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THE POINT OF POINTLESS TOPOLOGY1 

BY PETER T. JOHNSTONE 

Introduction. A celebrated reviewer once described a certain paper (in a 
phrase which never actually saw publication in Mathematical Reviews) as being 
concerned with the study of "valueless measures on pointless spaces". This 
article contains nothing about measures, valueless or otherwise; but I hope that 
by giving a historical survey of the subject known as "pointless topology" (i.e. 
the study of topology where open-set lattices are taken as the primitive notion) 
I shall succeed in convincing the reader that it does after all have some point to 
it. However, it is curious that the point (as I see it) is one which has emerged 
only relatively recently, after a substantial period during which the theory of 
pointless spaces has been developed without any very definite goal in view. I 
am sure there is a moral here; but I am not sure whether it shows that 
"pointless" abstraction for its own sake is a good thing (because it might one 
day turn out to be useful) or a bad thing (because it tends to obscure whatever 
point there might be in a subject). That much I shall leave for the reader to 
decide. 

This article is in the nature of a trailer for my book Stone spaces [35], and 
detailed proofs of (almost) all the results stated here will be found in the book 
(together with a much fuller bibliography than can be accommodated in this 
article). However, I should make it plain that I do not claim personal credit for 
more than a small proportion of these results, and that my own understanding 
of the nature of pointless topology has been enriched by my contacts with a 
number of other mathematicians, amongst whom I should particularly mention 
Bernhard Banaschewski, Michael Fourman, Martin Hyland, John Isbell, André 
Joyal and Myles Tierney. I should also mention the work of Bill Lawvere, 
particularly as reported in [41], on the nature of continuous variation and the 
conceptual relation between constant and variable quantities, which has had a 
profound influence on the developments which I wish to describe; but such 
questions as these will not be explicitly considered in the present article. 

1. Lattices and spaces. It is well known that Hausdorff [21] was the first 
mathematician to take the notion of open set (or neighbourhood) as primitive 
in the study of continuity properties in abstract spaces. (As Fingerman [14] has 
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pointed out, a measure of the "lightness" of Hausdorff s definition is the speed 
with which it, and Kuratowski's [39] equivalent definition in terms of a closure 
operation, supplanted all previous attempts—such as Fréchet's [17]—to define 
a notion of abstract space.) Thus from 1914 onwards it was known that a 
topological space was something which possessed a lattice of open subsets; but 
it was not until the middle thirties, with the work of Marshall Stone on the 
topological representation of Boolean algebras [55, 56] and distributive lattices 
[57], that this connection between topology and lattice theory began to be 
exploited. 

Perhaps because of its elegant simplicity, which makes it appear today 
almost inevitable, the significance of Stone's representation theorem in the 
history of mathematics is often overlooked. Its influence (or lack of it) on the 
origins of category theory has been considered elsewhere [45]; but what 
concerns us here is the revolutionary idea that it is possible to construct 
topologically interesting spaces from purely algebraic data (such as a Boolean 
algebra). Previously, apart from a few trivial examples, all topological spaces 
considered by mathematicians had had some geometric content: one started 
with bits of Euclidean space (or generalizations thereof), and then patched 
them together or otherwise pulled them about. Stone's work showed that 
topology had not only these geometrical inputs but also an inescapable 
algebraic (i.e. lattice-theoretic) content; it followed that a better understanding 
of the lattice theory could lead to the solution of problems which had arisen 
from the geometrical side. 

The first person (apart from Stone) to exploit this possibility of applying 
lattice theory to topology was Henry Wallman [59], in a celebrated paper in 
which he used lattice-theoretic ideas to construct what is now called the 
"Wallman compactification" of a Tx topological space. A much more sys­
tematic study of the "algebra of topology" was undertaken a few years later by 
McKinsey and Tarksi [47, 48]; and mention should also be made of the 
pioneering work of Nöbeling [51] in writing the first textbook in which general 
topology was consistently studied from the lattice-theoretic viewpoint. 

However, a fundamental change in outlook came in the late fifties, with the 
work of Charles Ehresmann [12] and his student Jean Bénabou [4] (and, at 
about the same time, with the Cambridge Ph.D. theses of Dona and Seymour 
Papert [52, 53]). Hitherto, the lattice theory had been simply a means to an 
end; the ultimate goal was still the study of topological spaces in the sense in 
which Hausdorff had understood them. Ehresmann's insight, arising from his 
study of "topological" and "differentiable" categories (see [13]), was that a 
lattice with the right distributivity property deserved to be studied as a 
generalized topological space in its own right, irrespective of whether it was 
representable as the open-set lattice of an actual space, and irrespective of 
whether it came embedded in a given Boolean algebra of "all subsets of the 
space". 

Subsequently, a good many results from topology were extended to these 
"generalized spaces" (notably in a long series of papers [5-9] by Hugh Dowker 
and Dona Papert Strauss). But it was not until around 1972 that the real point 
of the subject began to emerge, first in an important paper by John Isbell [25] 
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and then even more clearly in the unpublished work of André Joyal. IsbelFs 
point was that, in those instances where the category of "generalized spaces" 
behaved differently from that of traditional topological spaces, it was not 
always (as had hitherto been assumed) to the former's disadvantage: in 
particular products of "generalized spaces" tended to be better-behaved than 
Tychonoff products of spaces. Joval's point was perhaps a more subtle one; in 
order to explain it, we shall first have to develop a little of the theory of 
pointless topology. 

2. Frames and locales. Let X be a topological space, and write ti(X) for the 
lattice of open subsets of X. As a lattice, ti( X) is complete; the finite meet and 
arbitrary join operations coincide with the set-theoretic operations of intersec­
tion and union, since these preserve openness, but for the meet of an infinite 
family we have to take the interior of the intersection. Moreover, the infinite 
distributive law 

(*) Û A V ^ V [a f\s\s<ES) 

holds for all A G 8 ( 1 ) and S C fi(^T), since it involves only operations which 
coincide with the set-theoretic ones. And if ƒ : X -» Y is a continuous map of 
spaces, the induced map f~l: Q(Y) -> 2(X) preserves finite meets and all 
joins, for essentially the same reason. 

Thus we are interested in the category whose objects are complete lattices 
satisfying the distributive law (*), and whose morphisms are maps preserving 
finite meets and arbitrary joins. Ehresmann's name for such lattices was "local 
lattices"; but since the word "local" has other potential uses in lattice theory, 
we prefer the term frame, which was introduced by Dowker. However, there is 
one complication: the passage from X to ti(X), regarded as a functor from 
spaces to frames, is contravariant, and so our category of "generalized spaces" 
should be the opposite of the category of frames. It was first pointed out by 
Isbell that it is convenient to give a different name to the objects of this 
opposite category; we shall follow him in calling it the category of locales. Thus 
the words "frame" and "locale" are extremely synonymous as long as no 
reference (explicit or implicit) is made to morphisms; but, for example, 
"subframe" and "sublocale" mean entirely different things. (A sublocale is the 
same thing as a quotient frame.) 

The category of locales, then, is the category in which we really want to 
work; but the category of frames is of some interest in it own right. In 
particular, it is an algebraic category (varietal, in the terminology of [43]); that 
is, the foregetful functor from frames to sets is monadic. What this means in 
practice is that we can define a frame by specifying generators and relations 
for it, in the same way that we are accustomed to specify presentations for 
groups and other familiar algebraic structures. 

As an example of the use of this technique, let us consider the problem of 
defining the product of two locales. When we want to define the topological 
product of two spaces X and 7, we start with the basic "open rectangles" 
UX V (U G fi(^), KG 8(7)) and then take the topology generated by this 
family of subsets of X X Y. Now we can identify the open rectangles with 
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elements of the Cartesian product2 ti(X) X £2(7); this suggests that, in order 
to define the locale product of two locales A and B, we should take the 
elements of A X B as generators and then write down the relations that we 
expect to hold between open rectangles in a product space. 

What relations should we expect to hold? First, the intersection of two open 
rectangles is an open rectangle; this gives us the family of relations 

(1) (al9 bx) A (a29 b2) = (ax A a29 bx A b2) 

for all al9 a2 G A and bl9 b2 G B. The union of two open rectangles is not in 
general a rectangle; but if we take a family of rectangles of the form Ua X V, 
where the second factor remains constant as a varies, their union is the 
rectangle ( U a Ua) X V. This gives us the relations 

(2) V { ( 5 , * ) | * e S } = (Vs,fc) 

for all S Ç A9 b G B; and similarly 

(3) V{(a,t)\teT} = (a,VT) 

for a G A and T QB. We now define A X x B to be the frame generated by the 
elements of A X B subject to these relations; of course, some work is needed to 
verify that A X j B is indeed the product of A and B in the category of locales 
(i.e. their coproduct in the category of frames), but the verification is straight­
forward. (Furthermore, it is now an easy exercise for anyone who knows the 
definition of the Tychonoff topology on an infinite product of spaces to extend 
the above description to construct infinite products of locales.) 

If A and B happen to be open-set lattices Q(X) and Ü{Y\ then the 
identification of elements of A X B with open rectangles i n I X 7 gives rise to 
a frame map 

Q(X) XXQ(Y) -+Q(XX Y) 

which is surjective since the open rectangles generate ^ ( ^ X Y). In general, 
however, this map is not an isomorphism. It is an isomorphism if either X or Y 
is locally (quasi-)compact (see [26] for a more general form of this result), but 
if we take both X and Y to be the space Q of rationals (with the Euclidean 
topology), then it can be shown that the map is not injective. That is to say, 
there are certain additional relations that hold between open rectangles in 
Q X Q, which are not consequences of the relations (l)-(3) which we imposed 
above. 

Viewed correctly, this discrepancy between Q(Q) X x Œ(Q) and ti(Q X Q) 
should be seen as a defect of the latter, not of the former. Whilst it is possible 
(see [35, II 2.14]) to give an explicit description of (at least some of) the extra 
relations which hold in fi(Q X Q), all such relations seem to be inordinately 
complicated, and they appear accidental coincidences rather than expressions 
of any intuitive idea of how open rectangles ought to behave. That is, we 
should think of Œ(Q) X x £2(Q) as expressing what £2(Q X Q) really ought to be, 

2 We are cheating slightly here: any set-theorist will tell you that 0 X Vx is the same set as 
0 X V2 (since both are empty) whereas (0,VX) and (0,V2) may be distinct as elements of 
Q(X) X Q(Y). But for our present purposes it doesn't matter. 
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were it not for the unfortunate fact that we are obliged (if we stay within the 
category of spaces) to represent it as a lattice of subsets of Q X Q. As we 
remarked earlier, this point of view was first expressed by Isbell [25]; the 
particular result which caused him to adopt it was the fact that the property of 
paracompactness (which, being an "open covering" property, is easily for­
mulated for locales) is inherited by products in the category of locales—whereas 
it is well known that the corresponding result fails in the category of spaces.3 

3. Points of locales. So far, we have not tackled the problem of determining 
whether a given locale is representable as an open-set lattice. Since a point of a 
space X may be identified with a continuous map from the one-point space 1 
to X, it is reasonable to define a point of a locale A as a locale map from the 
two-element locale 2 = £2(1) to A—or equivalently, a frame map p: A -> 2. 
Since p is in particular a lattice homomorphism, the sets/?_1(0) and/?_1(1) are 
a prime ideal in A and its complementary prime filter; and either of them 
suffices to determine p. Moreover, the fact that p preserves all joins may be 
expressed either by the assertion that/?_1(0) is a principal prime ideal (i.e. the 
ideal of all elements below some particular prime element of A) or by the 
assertion that/? -1(l) is a completely prime filter, i.e. is inaccessible by arbitrary 
joins and not just finite ones. 

If we write pt(^4) for the set of all points of A, then there is a natural 
topology on pt(^4), consisting of the sets 

<p(a)= {pEpt(A)\p(a) = l} 

for all a G A. This makes pt into a functor from locales to spaces, and in fact it 
is right adjoint to the functor £2—the counit of this adjunction, when viewed as 
a frame map A -> Œ(pt(^4)), is simply the function a i-> <p(a). From the 
definition it is clear that <p is always surjective, but once again it need not be 
injective; if it is, then we say that the locale A has enough points, or that it is 
spatial. Locales of the form Q(X) are always spatial; for an arbitrary A, 
Î2(pt(^4)) is the best approximation to A by a spatial locale (i.e. it is the 
coreflection of A in the subcategory of spatial locales). 

Now there are a number of theorems available (see [1 and 23], for example) 
which say that every locale of a certain type (typically, every locale satisfying 
some compactness assumptions) is spatial—so that, from one point of view, 
when we work with locales of these types we are really doing nothing more 
than a disguised version of classical point-set topology. But one common 
feature of these theorems is that they all invoke nonconstructive principles 
such as the axiom of choice, and it is easy to see why this should be so: we 
have already observed that finding points of a given locale is tantamount to 
finding certain prime ideals, which is well known to be impossible without the 
aid of choice principles. (Of course, it is known [20] that the Prime Ideal 

3 The reader might be emboldened by this result to ask whether normality is inherited by locale 
products. Alas, the answer is no: for if X is normal but not paracompact, then X X 0X is not 
normal ([60, Theorem 21.1]), and (local) compactness of fiX ensures that this yields a counterex­
ample for locales as well as spaces. 
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Theorem for distributive lattices does not actually imply the axiom of choice; 
but the difference between them is insignificant compared with the difference 
between either and a constructive approach to mathematics.) 

It is here that the real point of pointless topology begins to emerge; the 
difference between locales and spaces is one that we can (usually) afford to 
ignore if we are working in a "classical" universe with the axiom of choice 
available, but when (or if) we work in a context where choice principles are not 
allowed, then we have to take account of the difference—and usually it is 
locales, not spaces, which provide the right context in which to do topology. 
This is the point which, as I mentioned earlier, André Joyal began to hammer 
home in the early 1970s; I can well remember how, at the time, his insistence 
that locales were the real stuff of topology, and spaces were merely figments of 
the classical mathematician's imagination, seemed (to me, and I suspect to 
others) like unmotivated fanaticism. I have learned better since then. 

Of course, a point as vague as this requires an illustration. For a start, let us 
consider the class of coherent locales: a locale A is said to be coherent if it is 
isomorphic to the lattice Idl(i?) of ideals of a distributive lattice B. It is easy to 
prove that Idl(i?) is a frame whenever B is a distributive lattice; in fact the 
assignment B H» Idl(i?) is a left adjoint to the forgetful functor from frames to 
distributive lattices. Moreover, we can recover B from Idl(2?) (up to isomor­
phism) as the sublattice of principal ideals; and the principal ideals can be 
characterized lattice-theoretically in Idl(Z?) as being exactly the finite (com­
pact, or intranscessible, if you prefer) elements of this complete lattice. Thus 
we can characterize coherent locales in " topological" terms, by the behaviour 
of their compact elements, and each coherent locale determines a unique 
distributive lattice—in fact we have a duality between the category of distribu­
tive lattices and a category of coherent locales (though the latter does not 
admit arbitrary locale maps as morphisms). This algebraic triviality is the 
essence of the Stone representation theorem [57] for distributive lattices.4 

To recover this representation in its usual form, we need two things: first, a 
theorem to the effect that every coherent locale is spatial, and then an 
identification of the spaces of points of coherent locales with the spectral spaces 
of Hochster [22] (i.e. the spaces which occur in Stone's representation theorem, 
as the spectra of commutative rings with 1, and in all sorts of other representa­
tion theorems for different kinds of algebraic structures). Now the second of 
these is trivial, given Hochster's characterization of spectral spaces; so the key 
(nonconstructive) part of the representation theorem must be the first. But by 
the adjunction already mentioned, points of a coherent locale Idl(i?) corre­
spond to lattice homomorphisms B -» 2, and hence to prime ideals (or prime 
filters) of B; so the assertion "every coherent locale is spatial" is directly 
equivalent to the Prime Ideal Theorem for distributive lattices. 

4 To obtain Stone's earlier representation [55] for Boolean algebras, we simply have to observe 
that a distributive lattice B is Boolean if and only if the locale Idl(Z?) is zero dimensional (i.e. 
generated by its complemented elements). 
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4. Compact Hausdorff spaces. At this point, a topologist (echoing Kuyk [40, 
p. 164-168]) might say "Playing around with spectral spaces is all very well, 
but it isn't really topology; indeed, the representation theorems show that it is 
nothing more than algebra wearing a false beard. Real topologists concern 
themselves with spaces that satisfy the Hausdorff axiom (and are, in conse­
quence, very rarely spectral); what, if anything, has the theory of locales to 
offer us?" 

Perhaps our hypothetical topologist would claim to be interested in the 
category of compact Hausdorff spaces. If so, he would be well advised (though 
he may not believe it yet) to take an interest in a curious result which says that 
any compact Hausdorff space may be embedded as a retract of a spectral 
space. (The history of this result is rather obscure. It was in principle known to 
Wallman in 1938 [59], since it is an easy corollary of his construction of the 
Wallman compactification; but so far as I am aware it has not been explicitly 
stated anywhere until very recently.) Of course, from the point of view of our 
traditional topologist, the result is rather superfluous, since it seeks to represent 
something well known (compact Hausdorff spaces) in terms of something less 
well known (spectral spaces). But when we look at things from the localic 
viewpoint, they are definitely the other way around: as we have already seen, 
the class of coherent locales is extremely well behaved and much easier to work 
with than the class of "compact Hausdorff" locales. 

Actually there is a small problem here. It is easy enough to see what it means 
for a locale to be compact, but the Hausdorff axiom for spaces is normally 
phrased in terms of points and so does not translate directly to locales. One 
way out of this difficulty would be to take as a definition the theorem that a 
space X is Hausdorff if and only if the diagonal map X -» X X X is a closed 
inclusion; but since (as we observed earlier) locale products do not always 
coincide with space products, there is no reason to suppose that the corre­
sponding condition on locales will be equivalent to the traditional one in the 
spatial case. (It turns out to be strictly stronger; see [25].) We therefore sidestep 
the problem by taking regularity, rather than the Hausdorff property, as our 
basic separation axiom for locales, and relying on the theorem that a (locally) 
compact Hausdorff space is regular. 

How do we express regularity without mentioning points? One way to 
phrase the regularity axiom for spaces is to say that the closed neighbourhoods 
form a base at any point, or equivalently that any open set U can be covered 
by open sets V whose closures are contained in U. Accordingly, we define a 
locale to be regular if every a E A satisfies 

a= V {bŒA\(3c <EA)(b Ac = 0md a V c- 1)}. 

Then, as expected, we can prove that every compact regular locale A can be 
expressed as a retract of a coherent locale B; in fact there is a canonical choice 
for 2?, namely B = ld\(A). (The result [32] actually does slightly better than 
this: it completely characterizes those locales which can occur as retracts of 
coherent locales. They turn out to be those locales which are compact and 
locally compact, and satisfy an additional "stability" property which in spatial 
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terms means that the intersection of two compact subsets is compact. See also 
[54], for an investigation of the corresponding category of spaces.) 

Given this result, it is easy to transfer known facts about coherent locales to 
the class of compact regular locales (or to the larger class described in the 
parenthesis above). For example, it is a triviality that the class of coherent 
locales, being the image of a left adjoint functor, is closed under frame 
coproducts (i.e. locale products); this transfers to yield a "Tychonoff theorem" 
for compact regular locales which is entirely constructive, whereas the 
Tychonoff theorem for compact Hausdorff spaces is known [44] to be equiva­
lent to the Prime Ideal Theorem. (Actually, one can prove the Tychonoff 
theorem for arbitrary compact locales without using choice [33]; but the 
argument is not wholly constructive since it requires a transfinite induction.) 
Similarly, if one assumes the Prime Ideal Theorem, then the existence of 
enough points in coherent locales (already discussed) yields the existence of 
enough points in compact regular locales, and hence an equivalence of cate­
gories between compact regular locales and compact Hausdorff spaces. 

Point-set topology abounds in theorems and constructions involving com­
pact Hausdorff spaces which require the axiom of choice, or at least the Prime 
Ideal Theorem—and which, in many cases, can be shown to be logically 
equivalent to the latter. In nearly every case, it turns out that the correspond­
ing theorems and constructions for locales can be carried out constructively 
(and often with fewer topological restrictions on the initial data). Thus we see 
that the only nonconstructive element in the original topological theorems was 
the insistence on identifying compact regular locales with their spaces of 
points. 

To give a few examples: first, there is a constructive "Stone-Cech compacti-
fication" for locales [3], which specializes in the presence of the Prime Ideal 
Theorem to the usual one for spaces. The minimal projective cover of a space, 
first constructed by Gleason [18] for (locally) compact Hausdorff spaces and 
subsequently extended by other authors to more general classes of spaces, 
requires the Prime Ideal Theorem since it is defined as a space of prime filters; 
but it has a localic version [31] which works without any such assistance (and 
which, moreover, is as simple to construct for arbitrary locales as for compact 
regular ones, in constrast to what happens for spaces). Classically, the hyper-
space of a compact Hausdorff space (i.e. the space of closed subsets, with the 
Vietoris topology [58]) can be proved compact only if one assumes the Prime 
Ideal Theorem; but from the localic viewpoint it is part of a construction 
definable on arbitrary locales [36], which has all the formal properties of the 
Vietoris hyperspace, and which inherits compactness and regularity from the 
locale which generates it. 

In each of the above examples, the idea which leads to a constructive proof 
is essentially the same, and is that which we already used in constructing locale 
products: we start with an intuitive idea of what the (sub)basic open sets ought 
to be, and of what relations ought to hold between them, and then we appeal 
to the algebraicity of the category of frames in order to take these intuitive 
ideas as a definition. Provided we don't impose the additional restriction that 
the locale we're constructing should be representable as an open-set lattice, it 
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then becomes a matter of mere algebra (admittedly, infinitary algebra, but that 
is not something to be frightened of) to verify that it has the formal properties 
we want. (Another example of the same technique, exploited in [24], is the 
construction of "function-spaces" BA (i.e. exponentials in the category of 
locales) where A is locally compact and B is any locale; but it doesn't quite 
belong with those mentioned above because the corresponding construction on 
spaces does not require any use of choice principles. There is also a rather 
different construction of function-locales, sketched in [50].) 

5. The point of constructive topology. A classical topologist may be forgiven 
for feeling that we have still not arrived at the point. The fact that classical 
theorems of topology have constructive proofs in the localic context is un­
doubtedly pretty, but it isn't obviously useful to a man who is happy to assume 
the axiom of choice whenever he needs it in his work. To such a man, it may 
appear that we are doing "topology for logicians" rather than "topology for 
topologists". 

Nevertheless, even the most severely pragmatic of topologists can gain 
something by learning to do topology constructively. The point is that there 
are, even within the universe of classical mathematics, contexts in which one 
would like to do topology but one doesn't have available the law of excluded 
middle or the axiom of choice. Such contexts are called toposes; for the 
purposes of the present article, it isn't necessary to know exactly what a topos 
is (but see [29] for a detailed account of the subject, or [46] for a more 
introductory one), but only that a topos is a category which is sufficiently like 
the category of sets for one to carry out set-theoretic constructions inside it, 
and that (provided one doesn't insist on the law of excluded middle being 
valid) examples of toposes abound in mathematics, and are such that mathe­
matics done "internally" in them often has an interesting "external" interpre­
tation. 

For instance, given any space X (or more generally any locale), the category 
of sheaves (of sets) over X is a topos Sh( X), and topology done internally in 
this topos interprets as "topology over the fixed base X". Thus given any 
continuous map ƒ : Y -* X9 there is an internal locale in Sh( X) which com­
pletely represents it; more generally, we can represent any locale map ƒ: 
B ~> Ù(X) in this way, but even if B has enough points (i.e. B = ti(Y) for 
some Y), there is no guarantee that the internal locale which represents it will 
also be spatial. (Explicitly, internal spaces in Sh(Z) correspond to continuous 
maps ƒ: Y -+ X which have "enough local sections", in the sense that every 
point of Y is in the image of a continuous section of ƒ over an open subset of 
X.) 

In this context, topological properties of internal locales interpret externally 
as familiar properties of continuous maps. For example, compact regular 
locales in S h ^ ) correspond almost exactly to proper maps/: Y -> A"("almost" 
because in one direction the implication requires mild separation assumptions 
on X and/or 7; for a precise statement of the theorem, see [32]); this gives a 
mathematical formulation of the intuitive idea, which has surely been present 
since proper maps were first studied [42], that a proper map is a "relativized" 
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compact Hausdorff space. (Similarly, zero-dimensional locales in Sh( X) corre­
spond to spreads in the sense of [16], open maps of spaces have a topos-
theoretic interpretation [30],5 and so on.) Thus the results about compact 
regular locales which we mentioned earlier, because their proofs are construc­
tively valid, may be interpreted in toposes of the form Sh( X) to yield theorems 
about proper maps. As an example, the Stone-Cech compactification of locales 
yields a factorization theorem, originally due to Dyckhoff [10], which factors 
an arbitrary map Y -* X in the best possible way through a proper map 
Z -» X; see [34] for the details. 

Another context in which the internal theory of locales promises to yield 
interesting external theorems is that of equivariant topology. If G is a group (or 
more generally a monoid), the category of G-sets is a topos, and internal 
locales in this topos correspond to external locales equipped with a G-action. 
Actually, if G is a (discrete) group, the topos of G-sets is sufficiently like the 
category of sets (in particular, it retains enough of the axiom of choice) to 
enable us to work with internal spaces rather than locales if we prefer; but if 
we wish (as in [2]) to study actions of monoids which are not groups, and still 
more if we wish to study continuous actions of topological groups, then we are 
forced once again to work with locales. 

So far, relatively little work has been done on specific applications of locale 
theory in contexts like these; so it is perhaps appropriate to conclude this 
article by mentioning some areas which (in the writer's opinion, at least) seem 
ripe for study in this way. One is homotopy theory: the work of Joyal, 
Fourman and Hyland [15] shows that in a constructive context it may be 
necessary to regard the real Une as a (nonspatial) locale, at least if we wish to 
retain the Heine-Borel theorem that its closed bounded subsets are compact. 
So there is scope for developing the basic ideas of homotopy theory for locales, 
starting from the localic notion of the unit interval; when interpreted in the 
two contexts mentioned above, it should yield results in the "Ex-homotopy 
theory" and "equivariant homotopy theory" that have been studied in recent 
years by James [27, 28]. 

Another area of topology which cries out to be developed for locales is 
dimension theory. Much work has been done by dimension-theorists (see [49], 
for example) on dimension-raising and dimension-lowering maps ƒ: Y -» X; it 
seems clear that there should be a link between these notions and some internal 
notion of dimensionality in Sh(X). The work of Dyckhoff [11] and Zarelua 
[63] may well provide pointers to the correct way of approaching this subject, 
although they concern themselves largely with abelian sheaves rather than 
sheaves of sets. 

5 A locale A is said to be open [19, 37] if there is a map from A to the set of truth-values which 
associates to each Û £ / ( " the extent to which a is inhabited (i.e. nonempty)". Classically, such a 
map trivially always exists (it sends 0 to 0 and everything else to 1); this corresponds to the fact 
that every continuous map into a one-point space is open. The work of Kirwan [38] suggests that 
openness should be an important property in the constructive theory of uniform locales (i.e. the 
localic analogue of uniform spaces). 
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Finally, as already hinted in a footnote, it could well be profitable to develop 
the theory of uniform locales. In [25], Isbell did some work on uniform locales 
from a classical viewpoint, and showed that they were indeed of considerable 
interest, but no one has yet produced a constructive development of the theory. 
Assuming that such a development is possible (and there do seem to be some 
nontrivial obstacles in the way of it), the resulting theorems would surely have 
worthwhile applications in Sh(X) and other toposes; they should also help to 
clarify the subject of localic groups, in which interesting work has already been 
done by Wraith [61, 62]. 
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