PT0 [resp. PT.] which meet /. These provide "points at infinity" for M 
[resp. CM], the totality of all lines in PT0 [resp. PT.] describing the standard 
conformai compactification M # [resp. CM*] of M [resp. CM]. 

The intrinsic structure of projective lines in PT0 — ƒ can be illustrated in a very 
graphic " physical" way. The family of light rays W through (i.e. incident with) a 
fixed point x G M represents the family of points on the corresponding complex 
projective line in PT0 — I. A complex projective line has the topology S2 and, 
moreover, the holomorphic structure of a Riemann sphere. Now imagine an 
observer situated at x. His field of vision will be represented by the light rays 
through x, i.e. by the family of W's under consideration. Clearly the topology of 
the observer's entire field of vision is indeed S2. But, more subtly, the holomorphic 
structure is also relevant. This shows up in the allowed transformations between 
various observers with different velocities, all of whom pass through the same 
space-time event x. Their fields of vision are related to one another, at x, by 
transformations which preserve the holomorphic structure of the Riemann sphere, 
i.e. their fields of vision are conformally related to one another. This is a 
well-known property of Lorentz transformations (Penrose (1959), Terrell (1959)). 
Indeed, the connected component of the Lorentz group may be regarded as the 
group of all holomorphic self-transformations of this Riemann sphere. 

By virtue of its imbedding in the complex manifold PT., the entire (real) 
hypersurface PT0 inherits further holomorphic structure. This structure, referred 
to as a (maximal1) CR-structure falls short by just one (real) dimension of 
defining PT0 as a complex manifold. We shall see the physical interpretation of 
this shortly. 

The structure of a (maximal) CR-manifold T of, say, dimension In + 1 
provides that in the tangent space T , at each point/? E T, a 2«-real-dimensional 
subspace H C Tp is singled out, referred to as the holomorphic tangent space at/?. 
The space H is to be regarded as a complex vector space of n dimensions, 
spanned by complex vectors 

zi = x i + ^i>-.->zw = x/I + iyn. 

1 Some authors use the term " CR-structure" also in the extended sense of the structure induced on 
any real submanifold of a complex manifold, not necessarily a hypersurface. The word " maximal" is 
to emphasize that I am concerned only with the hypersurface dimensionality here. 
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The real-linear operator / , satisfying J2 = - 1 , is determined by its action on the 
related real basis xl9...,xw, yl9...,yn for H by 

(3.4) jXr=-yn Jyr = xr ( r = l , . . . , / i ) 

so that 
(3.5) / z r = fzr (r = 1,...,«). 

It is the operator / that defines the complex structure of Hp when we regard Hp as 
a real vector space. One further tangent vector u G Tp9 independent of xl9... ,x„, 
yi,...,y„, is needed to complete a basis for the whole of Tp. We assume that in 
some neighbourhood %p of p in T a smooth choice of such basis vectors is made 
and we define the integrabüity relations for the CR-structure of T, defined by / , to 
be the Lie bracket relation 

(3.6) [zr, zr,] = complex linear combinations of z's 

(/% r' — 1,...,«). It is clear that this integrabüity relation is independent of the 
particular choice of basis satisfying (3.5), and depends only on the choice of J and 
the holomorphic subspaces. 

Note that what distinguishes the structure of °\f from that of a complex 
manifold (of dimension n) is merely the presence of the extra real dimension 
defined by the extra real basis vector u. 

In the case of a complex manifold we know from the Newlander-Nirenberg 
(1957) theorem that integrabüity relations like (3.6) are all that are required. No 
analyticity assumptions are needed to ensure that holomorphic coordinates can be 
locally introduced, the derivatives with respect to which providing complex 
tangent vectors compatible with the given complex structure J in the sense of 
(3.5). The analogous property for a (maximal) CR-manifold Tof real dimension 
In + 1 would be the existence of a complex (w + l)-manifold 6, with complex 
structure / , in which Tcan be realized as a real hypersurface, the CR-structure on 
T being that induced by J. However, counterexamples given by Nirenberg [(1973), 
(1974)] show that the integrabüity relations (3.6) are insufficient to ensure that the 
CR-structure of °\f can be so realized in all cases. 

It should be made clear that the difficulty does not he in a possible omission of 
necessary additional integrabüity relations of the usual (differential) kind. Indeed, 
if the CR-structure is taken to be real-analytic, then the integrabüity relations 
(3.6) are actually sufficient to ensure that Tcan be realized in the above way. But 
for a C°° CR-structure this need not be so. In this respect, the problem of 
realizing CR-structures is analogous to that of the Lewy insoluble differential 
equation (1957). We shall see later how this can be made more explicit. 

Let us return to PT0, which has a CR-structure explicitly realized by its 
imbedding in the complex manifold IP T.. Here n — 2. Thus, at any point W of 
PT0 the 5-real-dimensional tangent space Tw has a 2-complex-dimensional holo­
morphic subspace i / w whose complete structure is defined by a certain operator 
/ . Let us first identify the location of i / w in physical terms. The point W G P T 0 

is interpreted as a light ray in M. We may picture this by fixing the " time" T to 
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take a specific value, say r — 0, so our picture becomes that of ordinary Euclidean 
3-space U. Then the "photon" described by W is pictured as a point in U (its 
location at r = 0) together with a direction at that point defining its velocity (the 
magnitude of the velocity being unity: the "speed of light"), i.e. we represent W 
by a unit vector w at some point q of U. To picture Tw we envisage making a 
small displacement of q and w. If this displacement is such that q is moved in a 
direction orthogonal to the direction of w, then we get something in the subspace 
Hw. We refer to these slightly displaced light rays as being abreast with one 
another. The subspace i / w divides r w into two remaining pieces, representing 
light rays that are slightly ahead or lag slightly behind the original ray W. These 
properties are easily seen to be independent of the " time" T, i.e. independent of 
the particular Euclidean (spacelike) hyperplane U that is chosen for our descrip­
tion. 

To picture the effect of / , imagine a 2-plane element IT, at q, which is 
orthogonal to the direction w. We are concerned only with displacements of q and 
w for which q is moved within m, since these correspond to real vectors in # w (i.e. 
"abreast" displacements of W). Such displacements are represented by pairs of 
vectors (r, v) in IT, where r gives the displacement of q and v measures the change 
in w (clearly also orthogonal to w, since w is a unit vector). If we keep the light ray 
W and the "neighbouring" ray to which it is displaced both fixed, but vary the 
time T, we easily find that the functions I*(T), V(T) are related by 

(3.7) dr/dr = v, dv/dr = 0. 

Now the effect of / turns out to be simply to rotate both r and v through a right 
angle in the plane IT, in a left-handed sense about the direction of w. Clearly (3.7) 
is invariant under this operation, so J applies to the displacements of light rays in 
their entirety and not simply to light rays relative to particular points on them. 
(Moreover this operation is easily seen to be independent of the slope of the 
hyperplane U.) Thus, the CR-structure of PT0 is seen to have direct interpretation 
in terms of physical space-time geometry. 

Let us next consider what happens when Minkowski space M is replaced by a 
more general Einsteinian space-time manifold 9It. We shall suppose, for simplic­
ity that 9H,'with its pseudometric g, is globally hyperbolic (Leray (1952)). 
According to a result of Geroch (1970) this property can be stated as the existence 
of a spacelike hypersurface % in 9H which intersects every null geodesic (light 
ray) in 911 in precisely one point. ("Spacelike", in this context, means that its 
normal vectors are everywhere timelike, i.e. that its induced metric is everywhere 
negative definite.) 

It turns out that the space P% of null geodesies in 9H acquires a CR-structure 
relative to the hypersurface %, where the holomorphic subspaces to the tangent 
spaces in P% and the operator J, now denoted J^, are defined essentially as 
before. Thus we may represent any W 6 P3"0 by the point q E % at which % 
intersects the null geodesic W, together with the unit vector w in % at q in the 
direction of the orthogonal projection into % of the future-pointing null direction 
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of W. The holomorphic tangent space to P% at W is provided by those 
displacements of W for which q moves in a direction orthogonal to w, and the 
(real) vectors in this space therefore correspond to pairs (r, v), as before, where r 
and v are (real) tangent vectors to % at q lying in the 2-plane element 77 
orthogonal to w. The effect of / % is, as before, to rotate r and v through a right 
angle, in a left-handed sense about w. It then turns out that the integrability 
relations (3.6) for / % are automatically satisfied (Penrose (1975), LeBrun (1980)) 
and the required CR-structure, denoted CR%, is thereby obtained. 

However, unlike the CR-structure for PT0, CR% will in general depend upon 
the location of % in 9H. The holomorphic tangent spaces, regarded as real vector 
subspaces of the tangent spaces to P%9 are in fact independent of %, but their 
complex structures, as defined by J% will generally vary. These properties follow 
from the Jacobi equation, which suitably replaces the second of equations (3.7). 
Only when the metric g of 9H is conformally flat will CR% be completely 
independent of %. 

By way of clarification of this point it may be remarked that even if ty\l is 
stationary (i.e. time-independent, in the sense of possessing a timelike killing 
vector), so that isometries of 9H exist carrying % into a succession of geometri­
cally equivalent spacelike hypersurfaces %', %", . . . , C 9tL, the structures CR%, 
CR%,, CR%»,... on P% will generally be distinct. This is because a particular 
point W of P% represents a nonstationary object (namely a null geodesic) in 9IL, 
so it is related differently to each of %, %', %", However, in this case the 
isometries of tyïi will carry W into null geodesies W', W",. . . , so CR% at W will 
agree with CR%,, at W' and with CR^, at W", etc. Thus the structures 
CR%,CR%>,... wm< m t r n s c a s e ^ e intrinsically identical even though they 
represent generally distinct CR-structures on the given space P%. 

The fact that CR-structures (maximal, and of given dimension In + 1 > 0) can 
be locally distinct from one another is, in effect, an observation that dates back to 
an important paper of Poincaré (1907). What Poincaré actually showed was that 
the Riemann mapping theorem, which states that any smoothly bounded simply-
connected region D̂ in the Argand plane C1 is holomorphically identical with the 
unit disc, has no direct analogue in higher complex dimension. Roughly, the 
argument is to show that the (smooth) boundary of a region in, say, C 2 contains 
intrinsic holomorphically invariant information about its "shape". (This does not 
occur for a smooth curve in C1, as the Riemann mapping theorem shows.) The 
gist of Poincaré's argument can be simplified to the following "physicists proof'. 
Consider the freedom involved in specifying the (smooth) real hypersurface 
boundary of a region in C2. This is provided by one real function of three real 
variables (e.g. lm f x in terms of Re f l9 Re f2, Im f2). For the intrinsic structure of 
this boundary, we must factor out by the freedom provided by the allowed local 
holomorphic maps of C 2 to itself. This is provided (locally) by two holomorphic 
functions of two complex variables. But a holomorphic function is determined by 
its (analytic) values on any real environment, e.g. on its values where f, and f 2 are 
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real. The real and imaginary parts there are each, in effect, independent real 
analytic functions, so the freedom to be factored out by is that of four real 
functions of two real variables. The amount of intrinsic freedom in the structure 
of the boundary is therefore 

1 real function of 3 real variables 
4 real functions of 2 real variables * 

However, any finite number of functions of two variables must be regarded as 
" peanuts" in the context of free functions of three variables, i.e. it is completely 
swamped by the three-variables' worth of freedom and makes no contribution net 
count. Thus there must be "intrinsic invariants" of the boundary shape whose 
functional freedom is such as to be dependent upon three real variables. More 
generally, for a boundary in C"+ 1 (and so for a {In + l)-dimensional CR-
manifold) the freedom for the invariants is functions of In + 1 variables (n > 0). 

The detailed form of these invariants was investigated thoroughly by E. Cartan 
(1932), Tanaka (1962) and Chern & Moser (1974). This study may be regarded as 
the analogue, for CR-manifolds, of the study of invariants (and covariant 
tensorial objects) for ordinary Riemannian geometry. 

It turns out that the structures CR% that we have just been considering do in 
fact differ, in general, from the original CR-structure of PT0 that arose in relation 
to Minkowski space. There is the further point that by choosing 9H and % to be 
suitably nonanalytic, the structure CR<^ can be made to be nonrealizable as a real 
hypersurface in a complex 3-manifold, analogously to the Nirenberg counterex­
amples referred to earlier. This was first demonstrated by C. R. LeBrun (1980), 
(1982). Some of the relevant ideas and a slightly different, but related, class of 
counterexamples had been put forward earlier by G. A. J. Sparling (and involved 
a suggestion by the present author). A development of Sparling's original line of 
thinking will be presented in the next section. 

4. Boundaries of cohomology classes and complex manifolds. The first and most 
important invariant of CR-structure is the signature of the Levi form. One way of 
defining the Levi form for a (In + l)-dimensional CR-manifold T i s as follows. 
Suppose Tis given, locally, as a real hypersurface 

2tto..-..0 = 0 
in a complex «-manifold 6, where 2 is a real (at least C2) function of local 
holomorphic coordinates f0,... ,f„ for 6. Then the Hermitian form whose matrix 
is 

92 

but restricted to the holomorphic tangent space H , defines the Levi form at p. 
Alternatively an entirely intrinsic definition can be given which does not depend 
upon an imbedding in a complex (n + l)-manifold and so applies to nonrealiz­
able CR-structures. Let the complex basis vectors z, , . . . ,z„ and real basis vector u 



NONREALIZABLE CR-STRUCTURES 439 

be as in §3 (cf. (3.5), (3.6)). Then the Lie brackets 

(4.1) [zjr, z^] = iLjku + terms in z's and z's 

serve to define the matrix LJk of the Levi form intrinsically. 
Though the matrix of the Levi form is clearly not an invariant, its signature—by 

which I mean the number of plus signs, minus signs and zeros that it acquires 
when unitarily reduced to diagonal form—is invariant. A remark about the sign 
of the Levi form should also be made here. Suppose we are concerned with the 
(smooth) boundary Tof a complex manifold; then we should take that complex 
manifold on the side on which 2 is negative. Thus, for example, for the unit ball 
in C n+l

9 we can take 

2 = ? o f o + - " + U » - l 
and the Levi form is positive definite (+ + • • • + ), this being the situation in 
which the manifold is referred to as (holomorphically) strictly pseudoconvex. 
Correspondingly, if we use the intrinsic method (4.1), we choose the vector u so 
that Ju points outwards away from the manifold whose boundary we are consider­
ing. Generally, if the Levi form signature has j plus signs and k minus signs at a 
point of % I shall say that this manifold has j degrees of pseudoconvexity and k 
degrees of pseudoconcavity at/?. 

An important result, effectively due to Hans Lewy (1956) (and Bochner (1943); 
cf. also Hörmander (1966)) states if ƒ is a CR-function on T— which means that 

z , ( / ) = 0 , . . . , z l l ( / ) = 0 

—where we assume that T is realizable as a real hyper surf ace in a complex 
manifold 6, then ƒ extends (locally) as a holomorphic function on any side of T 
having at least one degree of pseudoconvexity. 

It should be remarked that any holomorphic function in 6 clearly restricts to a 
CR-f unction on °V. Moreover, any holomorphic function on one side of T which 
attains smooth values at °V itself will also restrict to a CR-function on T. The 
(Lewy) result just stated shows that a holomorphic function defined on a 
smoothly bounded region ^ of a complex manifold is always locally extendible 
beyond that boundary at points where fy has at least one degree of pseudoconcav­
ity. Thus smoothly bounded domains of holomorphy, on which locally inextendi-
ble holomorphic functions exist, have no points with any degree of pseudoconcav­
ity—i.e. the Levi signature is always of the form (+ • • • +0 • • • 0). 

Let us now consider the 5-dimensional real hypersurface PT0 as a common 
boundary between PT_ and P T + . By simple direct calculation from (3.3), we 
find that the Levi form signature is ( + , — ), while for the 7-dimensional real 
hypersurface T0 as a boundary between T_ and T + the signature is ( + , — ,0). 
(The zero arises from the holomorphic direction corresponding to complex 
rescalings W\-*\W9 \ E C — {0}.) From the results just stated we see that any 
CR-function defined in some open neighbourhood of a point in PT0 [resp. T0] 
will extend to a holomorphic function in a neighbourhood in PT. [resp. ¥.]. 
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It turns out, however, that the most directly physical objects on these spaces are 
not holomorphic or CR-functions but objects of the next degree of abstraction, 
namely first sheaf cohomology classes. The simplest example of the physical 
interpretation of such a cohomology class can be illustrated as follows. Consider 
some suitable open neighbourhood â, in CM, of a point x G CM. According to 
the discussion of §3, each point of % will be represented by a projective line in 
IP T., so as the point varies throughout â the corresponding Une sweeps out an 
open region £ C PT.. We shall be concerned with an element 

QGHl(e,9G(-2)) 

where, generally, 0(r) denotes the sheaf of germs of holomorphic functions on 
PT. "twisted by r"—i.e. represented in terms of holomorphic functions on T. 
which are homogeneous of degree r. Under fairly liberal restrictions on the nature 
of â (cf. Eastwood, Penrose and Wells (1981) for details) we find that $ 
represents a solution <j> of the wave equation 

/ a2 a2 a2 a2 \ 

in a. 

Suppose we have the simple situation in which $ can be described by a 
representative Cech cocycle 01 2 (= -$2 1) f° r t n e 2-set cover %X9 %2 of £, so 01 2 

is simply a holomorphic function (taken as homogeneous of degree -2 in 
W0,...9W3) on 9l1 2 = %x Pi <3l2, where £ c 9 l , U %2. To obtain <(>, we then 
perform the contour integral 
(4.3) *(x)=£i$*n(W)MV 

with 

(4.4) LW^ W0dWx - WxdW0 

where the 1-dimensional closed contour H (in PT.) lies in the intersection of 9l12 

with the projective line Lx C PT. representing x = (T, £, T), f ). Note that since we 
are integrating over points of PT. incident with x, we can use the explicit 
expression (3.2) to represent W2 and W3 in terms of WQ and Wv Moreover, 
because of the -2 homogeneity of $1 2 and the form of the expression (4.4), the 
exterior derivative of the integrand in (4.3) (for Wincident with x) vanishes. Thus 
(4.3) is a genuine contour integral for fixed x, depending only on the homology 
class of the contour within Lx f! 9112 . Simple direct calculation (using (3.2)) 
shows that (4.2) is indeed satisfied as required. 

We could also envisage a more complicated cover %v...9%r of £, with $ 
given a Cech description with respect to it by the family of holomorphic 
(homogeneous of degree -2) functions 

(4.5) *,* = -**, on 91,, = 91,. n 91 , 
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subject to 

(4.6) *,* + *„ + *„ = <> <m%Jkl = %n%kn%. 

The expression for <j>(x) is given, essentially as before, by (4.3), but now the 
contour H is a branched one, consisting of various segments EJlc C %jk, over 
which $jk is to be integrated, with endpoints VfJkl G ?fijkl, and we sum over the 
contributions from these various ®jk. In fact (for appropriate a ) the general 
solution of (4.2) can be obtained in this way (cf. Eastwood, Penrose and Wells 
(1981), Penrose and Ward (1980)). 

Similarly Maxwell's free-space equations can be solved in terms of elements 

(4.7) ( 0 , * ) G #*(£ , 0(-4)) 0 H\t9 0(0)). 

The components of the Maxwell field tensor, in the (T, £, TJ, f )-coordinate system, 
are given by 

' 0 00-02 + ^ 0 - ^ 2 '(*0 + * 2 - + 0 - + 2 ) -2(0, +l//,) 

02-00 + ^ 2 - ^ 0 0 2 1 ( 0 ! - * ! ) -00 -02 -^0 -^2 

' H o " 02 + ^0 + ^2) 2 l ( - ö i + + , ) 0 /(02 " 00 - *2 + *o) 
\ 2 ( 0 , + * , ) 0o + 02 + *o + *2 ' • (0o -02- *o + * 2 ) 0 / 

where 

Wtf 1 / *o l 

W? I \ + 2 / " \ d2/dWi 

d2/dW? 

d2/dW2dW3 \*(W)AW 

(cf. Penrose (1969), (1977)), the notation @(W), ^(W) indicating the appropriate 
®jk(W), ^Jk(W) to be integrated over H and summed as before. The quantities 
00,0U02 define the anti-self-dual part of the Maxwell field and \p0, \pl9 \p2 define 
the self-dual part. For a real Maxwell field we require 

at real points x (and, at complex points, 00(x) = yp0(x), etc.) so we can use either 
H\t, S (-4)) or Hl(t9 0(0)) to specify such a field, employing complex conjuga­
tion in place of using the other. 

Recall that the Levi form signature for a smoothly bounded domain of 
holomorphy—i.e. natural (smooth) boundary of the domain of some holomorphic 
function—is always of the form (+ • • • +0 • • • 0). But a function is a zeroth sheaf 
cohomology element (an H°)9 whereas we are now more concerned with first 
cohomology elements (AT1's). There is an analogous concept to a domain of 
holomorphy for such objects, namely a smoothly bounded region D̂ on which is 
defined some holomorphic Hl (i.e. an Hx for a coherent analytic sheaf) which 
does not locally extend beyond the boundary dfy. It follows from a theorem of 
Andreotti and Hill (1972) that, at each point of 3 ^ , fy either has precisely one 
degree of pseudoconcavity (i.e. Levi form signature of the form (+ • • • +0 
0 — )) or else is pseudoconvex with at least one zero in the Levi signature (i.e. 
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(+ • • • +0 • • • 00)). Referring to the number of zeros in the Levi signature as the 
number, d, of degrees of holomorphic flatness we find, generally, that a smoothly 
bounded region on which is defined a locally inextendible holomorphic Hr has a 
number, q, of degrees of pseudoconcavity satisfying, at each point of its boundary, 

(4.8) r^q^r-d. 

We have seen that for ordinary functions (i.e. 7/°'s), we could refer to the 
concept of CR-function on a CR-manifold % realized as a hypersurface in a 
complex manifold 6, and ask whether holomorphic extendibility on one side or 
the other is locally possible. The appropriate concept for Hr,s can be stated in 
terms of the 9^-cohomology of Andreotti & Hill (1972) and Hill & McKichan 
(1977); cf. also Polking & Wells (1976), Hill (1973). We find that an appropriate 
concept of a "CR- /F" is not taken as the restriction to °Yof a holomorphic Hr in 
Q but may be defined, rather, in terms of the Hr provided by an exact sequence 

H\e+) Hr+\e+) 

(4.9) ...->/r(e)-> 0 -*#'(T)->jr+1(e)-> 0 -••• 
H\e~) Hr+\e~) 

where T separates 6 into the two pieces S", G4" (so Q= 6"UC+ U T ) . Here 
Hr(°V) denotes the required space of rth hyperfunctional c^-cohomology. (See 
Sato (1959-60), Kashiwara (1979).) The sheaf for each H is taken to be that of 
local cross-sections of some given holomorphic vector bundle over 6, and that for 
H to correspond in an appropriate sense to the restriction of this bundle to T. 

If we can arrange Hr+l(Q) — 0, which will be the case, for example, when 6 is 
Stein (i.e. a domain of holomorphy), then we obtain from (4.9) 

—and if 6 is Stein we can ignore the Hr(G) (= 0) when r > 0. We can loosely 
interpret the elements of / / ' ( T ) , in this description, as the space of possible 
"jumps" in Hr as we cross from one side of T t o the other. In the particular case 
r — n = 0 (where 6 has complex dimension n + 1), with T being (a portion of) 
the real axis in C, (4.10) provides the standard definition of 1-dimensional 
hyperfunctions on R (Sato (1959-60), Kashiwara (1979)). Hyperfunctions are 
generalizations of distributions and so they include, as special cases, ordinary C°° 
functions. The C°° CR-functions on °\fcan thus be taken to be particular elements 
of^0(°V). 

The concept of local (Lewy) extendibility of C°° CR-functions on T, into 
regions of 6 locally bounded by T wherever there is at least one degree of 
pseudoconcavity, applies also to CR-hyperfunctions (cf. Hill and MacKichan 
(1977)). Moreover, there is a corresponding result for elements of Hr(°ï) gener­
ally: local holomorphic extendibility into the complex manifold on one side of T 
can always be achieved, in the case of a nondegenerate Levi form, whenever the 
number, q, of degrees of pseudoconcavity is not exactly r. More generally, if there 
are d degrees of holomorphic flatness, then local extendibility can always be 
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achieved wherever 

(4.11) q>r or q + d<r, 

which is the negation of (4.8). 
Note that if both 6+ and G~ have some pseudoconcavity everywhere along % 

as is the case when <V= PT0 or T0, then every CR-function (whether C°° or 
hyperfunctional) extends to both sides of Tand is therefore always analytic. This 
shows that we cannot simply use CR-functions in a straightforward Cech ap­
proach to the CR-cohomology of such a % since nonanalytic elements of Hr will 
always occur for some r > 0. Indeed, when T = PT0 or T0 we find that if ^ T ) 
contains nonanalytic elements. In fact, solutions of the wave equation (4.2) or of 
Maxwell's equations on (regions in) real Minkowski space M can be represented 
by elements of an J f ^ T ) (respectively H!(PT0, S(-2)) and H\PT0, 0(-4) 0 
0(0))) and these fields certainly need not be analytic (cf. Wells (1981), Bailey, 
Ehrenpreis and Wells (1982)). Thus the direct Cech approach, with CR-functions 
on PT0, does not apply and a method such as using the sequence (4.9) or an 
explicit 9̂ , approach is called for.2 

This contrast between a direct Cech approach and such as the db method has its 
analogue in a related contrast between CR-structures which are realizable in 
terms of imbeddability in complex manifolds and those which are not. Let us 
consider two possible approaches to defining a complex manifold. In the first 
(method C), we consider the manifold to be built up from open patches onC n + 1 , 
a family of holomorphic transition functions Fjk being provided to "glue" these 
patches together, where the Fjk are subject to certain nonlinear relations closely 
analogous to (4.5) and (4.6). Likewise, the equivalence between two such complex 
manifolds so constructed is closely analogous to the condition for two Cech 
1-cocycles O and ¥ to differ by a coboundary 

* , * - * > * = A * - A , on 91., 

where Ay is holomorphic on %Jm Here, the Ay are analogous to coordinate 
transformations on the individual patches. Finally, the concepts of taking refine­
ments and direct limits are common both to Cech cohomology and to this method 
of complex-manifold building. Thus, method C presents a complex manifold as a 
kind of nonlinear holomorphic if1, presented according to a Cech prescription. 

In the second method (method 9) the manifold is given first as a real manifold 
of dimension 2(n -f 1). An operator / (with J2 = -1) is defined to act in the 
tangent spaces and to satisfy an integrability condition like (3.6) with (3.5). When 
phrased suitably, method 9 resembles a nonlinear version of the Dolbeault (9) 
approach to the definition of a holomorphic Hx. 

2 There are also other (essentially equivalent) methods of defining the concept of a (say C00) 
CR — HRorv T, which can provide the desired nonanalytic cohomology. One of these is to define the 
cohomology in terms of extensions of CR-vector-bundles over % 
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Because of the Newlander-Nirenberg theorem, these two methods of building a 
complex manifold are equivalent—and, likewise, these two approaches to con­
structing a holomorphic Hl are equivalent. However, we have just seen that there 
is an inequivalence between the methods of defining the Hl cohomology at the 
boundaries of complex manifolds. Such considerations led C. D. Hill to suggest, a 
number of years ago, that there ought to be a difference between the C-method and 
d-method of defining a complex manifold-with-boundary, and that this difference 
should manifest itself when the manifold has one degree of pseudoconcavity at its 
boundary (or perhaps none, in cases where the Levi form is degenerate). The 
C-method would be as before, except that the patches would now have specified 
boundary portions (which would have to piece together suitably), given as (say) 
C00 real hypersurfaces in each coordinate patch. In the 9-method, the operator H 
would be required to attain C°°-smooth boundary values at the boundary of the 
given 2(« + l)-real-dimensional C00 manifold-with-boundary. 

Both methods would provide the boundary CV= 90]), of the complex manifold 
^ with a CR-structure, but with the C-method, tf) would always be locally 
extendible to the other side of T (simply by a slight extension of the relevant 
coordinate patch) whereas with the 9-method we would have no guarantee that 
this can be done. Indeed, the existence of locally nonextendible holomorphic H1 's 
at (a realizable) T, when there is just one degree of pseudoconcavity, suggests also 
the existence of locally nonextendible complex manifolds-with-boundary with just 
one degree of pseudoconcavity. Moreover, with a Levi form of, say, signature 
(H—), like that of a perturbed version T = P% of PT0, as described in §3, we 
may expect that the CR-manifold Tcan sometimes be realizable as a boundary 
neither on one side nor on the other. 

One approach to the construction of such nonrealizable CR-structures is to 
produce P%, as in §3, where the space-time 9H and hypersurface % are suitably 
nonanalytic. However the mere nonanalyticity of the resulting CR-structure is not 
sufficient to ensure its nonrealizability. The reason is, of course, that the real 
hypersurface defining a realizable CR-manifold need not itself be analytic. Thus, 
LeBrun (1980) was forced into some more subtle (nonlocal) considerations in 
order to prove his nonrealizability result for this case. 

The related but slightly different earlier suggestion due to Sparling was to use, 
instead, the Ward (1979) "twisted photon" construction. According to this 
construction (a special case of Ward's (1977) twistor method of generating 
self-dual Yang-Mills fields), self-dual Maxwell fields are represented by holomor­
phic line bundles over the appropriate regions of IP T., rather than by elements 
^ G H\t, 0(0)), as in (4.7). The bundles are constructed using the multiplicative 
0^ (zeros excluded), rather than the additive 0(0), the relation between the two 
being achieved via the familiar exact sequence 

X2TT/ exp 

(4.12) 0 -+ Z >0(O)-> 0* -> 0. 

Now, real Maxwell fields on (open) regions <3l of real Minkowski space M are 
equivalent to self-dual Maxwell fields on <3l (the relevant mutually inverse maps 
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being " take the self-dual part" and " take twice the real part"). To express such 
fields we can thus either use elements of 

(4.13) H\%,e(0)) 

where % is the region of PT0 swept out by the projective lines representing the 
points of <3l (as in (4.9)), or else use the corresponding line bundles over %. Such 
real Maxwell fields certainly need not be analytic, and may even be hyperfunc-
tional. Let us take the field to be C°° but nowhere analytic. It may then be 
represented by a C°° CR-line bundle over % in accordance with the exponentia­
tion procedure of (4.12) as applied to the element of (4.13) representing the field. 
This bundle is not extendible to a holomorphic Une bundle over some open 
neighbourhood of % in PT., for if it were, the self-dual Maxwell field on the 
corresponding open region of C M that it represents would restrict down to (the 
self-dual part of) the nonanalytic field that we started with, which is a contradic­
tion since Maxwell fields on open regions of CM are necessarily holomorphic 
(and therefore real-analytic). By choosing our original self-dual field to be either 
of positive or negative frequency, we can ensure one-sided extendibility of the 
resulting bundle into PT_ or PT + , respectively (cf. Wells (1981), Bailey, 
Ehrenpreis and Wells (1982)). 

By a slight extension of Sparling's above line of argument, one can translate the 
above statements concerning inextendible or one-side-extendible CR-line bundles 
over % to nonrealizable or one-side-realizable CR-manifolds. The CR-line bundle 
over % is itself a CR-manifold with ( + 0 — ) Levi signature (and the one direction 
of holomorphic flatness defines the fibre direction). Now the structure that a 
holomorphic line bundle ® possesses, over and above that of its complex-mani­
fold structure, can be represented in terms of the holomorphic vector field 

on <$, where X is a fibre coordinate on each fibre. Likewise, the bundle structure 
of the above CR-line bundle over %—which we now call CV— is also characterized 
by (4.14), which is now a CR-vector field on T. Suppose that Tforms a boundary 
to a complex manifold-with-boundary 6D. It follows from the Lewy extension 
property (and the ( + 0 — ) Levi signature) that the vector field (4.14) extends 
locally into tf) and defines tf) (locally near T ) as a holomorphic line bundle over 
some open neighbourhood in PT + or PT_ of %. (Though the Lewy extension 
property refers, in the first instance, only to CR-functions and not to vector 
fields, the extension to CR-vector fields is easy to achieve by various means, e.g. 
take components in local CR-coordinates.) It follows from the above arguments 
(essentially) that our inextendible, or one-side-extendible CR-line bundles are 
neither-side-realizable or one-side-realizable CR-manifolds, respectively. In the 
latter case, we have examples of Hill's complex manifolds-with-boundary of the 
3-type which are not realizable by the C-method, since they are not extendible 
beyond their C°° smooth boundaries. 
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The above discussion has been given partly in outline. It depends to some 
extent upon the details of twistor geometry and the twistor constructions of 
physical fields. Not all of this is necessary, however, for the construction of 
neither-side-realizable and one-side-realizable CR-manifolds. A simplified exam­
ple due to C. D. Hill, G. A. J. Sparling and the author can be given, where 
°ï= 9ÓD, with real dimension 5 and Levi signature (0 — ), where the complex 
3-manifold-with-boundary ^ cannot be extended as a complex manifold beyond 
its C°° boundary °\f. This example has an advantage over what has been presented 
above in that the extendibility emerges as manifestly a local rather than a global 
obstruction. (The relation between cohomology classes on portions of FT. and 
physical fields depends upon a nonlocal correspondence.) A fully detailed argu­
ment will be presented elsewhere, but the gist of the construction is as follows. 

Let S be the unit 3-sphere in C2, and define % and & to be the intersections 
with S and with the closed exterior of S, respectively, of the open ball of radius e 
(< 2) centered about some point of S. Then S is a complex 2-manifold-with-
boundary, with % = de and Levi signature ( —). Choose an element 
$ Œ H\& — %, 0) which has C°° boundary values on 5Cbut which is not locally 
extendible beyond %. By the aforementioned standard exponentiation process, 
construct a holomorphic line bundle over & — % which joins smoothly to a 
CR-line bundle over %. These two pieces of Une bundle together provide the 
required complex 3-manifold-with-boundary fy (as its total space) and the portion 
over % provides the required C°° CR-5-manifold % of Levi signature (0 — ), 
beyond which <$) is not locally extendible as a complex manifold. For the proof we 
appeal to the same argument as before, which uses Lewy extension of the vector 
field (4.14) to show that any extension of D̂ across T a s a complex manifold is 
also (locally) an extension of D̂ as a holomorphic vector bundle. But such 
extension would imply that O extends across 9C, which is a contradiction. 

The Hill philosophy3 would suggest that a corresponding example should exist 
in which ^ is a 2-complex-dimensional with Levi signature ( —) at its C00 

boundary °Y. Perhaps the original Nirenberg example bounds on one side and 
thus provides such a T ? 

It is remarkable, and perhaps even somewhat ironic that such seemingly 
esoteric matters as nonrealizable CR-structures and the delicate dividing line 
between Cw and C°° should have significant connections with physics. But it 
seems to be so. (The infinite-dimensionality of Hl(PT+ , 0(r))—and hence of 
physical massless fields—can be attributed to Lewy nonextendibility across 
PT1 .) What would Poincaré have made of all this? 

I am grateful to T. N. Bailey, M. G. Eastwood, C. D. Hill, C. R. LeBrun and 
G. A. J. Sparling for many helpful suggestions. I am also grateful to NSF for 
financial assistance which enabled me to attend the Poincaré Symposium, and for 

3 Recently a large class of nonrealizable CR-manifolds has been presented by Jacobowitz and Treves 
(1982). Also Kuranishi (1982) has shown that in dimension In + 1 > 7 and for positive-definite Levi 
form all CR-manifolds are realizable. All these results are consistent with the Hill philosophy. 
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support under contract MCS 79-12938 while the author was at the Institute for 
Advanced Study, Princeton in March 1980, where some of this research was done. 
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