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A UNITED-SET FORMULA 

ZIVRAN 1 

Let a morphism ƒ : X —• Y of algebraic varieties be given. A united set or 
united k-tuple2 for ƒ is a fc-tuple x±,..., Xk of distinct points on (or "infinitely 
near") X, such that /(xi) = ••• = f(xk)> The purpose of this note is to 
announce an enumerative formula, valid under a restrictive hypothesis, for 
the united &-tuples of a map, i.e., a formula for the rational equivalence (or 
homology) class of a suitable cycle which parameterizes them. This yields 
as special cases formulas for the united /c-tuples which contain a fci-tuple, a 
/c2-tuple, etc. of mutually infinitely-near points. For our united-A>tuple cycle 
even to be defined, the morphism ƒ has to admit a certain kind of "resolution" 
(essentially it must factor through a "generic" map into a variety fibred by 
smooth curves over Y). Our result is sufficient, however, to yield formulas 
for the lines having prescribed contacts with a given projective variety having 
"generic" singularities and arbitrary dimension and codimension; these in turn 
yield formulas for the Thom-Boardman-Roberts singularity schemes [8] of a 
generic projection of such a variety. Classically such formulas were known 
for curves, for surfaces in P3 , and in a few other cases, cf. [1]. Some recent 
results were obtained by Lascoux [6], Roberts [9] and LeBarz [7]. Our result 
yields new formulas even for surfaces in P4 . For a modern account of these 
and related matters, see Kleiman's surveys [3, 5]. 

Admittedly, the hypothesis of existence of a "resolution" is a severe restric
tion on the morphism ƒ. I am hopeful, however, that by pursuing further the 
same principles as in this paper, I will eventually obtain a united-set formula 
valid without such a restriction, and which would moreover be completely 
"intrinsic", in the sense of taking place on a suitable space associated solely 
to X (which is not the case with the present formula). 

We shall work in the category of complete (usually nonsingular) varieties 
over a field. Everything goes through with no change, however, in the category 
of compact complex manifolds. 

1. Set-up. Fix a morphism ƒ : X —• Y of nonsingular varieties, and put 
m = dimX, n = dim Y. A resolution of ƒ is a diagram 

ƒ z 
X \ |TT 

ƒ Y 
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where TT is a smooth morphism of relative dimension 1, and f is an embedding. 
More generally to define a k-quasi-resolution assume about ƒ only that its "&'-
fold locus" (cf. [4]), for all k\ 2 < k' < A;, has codimension > (A;' — l)(n — m) 
in X (this is weaker than assuming that the latter locus has its expected 
codimension, which is (k' — l)(n — m +1)). Now fix such a fc-quasi-resolution. 
We will define some auxiliary objects. Zk is the fc-fold fibre product of Z over 
Y] Zx is the fibre product Zk~x xYX, with coordinate projections 7rfc : Zx —• 
Zk~\ pk: Zkx-^X) j k : Zk

x -+ Zk is irk X ƒ; **: Zk
x - • Z is TT* followed by 

the ith. coordinate projection; q%: Z^ —• Z^f1 is "delete the zth coordinate". 
For i <j < k, the divisor Dkj c ^ x is defined by 7rf (•) = 7r̂ (»); similarly, for 

i < K Dk
i)k C Zk

x is defined by **(•) = pfc(-); also put L>* = £ * - * £>J> 

2. Formula. It is important to note that to each point z = (zi,..., 2fc-i> x) G 
Z ^ there corresponds a well-defined subscheme <r(z) of Z: namely this is the 
subscheme determined by the divisor z\-\ h Zk-i + f{x) on the smooth 
curve 7r~1(7r(zi)). Define the united k-tuple locus of ƒ as 

Uk{f) = lzeZl$c: <r(z) c ƒ (X) as schemes I. 

This definition is justified by the fact that the image of Uk{f) in the Hubert 
scheme of X coincides, up to a lower-dimensional set, with the set of length-fc 
subschemes of X which are mapped by ƒ to a single reduced point. The image 
of Uk{f) in X coincides with the "fc-fold locus" of ƒ as defined by Kleiman 
W-

Now the set Uk = Uk(f) can (see §4) naturally be made into a cycle of 
"expected dimension" km—(k—l)n (i.e. expected codimension (A;—l)(n—ra+1) 
in Z^-), and we seek a formula for the class [Uk] of Uk in the Chow group of 
Z^ (though we could instead work in Zk, working in Z^ yields finer results). 
The result we get is an inductive one, and goes as follows. 

T H E O R E M . Given a k-quasi-resolution as above, assume that Uk and Uk-i 
have their expected codimensions. Then ifk>2we have 

[tffcl-OrW-1).^*-!]) 

in CH^k~1^n~rn^1\Z^c): where v denotes the virtual normal bundle off, i.e., 
ƒ (TZ) — TX, c(y) denotes its total Chern class, and { }n-m denotes the part 
in degree n — m. Also U\ = \. 

3. Applications. By pushing the formula for [Uk] down to X, we obtain a 
multiple-point formula à la Kleiman [4]. However, our formula contains more 
information than that. In particular, note that Uk-D^^D^,^,-• • parametrizes 
those united /c-tuples whose ^th and jth, z'th and ƒ th, etc. points are infinitely 
near each other, so the theorem yields enumerative formulas for the united k-
tuples which are the union of Thom-Boardman S^-singularities, i = 1,. . . , d, 
qi H h qd = k, cf. Roberts [8]. 
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I know two main types of maps which admit quasi-resolutions. 
(a) Let g: V —• PN be a map whose image has generic singularities (cf. 

[3]). Put X = {(v,L) eVx G(1,PN) : g(v) € L}, Y = G(1,PN), and let 
ƒ : X —• Y be the projection, Z —• Y the tautological P 1 bundle, and X —• Z 
the natural map. The united fc-tuples of ƒ correspond to the /c-secant lines 
of g(V), and thus the theorem yields enumerative formulas for these. They 
include formulas for the /c-secant lines having prescribed types of contact with 
V, as well as for the 'Varieties of contact" of such lines. For instance, if V is 
a surface in P4 , it will in general have a finite number of inflexional tangent 
lines meeting it elsewhere, say L i , . . . ,L r ; a formula for r was already given 
by LeBarz [7]. Put Li n V = 3pi -I- <&. By pushing down to V the formula 
for [U4] • [D\ 2] • [̂ 1,3])» w e ge^ a formula for the rational equivalence class of 
Pl -1 \.pr '(reap. ^ H \- qr) on V. 

(b) Let #: y -» P ^ be as above, and let ƒ : V -> Y = P n be 0 followed by 
projection from a general center M = p^-™- 1 c P N , where n > dim V. Then 
projection from a general codimension-1 subspace M' C M yields a quasi-
resolution ƒ : V —• P n + 1 , so the theorem applies, yielding some formulas for 
the singularities of ƒ, including those of Thom-Boardman-Roberts as above. 
Actually this case is a special case of case (a), because united points of ƒ 
correspond to A;-secants of f(V) passing through a fixed point. 

4. Proof. As in other recent work on similar questions (see [3, 4, 5]), a key 
ingredient in the proof is an application of a "residual-intersection formula", of 
which we only require a relatively simple case, due to Fulton and MacPherson 
[2]. Consider the following cartesian diagram: 

ï Ï 

Zh
x ^ Zk 

where r: Zk —• Zk~1 is projection onto the first k — 1 coordinates. One can 
show that i" consists of C7fc plus a "residual" cycle, namely {7rk)~1(jk~1Uk-i) -
Dk. Now [2] tells us how to compute the contribution of this residual cycle to 
the intersection-cycle [r~1(jk~1Uk-i)\ • Z^y and this yields our formula. 

A D D E D IN P R O O F . The hope expressed in the introduction is now a 
reality: a united-set formula taking place in a suitable "configuration space" 
XM and valid "modulo ^2(/)" has been obtained, as a consequence of a 
general formula for the rational-equivalence class of V^ on Z^k\ where V C Z 
are arbitrary manifolds. As an application, among others, I obtain a formula 
for the class, in the moduli space of curves, of the locus of curves carrying a 
gr

d, for given r, d. 
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