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ON THE ZEROS OF DIRICHLET SERIES 
ASSOCIATED WITH CERTAIN CUSP FORMS1 

JAMES L. HAFNER 

As is well known, in 1859 Riemann [6] conjectured that the function ç(s) 
defined in Res > 1 by the Dirichlet series Yln=in~s n a s a ^ ^s zeros, apart 
from the "trivial" zeros at the negative even integers, on the line Res = \. It 
is known that these "nontrivial" zeros lie symmetrically about the line Re s = 
\ within the strip 0 < Res < 1. The truth of this Riemann Hypothesis would 
have a profound impact in the theory of numbers, particularly with regard to 
the distribution of primes. 

One of the major achievements in this theory was due to Selberg [7] in 
1943. He proved for ç(s) that a positive proportion of the nontrivial zeros 
lie on the critical line. Later authors have given specific numerical values for 
this proportion. In this note we announce the proof of a similar theorem for 
Dirichlet series attached to certain cusp forms on the full modular group. We 
formulate the specific theorem below. 

Let F(z) be a holomorphic cusp form of even integral weight k and constant 
multiplier system for the full modular group T(l) = SL(2,Z)/{±I}. That is, 

F{Mz) = [cz + d)kF(z), M = \ l *d}€ rW> 

and F(z) vanishes at ioo. Expand F(z) in a "Fourier series" at the cusp zoo 
as 

F(z)=f:f(l)e2"il*. 
1 = 1 

The Dirichlet series Lf(s) = X^zli fW~s converges absolutely for 

Res>(/c + l)/2 

and can be continued to an entire function in the s-plane. Furthermore, Lf(s) 
has all its nontrivial zeros in the strip (k — l)/2 < Res < (k + l)/2. Let 

N(T) = #{p = p + i1:0<1<T,(k-l)/2<f3<(k + l)/2,Lf(p) = 0} 

and 
N0(T) = #{p = fc/2 + n : 0 < 7 < T, Lf(p) = 0}. 

It is known [4] that N(T) ~ cTlogT for some constant c > 0. We then have 
the following theorem. 
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THEOREM. If F(z) is an eigenfunction of all the Hecke operators with 
ƒ (1) = 1, then there exists a constant A>0 depending on F such that 

N0(T)>AT\ogT, 

for all sufficiently large T. 

The assumptions on F insure that (a) ƒ(/) is a multiplicative function, (b) 
| f(p)\ < 2p(/c~1)/2, p a prime, and (c) ƒ(/) is real for all /, in fact, a totally real 
algebraic number. Fact (b) is due to Deligne [1] and (c) can be found in Ogg 
[5, p. II-ll and p. HE-11]. Of course f (I) = 1 can always be achieved by the 
appropriate normalization. 

The method of proof uses three main ingredients. First, we modify slightly 
Selberg's idea to introduce a mollifier (f>(s) which approximates LJ1^2. Second
ly, we require an approximate functional equation for Lf(s) which is provided 
by A. Good [2]. Finally we need to extend A. Good's techniques [3] for 
computing 

(2) jfKM 
2 

dt~cTlogT. 

We are then required to estimate expressions like 

<2> fKHfKH 
4 

dt. 

There are some extra difficulties which we encounter which make this theorem 
quite difficult. First, the coefficients ƒ(/) are not completely multiplicative. 
This makes certain arithmetical sums more difficult to analyse. Secondly, as 
is the difficulty in (1), analysis of the series 

èï ( l + »/2)" - ° ' 
is required. This is obtained by appealing to the spectral theory of the 
Laplacian acting on L2(r( l) \#) . (See Good [3].) However the introduction of 
the mollifier complicates significantly the corresponding calculation in (2). In 
particular we need an analysis of the series 

^f(l)f((lb + n)/a) „ > n ( n h , , 

We require growth estimates with respect to the Ims, in the region where 
the series does not converge absolutely, and which are uniform in a and b. 
This uniformity is the major difficulty. To handle this problem we appeal 
to spectral theory of L2(To(a,b)\^) where r0(a,6) is the congruence group 
defined by 

r0(a,6) = | ( * j G r ( l ) : ^ = 0(mod6),7 = 0(moda)l. 

And finally, estimates for the Fourier coefficients of the Maass wave forms (the 
orthonormal basis of eigenfunctions for the discrete spectrum of the Laplacian) 
which are uniform in a and b are required. 
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The mollifier we choose is given by 

*,-w .)-E*(i-g!) 
where £ > 2 and Qj = fj,(l)f(l)/d(l). Here /x and d are the usual Möbius and 
divisor functions. We then prove that there exists a number a > 0 such that 
for£ = T°, 0<fc<( log£)- 1 / 2 , 

'2 T/i3/2 (a) L ir f c L'G+*u)K§+ i t t) 
2 

du cfó« 
v/Kg! 

and 

<b> J C J T K Ï + ^ M Î * * ' ) du dt « & 

log£ 

From these estimates the deduction of the theorem follows just as in Selberg's 
proof. 

A classical example to which our theorem applies is the cusp form of weight 
12 defined by 

A(z) = qf[(l-qn)24, q = e2™, 
n = l 

1 = 1 

where r(l) is Ramanujan's function. 
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