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INSTANTONS, DOUBLE WELLS AND LARGE DEVIATIONS 
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ABSTRACT. We find the leading asymptotics of the exponentially small 
splitting of the two lowest eigenvalues of — ^A -f \ 2 V in the limit as 
X —• oo where V is a nonnegative potential with two zeros. 

In this note, we consider eigenvalues of a Schrödinger operator — | A + \ 2 y 
in the limit X —> oo (which is quasiclassical since up to a factor of ti2, —h2A + 
V has this form with h = X - 1 going to zero). The method can deal with 
eigenvalues other than the lowest, with multiple minima (even manifolds of 
minima) or degenerate minima. In this note, for simplicity we discuss only 
the two lowest eigenvalues, E0(\) and £i(X), with corresponding normalized 
eigenvectors Ho(X), Qi(X). More general situations and detailed proofs will 
appear elsewhere [13]. We will suppose the following about V. (i) V is C00, 
(ii) V(x) > 0 for all x and ^rnL\x\^00V(x) > 0, (iii) V vanishes at exactly two 
points a and b and at these points d2V/dXidXj is strictly positive definite. 

Under these circumstances, one can prove (see e.g. [12]) that ipo is con
centrated as X —• oo near the points a, b and that Ei(\)/\ has a finite nonzero 
limit. We want also to suppose that for all e small and for y = a and for y = b 

(1) Urn f \ipo{\x)\2dx>0. 

One case where (1) holds is when there is a symmetry of order 2 (such as 
reflection) which leaves V and —A invariant, so that the limit is \ for y = a 
or b. 

Under these circumstances, one expects that the splitting of E\ and EQ 
will be governed by tunneling and one goal here is to obtain multidimensional 
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tunneling results. A basic geometric object which will enter is the Agmon 
metric defined by 

(2) fav) = nf(f0 ^VHs))\^s)\dJci{0) = xtl(l) = y ) 

that is the geodesic distance in the metric 2V(x)|dx|2. It is an elementary fact 
(see e.g. [3]) that 

(3) ^(x,y) = i n f Q / o %s)2ds + Jo V(1(s))ds\1(0) = x,1(T) = y) . 

One basic result is 

THEOREM 1. Under the above hypotheses on V (including (1)) 

(4) xlim j - i In \Et(\) - B0(X)|J = p(a,6). 

For the special case of one dimension (and for some slightly different mul
tidimensional problems where the geodesic is a straight line), Harrell [7, 8] has 
proven (4); indeed, he has obtained even more than the leading asymptotics. 
Combes et al. [5] has announced further results on the one-dimensional case. 
Our result here is the first rigorous result on leading asymptotics in intrinsi
cally multidimensional double wells. 

The geodesic from a to b parameterized to minimize (3) (the path must 
go from a at t = — oo to b at t = oo) is called an instanton and that the 
instanton should control the splitting has been discussed in the theoretical 
physics literature for several years; see e.g. [4, 6]. 

The Agmon metric was introduced by Agmon [1] (see also [2 and 3]) to 
discuss decay of eigenfunctions as x —> oo and it enters here also through 
decay of eigenfunctions. Indeed, Theorem 1 is proven using 

T H E O R E M 2. 

(5) lim < — - In Hops x) \ = min(p(a;, a), p(x, b)) 
X—• <» (A J 

where the limit is uniform on compact subsets ofx. Moreover, for some R and 
d>0, 

(6) \n0(\,x)\<Ce-dXW 

if\x\>R. 

To prove Theorem 1, given Theorem 2, one uses 

(7) E1-E0 = inf (f(Vf)2Ü2
0 dx/ ƒ ƒ2Q2

0 dx\ 

the inf being over all ƒ with ƒ fü^dx = 0. To get the upper bound in (4), we 
pick an ƒ obeying this condition and ƒ ƒ 2QQ = 1 ( ƒ is bounded by (1)), so that 
V / is concentrated in a neighborhood of the geodesic bisector (points with 
p(xfa) = p{x,b)) and then use Theorem 2 and the fact that p(x,a) > ^p(a,b) 
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for any such x. We get the lower bound by looking at the contribution to (7) 
of a small tube about the geodesic from a to b using the fact that for any x 
on the geodesic, min(p(x, a), p(x, &)) < ^p(a, b). 

One can prove Theorem 2 by using the differential equation methods of 
Agmon [2] (see [13]). We prefer an alternative proof, which was our original 
one, which depends on the method of large deviations, a procedure of estimat
ing asymptotics of path integrals [14]. Let e~tH^K\x1y) denote the integral 
kernel of the semigroup generated by H(\) = — A + X2y. Using the Feynman-
Kac formula (see e.g. [11]) and thinking of Brownian motion as formally 

j ~ _v_v~y/-
 b /2, we find after scaling that formally 

exp(-Tiî(X)/X)(x,î/) 

= f doobS(b{0)-x)6{b{T)-y)exp\-~ f b2(s)ds-\f V{b(s))ds 

This suggests the following result, which can be proven by the methods of 
Schilder [10] and Pincus [9]. 

T H E O R E M 3. 

lim -X-Mn[exp(-m(\)/X)(x,2/)] = A(x,y;T) 
X—»-oo 

where the limit is uniform on compact sets of x, y, T and where 

Aix,y,T) = ud(±Jo i(s)2dS + Jo V«a))(fo|'K0) = x,'y(T) = y) . 

The lower bound in (5) now follows by noting that 

n0(X,x)> mm e 
\y-a\<t 

+ mm e 
\y-b\<e 

TH(X)/X(*,t/)U , n0(\y)dy 
jj\y-a\<e 

THW\x,y)}[ Mü0(\,y)dy 
]J\y-b\<e 

and that limT_,00A(x,a;T') = p(x,a) (and similarly for b). The upper bound 
in (5) comes from 

\n0(\x)\2 < eTE"^xe-TH^H^) 
and the interesting fact that 

L E M M A . 

lim A(x, x; T) = min(2/?(x, a), 2p(x, 6)). 
T—•oo 

SKETCH OF PROOF. When T is large, to prevent the potential term in 
the action from diverging, the path must go to a or b and sit near there for 
intermediate times and then return to x. D 

The last statement in Theorem 2 also has a path integral proof. 
It is a pleasure to thank the organizers of the CBMS Conference on Large 

Deviations at Southern Illinois University (T. Paine and J. Feinsilver) for a 
stimulating conference which set me in the right direction, to thank H. Dym 
and I. Sigal for the hospitality of the Weizmann Institute, where part of this 
work was done, and C. Fefferman and I. Sigal, for useful conversations. 
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