EXOTIC CLASSES FOR MEASURED FOLIATIONS

BY STEVEN HURDER

A measured foliation (F, μ) is a C^2 -foliation F on a smooth manifold M and a transverse invariant measure μ for F [14]. Inspired by the foliation index theorem of Connes [4, 5], we study the result of integrating normal data to F over the leaf space M/F. This produces new secondary-type exotic classes for measured foliations [7]. These classes have applications to SL_q -foliations, to the study of groups of volume-preserving diffeomorphisms, and also are useful for relating the geometry of F to the values of the usual secondary classes [8, 9].

THEOREM 1. Let (F, μ) be a measured foliation of codimension q on M. If either M is closed and orientable, or μ is absolutely continuous (so it is represented by a closed form $d\mu$), then there is a well-defined characteristic map

$$\chi_{\mu}: H^*(\mathfrak{gl}_q, O_q) \longrightarrow H^{*+q}(M).$$

We call the image of χ_{μ} the μ -classes of (F, μ) .

For M^m compact and $y_I \in H^n(\operatorname{gl}_q, O_q)$, the class $\chi_\mu(y_I)$ is defined as the geometric current in $H_{m-n-q}(M)$ obtained by integrating over the leaf space of F, via μ , the leaf classes corresponding to y_I . Duality then produces the invariant in $H^{n+q}(M)$. If $d\mu$ is a closed form representing μ , then a cocycle representing $\chi_\mu(y_I)$ is $\Delta(y_I) \cdot d\mu$, where $\Delta \colon WO_q \longrightarrow A(M)$ is the secondary map for F, [2, 10]. Complete details and properties of χ_μ are described in [7].

The values of the μ -classes depend on the measure μ and the dynamical behavior of F in a neighborhood of the support of μ . It is conjectured that sub-exponential growth of the leaves of F implies the μ -classes vanish; this can be shown in some cases. Examples can be constructed for which all of the μ -classes are nontrivial.

The canonical measure associated to an SL_q -foliation (F, ω) —where ω is a transverse invariant volume form—defines a characteristic map $\chi_\omega\colon H^*(\operatorname{sl}_q, SO_q)$ $\longrightarrow H^{*+q}(M)$, and these come from universal classes for the Haefliger classifying space $B\Gamma_{SL_q}$. There are additional μ -classes for measured foliations with framed normal bundles, and corresponding universal classes for $B\overline{\Gamma}_{SL_q}$, the homotopy fiber of $B\Gamma_{SL_q} \longrightarrow BSL_q$.

Received by the editors February 23, 1982.

1980 Mathematics Subject Classification. Primary 57R30; Secondary 57R20, 28D15.

THEOREM 2. The characteristic maps

$$\chi: H^n(\mathfrak{sl}_q, SO_q) \longrightarrow H^{n+q}(B\Gamma_{SL_q}),$$

$$\chi^s: H^n(\mathfrak{sl}_q) \longrightarrow H^{n+q}(B\overline{\Gamma}_{SL_q})$$

are injective for n < [(q-1)/4]. Further, χ^s is injective on the image $H^*(so_q) \rightarrow H^*(sl_q)$.

To show nontriviality, we compute the values of the μ -classes for the foliations obtained by suspending the action of SL_qZ on T^q . This type of example was suggested to us by W. Thurston. The corresponding characteristic map is related to the Van Est map of continuous cohomology $H^*(\operatorname{sl}_q,SO_q) \longrightarrow H^*(SL_qZ;\mathbf{R})$, which is injective in degrees less than [(q-1)/4] by Borel [1]. Note that χ^s is nontrivial for all $q \geqslant 3$, but Theorem 2 only asserts χ is nontrivial for $q \geqslant 25$. We do not know of SL_q -foliations with small codimension and nontrivial μ -classes from χ .

Let ω be a volume form on \mathbf{R}^q with infinite total mass and $\mathrm{Diff}^c_\omega \mathbf{R}^q$ the group of compactly supported diffeomorphisms which preserve ω . We use McDuff's generalization of the Mather-Thurston theorem [11] and Theorem 2 to prove

COROLLARY 1.. There are inclusions of Q-vector spaces

$$H_n(so_q; \mathbf{R}) \hookrightarrow H_n(B \overline{\operatorname{Diff}_{\omega}^c} \mathbf{R}^q; \mathbf{Q})$$

for n < q, and $\mathbf{R} \subseteq H_3(B \overline{\operatorname{Diff}}_\omega^c \mathbf{R}^q; \mathbf{Q})$ for all $q \ge 3$.

It was shown that $H_1(B\overline{\mathrm{Diff}}_\omega^c\mathbf{R}^q;Z)=0$ for q>2 by Thurston-Banyaga. Corollary 1 gives the first nonvanishing results for the group homology in degrees less than q+1; in degrees $\geqslant q+1$, the secondary classes of SL_q -foliations detect nontrivial homology of $B\overline{\mathrm{Diff}}_\omega^c\mathbf{R}^q$. McDuff has investigated in [12] the geometrical significance of some of these new invariants for $\mathrm{Diff}_\omega^c\mathbf{R}^q$ and also defined further interesting classes.

The residuable secondary classes are the cocycles $y_I c_J$ in $H^*(WO_q)$ with degree $c_J = 2q$ maximal. The "integration over the fiber" process is faithful on these classes, so a residue theory can be developed for them. Given a measured foliation (F, μ) with support $\mu = M$, the residuable classes decompose into the measure class $d\mu$ product with a leaf invariant. This observation can be used to relate the residuable secondary classes with the geometry of F.

THEOREM 3. Let F be a codimension q compact foliation (that is, each leaf of F is compact) on a closed manifold M. Each residuable secondary class $\Delta_*(y_Ic_J) \in H^*(M)$ is then zero.

The idea of the proof is to integrate $\Delta(y_Ic_J)$ over M, decompose this integral over saturated sets—the *Epstein filtration* of the bad set—where each saturated set has a transverse invariant measure of maximal support. Each integral decomposes into a weighted sum of leaf classes, and then we show the leaf classes for a compact foliation uniformly vanish. Details appear in [8].

For codimension one foliations remarkable progress has been made in relating the geometry of a foliation with its Godbillon-Vey invariant [3, 13]. For higher codimensions, it is expected that a geometric interpretation of the residuable secondary classes can be achieved by utilizing the techniques of the proof of Theorem 3, the residue theorem for foliations [6] and the properties of the μ -classes. Some progress on this problem is given in [9].

ADDED IN PROOF. G. Duminy has recently proved that a codimension-one foliation on a compact manifold with nonvanishing Godbillon-Vey invariant must have a resilient leaf (L'Invariant de Godbillon-Vey d'un feuilletage se localise dans les feuilles ressort, preprint.)

REFERENCES

- 1. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 4e 7 (1974), 235-272.
- 2. R. Bott and A. Haefliger, On characteristic classes of Γ-foliations, Bull. Amer. Math. Soc. 78 (1972), 1039-1044.
- 3. J. Cantwell and L. Conlon, A vanishing theorem for the Godbillon-Vey invariant of foliated manifolds, to appear (1981).
- 4. A. Connes, Sur la théorie non-commutative de l'integration, Lecture Notes in Math., vol. 725, Springer-Verlag, Berlin and New York, 1979, pp. 19-143.
- 5. A. Connes and G. Skandalis, Théorème de l'indice pour les feuilletages, C. R. Acad. Sci. Paris Sér. A 292 (1981), 871-876.
 - 6. J. Heitsch, Flat bundles and residues for foliations, to appear (1981).
 - 7. S. Hurder, Global invariants for measured foliations, to appear (1981).
 - 8. ——, Vanishing of secondary classes for compact foliations, to appear (1982).
- 9. ——, Growth of leaves and differential invariants of foliations, in preparation (1982).
- 10. F. Kamber and P. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin and New York, 1975, pp. 1-294.
- 11. D. McDuff, The homology of groups of volume preserving diffeomorphisms, Ann. École Norm. Sup. (to appear).
- 12. ——, Some canonical cohomology classes on groups of volume preserving diffeomorphisms, Trans. Amer. Math. Soc. (to appear).
- 13. T. Mizutani, S. Morita and T. Tsuboi, The Godbillon-Vey classes of codimension one foliations which are almost without holonomy, Ann. of Math. (2) 113 (1981), 515-527.
- 14. J. Plante, Foliations with measure preserving holonomy, Ann. of Math. (2) 102 (1975), 327-361.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544