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COHOMOLOGY AND PRESENTATIONS 
BY ALEXANDER LUBOTZKY AND ANDY R. MAGID 

A pro-affine algebraic group G, over the field k (which we always take 
to be algebraically closed of characteristic zero) is an inverse limit of affine alge­
braic groups [3]. If the algebraic groups in the inverse system are unipotent, we 
call G prounipotent. Pro-affine algebraic groups arise naturally in the theory of 
finite-dimensional ^-representations of discrete and analytic groups [3, 4, 9] and 
prounipotent groups arise naturally as the prounipotent radicals of pro-affine groups. 
Our interest in prounipotents is motivated by possible applications to finite-
dimensional representation theory. 

The extension of the category of unipotent groups to that of prounipotents 
makes possible "combinatorial group theory" (free groups and presentations): 

If X is a set, there is a prounipotent group F(X) containing X such that for 
every prounipotent group H and function ƒ: X —• H with Card{X - ƒ ~ *(/,)} fi­
nite for every closed subgroup L of finite codimension in H there is a unique 
homomorphism ƒ : F(X) —• H extending ƒ [5, 2.1]. Every prounipotent group G 
is a homomorphic image of a free prounipotent group F so there is an exact se­
quence (*) 1 —•> R —• F —* G —• 1. We can choose (*) with R C (F, F) and in 
this case we call (*) a proper presentation of G. If F = F(X) in (*), we call X 
generators for G and we call generators of R, as a prounipotent normal subgroup 
of F, relations for G. 

As for pro-/? groups [11], the numbers of generators and relations for G 
have a cohomological interpretation. Cohomology here is in the category of poly­
nomial representations as in [2]. There is a unique simple in this category (the 
one-dimensional trivial module k) so cohomological dimension is defined as cd(G) 
= inf {ƒ | #"(G, k) = 0,n>i}. 

THEOREM 1 [5, 2.8 AND 2.9]. The following are equivalent for prouni­
potent G: 

(a) G is free, 
(b) G is a projective group in the category of prounipotent groups, 
(c) cd(G)< 1. 
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PROPOSITION 2 [5, 1.14]. If H is a prounipotent subgroup of the prouni­
potent group G then cd(//) < cd(G). 

COROLLARY 3 [5,2.10]. A closed subgroup of a free prounipotent group 
is free. 

THEOREM 4 [5, 3.2 AND 3.11]. Let 1-+R-* F(X) —• G —• 1 be a 
proper presentation of the prounipotent group G. Then d = à\m(Hl(G, k)) = 
Card(JJf) and r = dim(H2(G, k)) is the minimal number of normal generators of 
R as a prounipotent subgroup of F. Thus, d is the minimal number of generators 
and r is the minimal number of relations for G. 

The preceding results are proved similarly to the analogous results for pro-p 
groups. (See [11].) Special properties of prounipotents extablish 

THEOREM 5 [5, 3.14]. If G is prounipotent and dim(//w(G, k)) = 1 for 
some n > 1, then cd(G) = n. 

If G is one-relator, dim(H2(G, k)) = 1 by Theorem 4 so 

COROLLARY 6 [5, 3.15]. A one-relator prounipotent group has cohomolo-
gical dimension 2. 

(Corollary 6 is the prounipotent analogue of [9, 11.2, p. 633].) 
When G is finite-dimensional, cd(G) = dim(G), so the only one-relator G is 

k x k. In general, there is a Golod-Shafarevich type inequality relating the num­
bers of generators and relations. 

THEOREM 7 [7, 3.11]. Let G, d, and r be as in Theorem 4 with r i= 0 
and G finite-dimensional. Then r > d2/4, with strict inequality unless G = 
k x kf when r = 1 and d = 2. 

The proof of Theorem 7 relies on the notion of a group algebra developed 
in [6 and 7] : The coordinate ring k[G] of the prounipotent group G is a G-
bimodule so that the right translations define an embedding p of G in the units 
of the G-module endomorphism ring of k[G] as a left G-module. We denote 
EndG(fc[G])byA;«G». 

When G is finitely generated, k((G)) is like a group algebra for G (if B is a 
finite-dimensional associative algebra, Ux (B) is the group of units of B congruent 
to 1 modulo the radical). 

THEOREM 8 [7, 2.8]. If G is a finitely generated prounipotent group and 
B a finite-dimensional associative k-algebra any polynomial representation G —• 
Ut(B) extends uniquely to an algebra homomorphism k({G)) —• B. Moreover, 
this property characterizes k{{G)). 
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THEOREM 9 [7, 2.10]. Let G be a prounipotent group with a proper pres­
entation 1 —>ƒ?—» F({xx, . . . , xd}) —» G —» 1 w/zere {Sj, . . . , sr} M A 
minimal set of normal generators ofR. Then k((G)) is the formal (noncommu-
tative) power series algebra kiipipc^- 1, . . . , p(xd) - 1» modulo the ideal gen­
erated by {p(sf) - 1}. 

Theorem 9 is proved by first treating the case where G is free on {xt, . . . , 
xd} [6, 1.5] (so k({G)) is a formal power series algebra). Then the embedding 
p. G —• k{{G)) embeds G in the ring of formal power series. This extends (in 
fact, reproves) the Magnus embedding [1, p. 151] of the free discrete group, 
and provides a concrete description of the free prounipotent group on d genera­
tors as the Zariski closure of the subgroup generated by {1 + t.} in the group of 
units of constant term 1 in k({tv . . . , td)). Using this description, we obtain 

THEOREM 10 [6,2.7]. The associated graded Lie algebra [1, p. 145] of 
the lower central series of a free prounipotent group on d generators is a free k-
Lie algebra on d generators. 

The proofs of the preceding theorems use a description of k[G] as an as­
cending union of G-submodules E-(G) defined by E_t(G) = 0 and Ei+1(G)/E^G) 
= (k[G] IE.(G))G. If G is finitely generated then the numbers cf(G) = dim^G)) 
are all finite, and we have 

PROPOSITION 11 [6, 1.3 AND 7,3.12]. Let G be prounipotent 
(a) G is free on d generators if and only if c((G) =l+d + d2+--- + 

é for i > 0. 
(b) G is finite-dimensional if and only if the series {cJ(G)} has polynomial 

growth. 

Finally, we record some applications to the finite-dimensional representation 
theory of a discrete group I\ We let A(F) be the pro-algebraic hull of F [10, 2.2] 
and RU(F) the prounipotent radical of ^4(r). 

THEOREM 12 [5, 4.3]. If F contains a free subgroup of finite index, RU(F) 
is a free unipotent group. 

If T is torsion free nilpotent, then RU(F) is finite-dimensional, and there is 
an embedding F —• RU(F). (This is the Malcev embedding for which our methods 
provide a new proof [6, 5.12].) In this case we have Hl(F, k) = Hl(Ru(F), k) 
[7, 3.8] so we can apply Theorem 7 to obtain an inequality relating the ranks of 
the first and second cohomology groups of F. 
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