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THE DEVELOPMENT OF SQUARE FUNCTIONS 
IN THE WORK OF A. ZYGMUND 

BY E. M. STEIN 

I've decided to write this essay about "square functions" for two reasons. 
First, their development has been so intertwined with the scientific work of A. 
Zygmund that it seems highly appropriate to do so now on the occasion of his 
80th birthday. Also these functions are of fundamental importance in analysis, 
standing as they do at the crossing of three important roads many of us have 
travelled by: complex function theory, the Fourier transform (or orthogonality 
in its various guises), and real-variable methods. In fact, the more recent 
applications of these ideas, described at the end of this essay, can be seen as 
confirmation of the significance Zygmund always attached to square functions. 

This is going to be a partly historical survey, and so I hope you will allow me 
to take the usual liberties associated with this kind of enterprise: I will break 
up the exposition into certain "historical periods", five to be precise; and by 
doing this I will be able to suggest my own views as to what might have been 
the key influences and ideas that brought about these developments. 

One word of explanation about "square functions" is called for. A deep 
concept in mathematics is usually not an idea in its pure form, but rather takes 
various shapes depending on the uses it is put to. The same is true of square 
functions. These appear in a variety of forms, and while in spirit they are all 
the same, in actual practice they can be quite different. Thus the metamorpho
sis of square functions is all important. 

First period (1922-1926): The primordial square functions. It appears that 
square functions arose first in an explicit form in a beautiful theorem of 
Kaczmarz and Zygmund dealing with the almost everywhere summability of 
orthogonal expansions. The theorem was proved in 1926 as the culmination of 
several papers each had written at about that time. The theorem itself was an 
outgrowth of what certainly was one of the main preoccupations of analysts at 
that time, namely the question of convergence of Fourier series. The problem 
was the following. Suppose ƒ = f(0) is a continuous function on the circle, 
0 < 8 < 277, or more generally assume that ƒ is in L2(0,2w) or even that ƒ is 
merely integrable; then does its Fourier series 

(1) 2ane<»°, mtha^^-fme-'-'de, 
lm J0 

converge almost everywhere? 
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A related parallel issue was the corresponding question for a general 
orthonormal expansion, but now limited to ƒ EL2 . Thus if {<j>n} is an ortho-
normal system, and if ƒ ~ 2 an<j>n with an = ƒƒ£„, where 2 | an |2 < oo, then 
what could be said about the convergence almost everywhere of 

(2) 1 «A(*)? 
n=\ 

The period we are dealing with (1922-1926) was marked by several striking 
achievements in this area, whose essential interest is not diminished even when 
viewed from the distant perspective of more than a half century. The first 
result to mention was the construction by Kolmogorov in 1923 of an Ü 
function whose Fourier series (1) diverged almost everywhere.1 

This construction made even more pressing the question of whether the 
Fourier series (1) converges almost everywhere when (say) ƒ belongs to L2, a 
problem that was not solved till more than forty years later. We shall turn to 
that in a moment, but now we point out that Kolmogorov's example put into 
sharper relief the L2 results for general orthonormal developments that had 
been obtained (in 1922 and 1923) by Rademacher and Menshov. They showed 
that if 

(3) 2 | t f J 2 0og«) 2 <oo 

then the series (2) converges a.e. 
Moreover the condition (3) is best possible in the sense that if {Xn} is 

monotonie and Xn/\ogn -> 0, then there exists an orthonormal system {</>„} 
and expansion (2) which diverged a.e., while 2 | an |2A2„ < oo. 

For ordinary Fourier series it was proved2 that the condition (3) could be 
relaxed and be replaced by 

(4) f |a„|2log(|«|+2)<x. 
— 00 

This last result stood unsurpassed for forty years until Carleson in 1966 
showed that indeed the Fourier series of an L2 function converged almost 
everywhere. It may be interesting to note here that the basic tools required for 
Carleson's theorem—the properties of the Hilbert transform and their relation 
with partial sums of Fourier series—were first brought to light in this early 
period: Kolmogorov's proof of the weak-type (1,1) property in 1925; M. 
Riesz's paper of 1927 containing the Lp inequalities for conjugate functions 
and partial sums; and Besicovitch's work (in 1923 and 1926) which began the 
development of "real-variable" methods for Hilbert transforms. 

Against this background we can now state the idea of Kaczmarz and 
Zygmund. It asserts as a general principle that for an L2 orthonormal expan
sion (i.e., one where 2 | an |2 < oo), at almost all points the summability of the 
series 2 an<f>n(x) by one method one has as a consequence the summability by 

'Kolmogorov later even outdid himself when in 1926 he refined his construction to show the 
existence of an Ü function whose Fourier series diverged everywhere. 

2 Kolmogorov and Seliverstov and Plessner [1926]. 
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any other method which is essentially stronger than convergence. A special 
(but typical) case is as follows: 

THEOREM 1. Suppose 2 | an |
2 < oo. Then 2 an$n(x) is Cesàro summable at 

almost each point x where it is Abel summable. 

Recall that the series is Abel summable at x if l im ,^ - 2anr
n<t>n(x) exists. In 

addition, setting sn = 2jJ=otf*<i>*> and on = (s0 + s} + --- +sn_x)/n, the 
Cesàro summability at x means the existence of the limit lim,^,» on(x). 

If a series is Cesàro summable it is automatically Abel summable (an 
exercise!), but the converse is in general not true. To gain a better idea of the 
scope of Theorem 1 let us point out that 

n 

°n(x)= 2 0 - k/n)ak<t>k{x) 
k = 0 

and a result similar to Theorem 1 holds when on(x) is replaced by o*(x) — 
2£=oO — k/n)Bak^k(x\ with e > 0 (which corresponds essentially to (C, e) 
summability), but not for e = 0 which of course would give the usual conver
gence. 

For the proof of Theorem 1 Kaczmarz and Zygmund used a square function 
which they introduced for this purpose, namely 

/ oo \ l / 2 

(5) * ( ƒ ) = [ 2n\on-an_x\^ 

with ƒ ~ 2 a„</>„. The basic fact was the L2 inequality. 

LEMMA. 

I I * ( / ) I I L * * C I I / I I L 2 . 

Clearly 
n-\ 

n(n-\)k=0 n« k<n 

and thus 2^ « II an — aw_x II \ < c'2 | ak \2 = c'll ƒ II2, which proves the lemma. 
To prove the theorem one invokes a variant of the classical Tauberian 

argument, namely, if 2An is Abel summable and 2nAl < oo, then 1An con
verges. Now set An — on — on-\\ then the Abel summability of 2An follows 
from the corresponding Abel summability of 2 an<j>n. The Tauberian condition 
holds at almost all points because of the lemma, and hence one obtains a.e. the 
convergence of 2(a„ — on_x\ proving the theorem. 

We have seen the first example of a square function, namely (5). While here 
it plays a minor role, its basic character is already revealed: Because of the 
agility of its quadratic nature it can exploit easily any situation in which 
orthogonality might be important. 

Second period (1931-1937): Littlewood and Paley. Our scene shifts now from 
the Continent to England, and to the work of Littlewood and Paley. Our 
attention will be focused on two important series of connected papers: three 
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jointly by Littlewood and Paley [1931-1937], and two by Paley [1932]. The 
investigations described in these papers were initiated simultaneously (the first 
paper in each series was submitted in April 1931), but because of Paley's death 
in 1933 the final versions of several of the papers were probably Littlewood's 
work alone. It is also interesting to note that no reference is made in these 
papers to the results described above, and so it is a reasonable guess that they 
were not aware of the possible relevance of the ideas of Kaczmarz and 
Zygmund. 

The main theme of the Littlewood-Paley work was to consider the "dyadic 
decomposition" of Fourier series, namely 

M = 1 M<0, 
k = 0 

with 

A*(*)= 2 ane
in\ k>l;à0 = a0. 

2k-l<\n\<2k 

Their basic result was that the Lp norm of a function was equivalent with 
the Lp norm of the square function associated with its dyadic decomposition. 

THEOREM 2. For 1 < p < oo, 

1/2 

2 \*k(o) 
k=0 

- l l / i i , 

To prove this theorem they needed and thus formulated an "abelian" 
analogue, where partial sums are replaced by Abel means, i.e., the Poisson 
integral of ƒ = u(r, 0). Thus given/, let $ be the holomorphic function in the 
unit disc with Re($) = w, and lm($(0)) = 0. They defined another square 
function the "g-function" of ƒ by 

g(f)(0) = (j\\-r)\V(reie)\2dr)V2 

and proved the following 

THEOREM 3. With 1 < p < oo 

(6) H g ( / ) l l , « l l / l l , , if °o = 0. 

Paley sought a better understanding of the nature of these problems by 
considering variants of Theorem 2 where the Fourier series expansion is 
replaced by the Walsh-Paley expansion. The Walsh-Paley functions (called 
Walsh-Kaczmarz functions at that time) are now usually described as follows. 
We identify the interval [0,1] with the compact group consisting of an infinite 
product of copies of the two-element group (via the usual binary expansion). 
The characters of that group are the Walsh-Paley functions. Writing each 
integer as a sum of powers of 2 gives a natural enumeration of the characters 
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{**}£=o- I f w e s e t / ~ 2tf A> a n d kk = s2k - s2k~x = 22*-«<,l<2*0A> with 
Ao = Û0, then Paley's theorem reads as 

THEOREM 4. For the Walsh-Paley series, with 1 < p < oo 

What makes the proof of Theorem 4 easier than that of Theorem 2 are the 
various simplifications inherent in the fact that {^2*(/)} *s a martingale 
sequence. The name "martingale" had not yet been coined. Moreover, a 
systematic extension of Theorem 4 from the point of view of martingales, and 
its further exploration in the magical world of Brownian motion— all these 
came much later, as we shall see. However in Paley's time some of the 
arguments typical of martingale theory were already understood. Thus it had 
been observed that s2k(f) was constant on each 2k intervals (of length 2~k) of 
the form ((/ - l)/2*, l/2k\ I = 1,... ,2*, and that the value of s2*( ƒ ) on each 
of these intervals was the mean-value of ƒ there. From this it is obvious when 
ƒ e Lp, 1 </? < oo, then {s2k( ƒ )} are bounded in Lp norm; the analogue for 
Fourier series is definitely nonobvious when 1 < p < oo, and in fact false when 
p — 1 or/? = oo. 

We shall now describe the main device Paley used in his proof of Theorem 4. 
Paley was, from what one can learn about his life, a man of courage and 
almost reckless daring. A hint of that spirit can be found in his approach to 
difficult mathematical problems. When faced by the proof of an inequality like 

(7) /(2|Ail|
a)'/2*<^;/|/r* 

where p is e.g. an even integer 2r, he instinctively sought to face the problem 
head-on by multiplying out the r infinite sums, and then coming to grips 
directly with the resulting multitude of terms. This kind of audacious attack is 
not so common in our time when it is easier to rely on a variety of 
sophisticated gadgets which are household items for the working analyst. But 
given Paley's resourcefulness this approach worked marvelously well. His key 
observation was that 

(8) 2 ƒ A ^ 2 • • • ù?lrdx < ƒ < • • • A^, ƒ2 dx 

where the summation is taken over those ir for which / r > max(/,,...,ir_,), 
which in turn follows from the martingale property that 

(9) jg(x)Ak(x)dx = 0 

whenever g is "measurable with respect to the past". From (8) Paley was able 
to achieve the proof of (7) in a few strokes. 

The same idea inspired Littlewood and Paley's proof of Theorem 3, although 
the execution is more complicated; a more recondite form of (8) must be 
proved, and here nothing as simple as (9) holds. The appropriate substitute 
must be fashioned with care out of Green's theorem in conjunction with the 
identity A(| $ | 2 ) = 4 | $'|2. With Theorem 3 proved, Littlewood and Paley 
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were able to deduce Theorem 4, but here also the steps required were not easy. 
It was only after their theory was reexamined by Zygmund and his student 
Marcinkiewicz, that a clearer and broader view of the whole subject began to 
emerge. To this we shall now turn. 

Third period (1938-1945): Marcinkiewicz and Zygmund. There are two 
significant events that marked the period we are now concerned with. The first, 
which even predated the Littlewood-Paley collaboration, was the introduction 
by Lusin in 1930 of his "area integral". The idea of Lusin seems to have 
sparked no further interest until Marcinkiewicz and Zygmund took up the 
subject again about 8 years later. There began a brief but very creative period 
of work by them—a flowering of the theory where connections with a variety 
of other ideas were brought to light. The second event, a tragic one, followed 
soon thereafter with the death of Marcinkiewicz in 1940, and it was left to 
Zygmund alone to resolve some of the issues that their work had led them to. 

It may help to clarify the description of the principal ideas that Marcinkie
wicz and Zygmund contributed to the study of square functions if we organize 
our presentation in terms of the four main Unes along which their work 
proceeded. 

The first subject we shall treat (and the only one that was, strictly speaking, 
joint work) deals with the area integral of Lusin. The definition of this is as 
follows. Suppose $(z) is holomorphic in the unit disc and define A($)(0) by 

(10) (A(<!>)(6))2 = ( \V(z)\2dxdy 
JT(0) 

with T(0) a standard "triangle" (nontangential approach region) in the unit 
disc with vertex at exe. Observe that the expression represents the area of the 
image of T(0) under the mapping z -> $(z), with points counted according to 
their multiplicity. Lusin's discovery was that if O is bounded, then A($)(0) is 
finite for almost any 6\ more generally that 

(11) M ( * ) ( * ) l l 2 ^ l l * l l 2 , if«(0) = 0. 

Marcinkiewicz and Zygmund realized that on the one hand there was a close 
analogy between the Littlewood-Paley g-function and A($) (in fact A is a 
pointwise majorant of g, and the same kind of Lp inequalities held for A as for 
g); but on the other hand they surmised that the parallel between these two 
square functions should not be pushed too far. The main result they obtained 
for A was a localized version of Lusin's result. This can be stated as follows. 
Let$*(0) = sup2Gr((?)|<I>(z)|. 

THEOREM 5a. If $ is holomorphic in the unit disc, then for almost every 0, 
$*(6) < oo implies A($)(6) < oo. 

The converse was proved five years later by Spencer3 namely 

THEOREM 5b. If O is holomorphic in the unit disc, then for almost every 0, 
A(&)(0) < oo implies $*(0) < oo. 

3 Incidentally, the work of Spencer [1943] seems to be the only major exception to the monopoly 
Marcinkiewicz and Zygmund held during that period on subjects relating to square functions. 
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A corresponding converse for g-functions is false, and so the area integral A 
has some special affinities with the boundary behavior of $, going beyond 
what it shares with g. 

The second Une of investigation was Zygmund's reexamination of the 
Littlewood-Paley theorem for the dyadic decomposition of Fourier series. His 
analysis led him to recast and simplify the ideas of the proof. These simplifica
tions had important consequences for later work, as we shall see; but their 
immediate interest was that it allowed him to connect the square function 
(2|A f c |2)1 / 2 with the one he and Kaczmarz had considered a dozen years 
earlier in their study of summability of orthogonal series (see (5)). We suppose 
that we take the Fourier expansion and set f(0) ~ 2„> 0 Û / " V G LP

9 SO that 
ƒ G Hp. If we write as before 

K{f)(e) = (^n\on(e)-on_x(e)\Ay2, 

where an(6) = 20^k<n(\ — k/n)ake
ike then we can state the following theo

rem: 

THEOREM 6. \\K(f)\\p^Ap\\f\\p, 1 <p< oo.4 

The proof of this theorem required two steps. First, like that of Theorem 2, 
one needed the Lp inequalities for the g-f unction (see (6)). Here the major 
simplification was made by Zygmund some years later5 and it came in the 
proof of the fact that || g(f)\\p < Ap II ƒ \\p9 when p > 2. (The case p - 2 was 
easy, and the range p < 2 was reducible to p = 2 by the artifice standard in 
those days of using Blaschke product decompositions for Hp functions.) For 
the difficult case/? > 2 a "square duality" was used. An ingenious argument 
shows that whenever <J> > 0 , 

(12) jgU?<t>de^c{jg{f)g{<t>)M{f)dO+f\f\2$de\ 

where M is the Hardy-Littlewood maximal function. For p > 4, (12) then gives 
the desired result as a consequence of the case p < 2 applied to g(<j>). 
Incidentally, the notion of square duality which seems to have originated in 
this context continues to find other applications of interest. 

The second simplification Zygmund made was in the manner in which one 
could reduce the Lp control of (2 | Â  | 2 ) 1 / 2 to that of the g-function; and in 
fact a whole list of other square functions (in particular (2w | on — on_x |2)1 / 2) 
could be handled in the same way.6 This streamlining of the proof he found 
can be said to have led directly to the "Marcinkiewicz multiplier theorem". 

In its one-dimensional form the celebrated theorem that bears Marcinkie
wicz's name can be stated as follows. Suppose we consider a transformation T 
given by a multiplier sequence (Xn}°î00, defined by 

Tf-2Xnanein\ whenever ƒ -^anein9. 

4There was also a result îorp = 1, i.e., II K(f)\\p ^ Ap || ƒ ||, if p < 1. 
5 In his 1945 paper. 
6This is the presentation given in Zygmund's book, Chapter 15. 
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Then Tis bounded on Lp
9 1 <p < oo, if (i) the sequence {Xn} is bounded, and 

(ii) if it varies boundedly over each dyadic block; more precisely, 22*<|/|<2*+1 

| Xj — Xj_ ! | < M. (Note that the special case when the sequence is constant on 
each dyadic block is an immediate consequence of Theorem 2.) In one 
dimension the theorem's greatest merit is, I believe, in its formulation rather 
than its proof; the latter is much the same as that of Theorem 6. 

It is in the passage to higher dimensions, however, that one finds the great 
significance of Marcinkiewicz's work on multipliers. Its importance was not 
only the fact that one could use hitherto one-dimensional methods to prove 
w-dimensional results; even more profound were the appUcations to other 
questions, such as estimates for partial differential equations, already en
visaged at that time. We can now see in retrospect that Marcinkiewicz thus 
anticipated some of the basic inequalities later proved by the theory of singular 
integrals.7 

For simplicity of notation we shall state the Marcinkiewicz multiplier 
theorem in the case of two dimensions. Consider the multiplier operator T 
given by Tf-lXnmanmei(n$+nt1t>) for f~2anmei(n6+m*\ Let Ik denote the 
dyadic interval = {n | 2k~l < | n |< 2*}, and /, = {m \ 2l~x <\ m |< 2'}. Write 
h\K,m = K+\,m " X*,m> ^lKtm = ^n,m+\ " Xn,m> *lld ^1,2 = A, * A 2 ' N ° W 

assume the finiteness of the following four quantities: 
(i) sup„>m | Xnm | ; 
(ii) sup^m lnefk | A^X»^ | , and supm/2weJ/1 à2Xnm | ; and 
(iii) sup M 2 n e ^2„ e J / | A1A2 \B iJ . 

THEOREM 7. Under the assumption made above, T is bounded on Lp, 1 <p 
< oo. 

The last of the four major lines of investigation concerning square functions 
that Marcinkiewicz and Zygmund undertook dealt with the attempt to find a 
completely "real-variable" analogue of the functions of Lusin and Littlewood-
Paley. Starting with a function ƒ on the circle, the area integral and g-functions 
are defined in terms of holomorphic (or harmonic) functions whose boundary 
values are related to ƒ. Also the dyadic square function of Theorem 2 requires 
the Fourier expansion of ƒ. What was desired was a variant that could be 
defined more directly in terms of the basic real-variable operations such as 
integration, differentiation, etc. 

After some experimentation Marcinkiewicz hit upon the idea of considering 

(13) p(F){x) = ( jT| F(x + t) + Fix - 0 - 2F(x) f ^ 

with 

F(x)=ff(t)dt. 
It was not difficult to see that 

\\v(F)\\L2~\\f\\L29 if f2"f(x)dx = 0. Jo 
7This becomes clearer upon reading Marcinkiewicz's paper [1939], and taking into account the 

continuous analogue Mihlin deduced from it, in 1956. 
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With this, and using the real-variable tools he had already developed, he was 
able to prove the analogue of the theorem he and Zygmund had found for the 
area integral (Theorem 5a). The result was as follows. 

THEOREM 8a. Suppose F G L2. If F\x) exists in a set E9 then n(F)(x) < oo 
for almost every x E E. 

The questions that arose were first, whether some of the other properties of 
the area integral or g-function held as well for /r, and, more interestingly, what 
was the real significance of the Marcinkiewicz function. Zygmund found an 
answer to the first question in 1944 when he proved 

THEOREM 8b. For 1 <p < oo, 

\\p(F)\\L,*\\f\\L,9 if[2"f(x)dx = 0. 

The argument he developed to show this was not an easy one. He was 
required to invoke the most arcane of the square functions, the function g*, 
which Littlewood and Paley had also studied. He established the Lp inequali
ties for it and showed that it actually was a majorant of the Marcinkiewicz 
function. Incidentally g* is defined by 

(«•(•)(0))2=/72*i*'('*'('+*)) 
•'o •'o 

and so majorizes also of the area integral (10), but it takes into account "the 
tangential" approach to the boundary.8 

The problem that remained was to discover whether there was a converse to 
the local result given by Theorem 8a, or to put the question more broadly, to 
find the meaning of the Marcinkiewicz function. It was to be almost twenty 
more years before-an answer to that question would be found. 

Fourth period (1950-1964): Zygmund and his students. Starting about 1950 a 
new direction of considerable importance began to emerge in force. Hinted at 
in earlier work (of Besicovitch and Marcinkiewicz, among others), its thrust 
was the development of "real-variable" methods to replace complex function 
theory—that favored ally of one-dimensional Fourier analysis. What made this 
new emphasis particularly timely, in fact indispensable, was that only with 
techniques coming from real-variable theory could one hope to come to grips 
with many interesting «-dimensional analogues of the one-dimensional theory. 

The mathematician animating this development was Antoni Zygmund. In 
many ways he set the broad outlines of the effort, he mastered by his work 
some of the crucial difficulties, and was throughout the source of inspiration 
for his students and collaborators. 

a. The area integral. A pioneering result in this new direction was Calderón's 
extension to R" of the theorem of Marcinkiewicz and Zygmund concerning the 
area integral, a subject he had taken up at the suggestion of Zygmund. The 

8 It is an ironic fact that a dozen years later (in 1956), Zygmund and independently Sunouchi 
showed that g* is essentially identical with the square function K of Theorem 6. 

1 -re i+ 
d$dr, 
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setting for this is as follows. We let R++l = {(*, y)9 x — (xl9...9xn) E Rw, 
y E R+ } be the upper half-space, and suppose that u(x9 y) is harmonic (with 
respect to the n + 1 variablesxX9...9xn9 y). Sometimes we shall assume that u 
is in fact the Poisson integral of an appropriate function ƒ defined on R"9 and 
then we shall write u = PI( ƒ ). We let T = {(x9 y)9 \ x \<y} be a standard 
cone with vertex at the origin, T' its truncated version, T' = T D {y < 1}. For 
any x E Rw, T(x) and r'(3c) will be the corresponding cones with vertices at 3c. 
The area integral of u is defined by 

(14) (A(u)(x)f = f | v u I2/-" dx dy 
JT(x) 

where | v « |2 =\du/dy \2 + ln
j=x \ du/dxd |2. 

Similarly for the local theory one needs the analogue of (14) where T(x) is 
replaced by T'(x)9 this defines Aloc(u)(x). The maximal function u* is defined 
by u*(x) = sup(JC,>,)Gr(x) I w(*> y)\ » a n ^ i t s l°cal analogue wf̂  is given by 
replacing T(x) by T'(^) in t n e definition. 

THEOREM 9a. Suppose u is harmonic in R++1. 77ze« ^4locw(x) < oo â  almost 
every point x 6 R " w/rere «^(x) < oo. 

Calderón's proof of this theorem was published at the same time (1950) as 
another important result he found, namely the extension of Privalov's theorem: 
u has a nontangential limit at almost every x E R", where uf^x) < oo. We 
shall discuss the ideas behind the proof of Theorem 9a later when we take up 
its converse. Now we turn to the "global" version, i.e., the higher-dimensional 
analogue of the Littlewood-Paley theorem (Theorem 3). 

THEOREM 9b. Suppose u = PI( ƒ ), then 

M(«)IIL ,=*II/HL , , K / X o o . 

It would be difficult after 25 years to recall the precise thoughts that 
motivated the proof of Theorem 9b, nor would it be easy now for one to 
appreciate the difficulties that seemed then to stand in the way. But I do 
remember that those of us who were graduate students of Zygmund in the 
middle 1950's were shaped by the event, akin to the Creation, which appeared 
to some of us to be the beginning of everything important: the 1952 Acta 
paper which developed via the Calderón-Zygmund lemma, the real variable 
methods giving the extension of the Hubert transform to w-dimensions. What 
was more natural, therefore, than to attempt to prove the Lp boundedness of 
ƒ'-» A(u) by adapting these methods? This idea indeed worked, although the 
initial compUcated proofs were later much simphfied. The analysis succeeded 
as well for the Marcinkiewicz function (13), and proved also that the mappings 
ƒ -> A(u) and ƒ -* n(F) were of weak-type (1,1). 

We turn now to the proof of Theorem 9a. Its one-dimensional version 
(Theorem 5 a) had been done by using complex function theory, in particular 
conformai mappings. So a completely different approach was needed. The idea 
behind it can be understood by examining the case p — 2 of Theorem 9b, 
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which has an easy proof. A direct calculation shows that 

(15) f A2(u) dx = cf y\vu\2dx dy9 

where c is the volume of the unit ball. Next we can use the fact that 
| vw |2 = jà(\ u |2), and so by Green's theorem 

which proves Theorem 9b for p — 2, since u(x,0) = f(x). Thus in order to 
control ;4ioc(wX*) o n a s e t E> it *s natural to consider JE^ioc(u)(x) dx which in 
turn is dominated by cjR(E)y \ Vu\2 dxdy, where R(E) is a standard "saw
tooth" region in R++] based on E. At this stage (which is the turning point of 
the proof) Calderón invoked Green's theorem for another region containing 
R(E), whose Green's function he could essentially bound from below by c'y. 

To prove the converse of Theorem 9a along these lines appeared to require, 
among other things, appropriate bounds from above for Green's function for 
such regions, and that seemed much beyond what could be done then.9 What 
turned out to be the right course of action was to finesse the problem of 
Green's function and to proceed directly with estimates that followed from the 
finiteness of fR{E) y \ Vu |2 dx dy. These arguments also proved to be useful in 
other situations, as we shall see later. The result obtained was 

THEOREM 9C. Suppose u is harmonic in R++1. Then uf^ix) < oo for almost all 
points x E Rn where Aloc(u)(x) < oo. 

I remember quite vividly the excitement surrounding the events at the time 
of this work. It was March 1959, and I had returned to the University of 
Chicago the fall before. Frequently I met with my friends Guido Weiss and 
Mary Weiss, and together we often found ourselves in Zygmund's office 
(Eckhart 309, two doors from mine). With our teacher our conversations 
ranged over a wide variety of topics (not all mathematical) and more than once 
the subject of square functions arose. When this happened the mood would 
change, if only slightly, as if in deference to their special status, and the enigma 
that surrounded them. I had an idea which seemed promising. But before we 
could see where it might lead came the spring break. Further work would have 
to be held in abeyance since we were each going our own ways: Zygmund 
travelled to Boston to visit Calderón; Guido and Mary Weiss, having borrowed 
my Chevrolet, drove to Virginia for a vacation trip; and I went to New York to 
be married. 

b. The Marcinkiewicz function. Influenced by the renewed interest in area 
integrals, and encouraged by some recent work he had done with Mary 
Weiss,10 Zygmund returned to the study of the Marcinkiewicz integral (13) and 
the problem of finding a converse to Theorem 8a. He was convinced that now 

9 In fact good estimates for Green's function and the Poisson kernel for such regions, and more 
generally " Lipschitz domains", originate in the work of Dahlberg in 1977. 

10See M. Weiss and Zygmund [1959]. 
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(more than 20 years after Marcinkiewicz's original work) the time was ripe to 
see matters to a conclusion. He suggested to me that we work on the problem 
together, and of course I was very happy to accept his offer. For me this was a 
unique and rewarding collaboration—not just because of the special satisfac
tion one derives when accepted as an equal by one's teacher—but also because 
as it turned out he did most of the work that really counted! 

We realized first that Theorem 8a itself could be somewhat strengthened; 
what was required was the notion of the derivative F(x) existing (at JC) "in the 
L2 sense". Thus F\x) existed in this generalized sense if 

(16) hL 
F(x + t)-F(x) 

t F(x) dt -* 0, as h -> 0. 

The finer version of Theorem 8a was then: If F E L2 had a derivative in the 
sense of (16) at each x E E, then n(F)(x) < oo for almost every x E E. It was 
in this form that one might seek a converse. The basic plan was to try to make 
matters turn on the analogous situation which held for the area integral, where 
one can pass from the finiteness of a quadratic expression to the existence of a 
limit. After a series of reductions we were able to show that at each point x 
where p(F)(x) < oo one had 

d 2 u I ' 
| T - » ( X + * , ƒ ) + — j ( * - /, y)\ dtdy < oo 
J öy* ôyz I 

with u = PI(i r). On the other hand we could show (using Theorem 5b) that at 
almost every x where 

|2 

(17) ƒ i 

(18) 
•1'H 

(x + t,y) dtdy<oo 

the conclusion (16) actually held. 
The basic difficulty, the passage from (17) to (18), was overcome by 

Zygmund using a clever "desymmetrization" argument; several weeks later he 
presented me with an essentially final draft of the paper which he had typed 
himself! 

There were several variants of the final result—involving extensions to 
«-dimensions, or higher derivatives, or even fractional derivatives. The simplest 
version, however, was the following: 

THEOREM 10. Let F E L2(0, 2TT). Then the set of points x where 

C | F(x + t) + F(x - t) ~ 2F(x) |2 dt/t3 < oo, 
•'o 

and the set of points where F'(x) exists in the L2 sense (i.e. (16)) differ by a set of 
measure zero. 

Fifth period (1966-present): Further applications of square functions. We 
have traced the development of square functions from their beginnings to a 
stage where their nature was much better understood, in terms of a series of 

This notion had at that time [1961] been introduced by Calderón and Zygmund. 
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deep theorems that had been obtained. Yet it is only more recently that their 
central role in several fields of analysis has become more apparent. I shall try 
to describe this very briefly in terms of three specific areas: Hp spaces, 
symmetric diffusion semigroups, and differentiation theory in Rw. 

a. Hp theory. Beginning in about 1966 two separate directions of research 
involving square functions were undertaken, and when brought together these 
ultimately led to a rich harvest in the theory of Hp spaces. The first started 
with Burkholder's extension of Paley's theorem (Theorem 4 for Walsh-Paley 
series) to general martingales. He observed that Paley's argument extended to 
this general setting, but also found his own approach which was very different. 
He showed that if Ek = E('\^k) are the conditional expectations for an 
increasing sequence of a-fields {^}~=0» ^en with E_l(f)^ 0, 

(19) 2 I (S* "£*-,)(ƒ) |J 

>A: = 0 

1/2 

~ ]im\\Ek(f)\\pi 
A:-» oo 

1 <p < 00. 

Next, in work with Gundy, and later also with Silverstein, the following 
advances were made:12 It was shown that (19) extended to p < 1 if 
lim^ooll/s^/)!!^ was replaced with \\supkEk(f)\\p9 for a large class of 
martingales. This class incidentally includes those occurring for the Walsh-Pa
ley series, but more importantly these results went over to the (continuous 
parameter) martingales arising from Brownian motion applied to harmonic 
functions. To be more precise, let zt(co) denote the standard Brownian motion 
in the complex z-plane, starting at the origin and stopped when reaching the 
unit circle. Here 0 < t < oo is the time parameter, and w labels the Brownian 
path, with co E Ö, B being the probability space. If u is harmonic in the unit 
disc, t -* w(z,(co)) is a continuous-time martingale. Let MB(u)(o)) = sup0</<00 

|w(z,(<o))| be the Brownian maximal function, and S(u)(o)) the martingale 
square function, 5(w)(co) = (/0°° | Vu(zt(u))\2 dt)l/2. Their result then was 
that 

(20) IISii||L,(0) =* IIMj(n)||L,(0), 0 <p < oo, 

whenever w(0) = 0. 
The most striking application of this circle of ideas was a conclusion drawn 

from (20), to wit, whenever F = u + iv is holomorphic in the unit disc, then 
FEHpif and only if u* G Lp

9 0 <p < oo. 
The second line of research began when a more direct connection between 

standard multiplier operators and square function was discovered. The result 
was easy to state. Whenever T is a multiplier operator of the Marcinkiewicz 
type on Rn (more precisely one that satisfies the kind of conditions put in 
Hörmander's version of that multiplier theorem), then the area integral corre
sponding to T( f ) is pointwise dominated by a g* function of/, i.e., 

(21) A(Tf)(x)<cgt(f)(x), 

l2See their papers in [1970, 1971). 
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where 

gl(f)(x)=[f\Vu(x-t,y)f(jZ?jriy
Xyl-»4ydt]j , 

and X is a parameter which depends on the nature of the multiplier. An Hp 

theory in R" had already been initiated several years before (by the efforts of 
G. Weiss and others), and using it and (21) it followed that these multipliers 
also extended to bounded operators on Hp. 

From these considerations it might be guessed that a basic tool for Hp 

theory is the relation between square functions and maximal properties of 
(harmonic) functions. Here important contributions were made by C. Feffer-
man. One of the results obtained in this direction was the following theorem: 

THEOREM 11. Suppose that u is harmonic in R++1, and u(x,y)-*0, as 
y -* oo. Then \\A(u)\\p « \\u*\\p9 0<p< oo.13 

Incidentally it should be remarked that the proof used the same approach as 
its "local" analogue, Theorem 9c, but additional arguments of a quantitative 
nature were of course needed. More recently some of these results for square 
functions have been extended to product domains, and in this context generali
zations of Theorems 9 and 11 have been found.14 

b. Symmetric diffusion semigroups. The semigroups which are the subject of 
the title are a family of operators {r'},> 0 , each bounded and selfadjoint on L2, 
with V having norm < 1 on every Lp, 1 </? < oo, and T'l+'2 = T'*Tt2

9 with 
lim^o T} = ƒ, for ƒ G L2. Sometimes the additional hypotheses are made that 
r'(l) = 1, and Tt is positivity-preserving. 

The significance of this notion derives from the many important examples of 
such semigroups in analysis, and the many rich properties that they share. In 
fact some of the basic results discussed above have sessions valid in this 
context. Here we mention two, a maximal theorem, and a multiplier theorem in 
the spirit of Marcinkiewicz's theorem (Theorem 7). 

THEOREM 11a. Ilsup,>0| T'f\ \\p <Ap\\ f \\p, \<p < oo. 

To formulate the multiplier theorem we write T' in terms of its spectral 
decomposition, T' = /0°° e~Xt dE(\)9 where E(X) is a spectral resolution on L2. 
For each bounded Borel measurable function m on (0, oo), consider the 
"multiplier" operator Tm given by Tm — /0°° m(X) dE(\). Here we assume that 
m is of the form m(X) = X/0°° M(s)e~Xs ds, with M a bounded function. 

THEOREM lib. \\Tm(f)\\p<Ap\\f\\p, \<p < oo. 

A key tool used for the proof of both these theorems are the Littlewood-Pa-
ley type functions 

**(/)(*) = (jf< 2k-\ 
v i2 \ 1/2 

3* ' w 

dtk w ' 
dt , with A: = 1,2,. 

,3Fefferman and Stein [1972]. 
,4See Malliavin and Malliavin [1977], J. Brossard [1979], and Gundy and Stein [1979]. 
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Also for Tm a relation of the same kind as (21) holds.15 

c. Differentiation theorems in Rw. Probably the most dramatic applications of 
square functions occur in differentiation theory. The general problem here is to 
prove that 

(22) Jim -Yjrrff(x-y)dli(y)=f(x) a.e. 

where R ranges over a suitable collection 91 of sets "centered" at the origin. 
The classical examples of these are (i) where 91 is the collection of all balls (or 
cubes) containing the origin, and (ii) where 91 is the collection of all rectangles 
containing the origin, with sides parallel to the axes. For each of these results a 
Vitali-type covering theorem has played a decisive result. Thus it may seem 
surprising that the alien notion of square functions would turn out to be the 
appropriate idea in related situations, where covering arguments were unavail
ing. In formulating the results obtained this way we shall, as is usual, deal with 
the corresponding maximal function 

^a,( ƒ ) (*) = SUP (f(x-y)dii(y) 
JR R<E<& MW 

and the possibility of asserting inequalities of the type 

(23) \\M^{f)\\p^Ap\\f\\p. 

THEOREM 12. The inequality (23) holds in the following cases: 
(a) 91 is the collection of spheres centered at the origin', d[i is the uniform 

surface measure; andn > 3, withp > n/(n — 1). 
(b) 91 is the collection of initial segments {y(t), 0 < t < h} of a smooth curve 

t -> y(t), with y(0) = 0, and y having nonzero "curvature" at the origin; here d\x 
is arc-length, n> I andp > 1. 

(c) 91 is the collection of rectangles (in R2) containing the origin, which make 
an angle 8k with a fixed direction, where {6k} is a sequence of numbers tending 
rapidly to zero; here p > 1. 

The proof of each part of this theorem requires its own square function. We 
shall not describe these rather complicated quadratic functions here, but refer 
the reader to the literature for further details.16 

Epilogue. Since the original draft of this essay was written two new results 
were found which use square functions in a decisive way. 

The first is the solution of the problem of Cauchy's integral for Lipschitz 
curves by Coif man, Mcintosh, and Meyer [1982]. It is to be noted that in 
Calderón's initial work on this problem (1965), square functions were already 
used in a crucial way. In particular the inequality c\\F\\HP < \\A(F)\\p,p < 1, 
was proved there for this purpose. 

15For further details see Stein [1970]. 
,6For (a), Stein [1976]; for (b) Stein and Wainger [1978]; (c) was first proved for p ̂  2 by 

covering arguments, see Stromberg [1977] and R. Fefferman and Cordoba [1977]. The general case 
is in Nagel, Stein, and Wainger [1978]. 
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The second result deals with the standard maximal function in Rn 

M„(/)(x)=sup — 
r>0 c„r" 

ƒ f(x-y)dy\ 

where cn is the volume of the unit ball in R". 
The question that arises is, how does the Lp norm of Mn behave for large nl 

The best that can be proved by the usual Vitali covering arguments gives 
\\Mn(f)\\p<A(p, n)\\f\\p (1 </?), with^(/7, n) <A{p)2n^, which is a large 
growth as n -» oo. However much more can be said. 

THEOREM 13. \\Mn( f)\\p <Ap\\ f \\p, 1 <p < oo, with Ap independent of n. 

The idea of the proof is to consider in Rm the maximal functions Mmk 
defined by 

MmAf){x)= sup 
ƒ f{x~y)\y\kdy\ 
'\y\<r 

r>0 ƒ \y\kdy 
k>0. 

'M 
Then if m is so large that/? > m/(m — 1), 
(24) \\Mm,kU)\\p^ApJ\f\\p 

with Apm independent of k, k > 0. This follows from Theorem 12, Part (a). 
From this Theorem 13 is obtained by lifting the w-dimensional result (24) into 
R", where n ̂  m (and k = n — m)9 by integrating over the Grassmannian of 
m-planes in R* through the origin. 
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