
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 6, Number 3, May 1982 

RESONANCE FOR QUASILINEAR HYPERBOLIC EQUATION1 

BY TAI-PING LIU 

In this note we announce results on a nonlinear conservation law with a 
moving source. 

O) f + £ £ I = ,<* - *. ««). 
The equation is intended to model fluid motions under external effects, either 
physical or geometrical, such as gas flows through a nozzle, MHD shock tube [1, 
6, 9] m As such, we assume that the flux f(u) is a smooth convex function of the 
density u, and the source term has the form 

git u) = c(8ft(ii), ? = x - dt, 

where c(£) is a piecewise continuous function and h(u) is a smooth positive func­

tion whose first derivative does not change signs. The external effect is assumed 

to be finite; for simplicity, we suppose also that c(£) has compact support. 
Our main interest is the behavior of nonlinear waves when the resonance 

occurs, that is, when the characteristic speed f(u) is close to the speed d of the 
source. The behavior of nonresonance waves for general systems of conservation 
laws with source terms has been studied in [6]. These waves are dynamically stable. 
As a first step to understand the resonance effects, we study the interaction of 
shock waves and rarefaction waves for the conservation law 

(<j\ à± b£(u) 
^Z) dt bt 

[3, 5] and the steady traveling waves with speed d\ that is, solutions of 

(3) dim-du) = c ( i m i = x_dt 

[6]. When a transonic shock wave (w__, u+),f(u_) > d > / '(w+), propagates 
through a steady traveling wave it accelerates (or decelerates) and therefore is un­
stable (or stable) if c(g)h'(u) is negative (or positive). More interestingly, as a 
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rarefaction wave propagates through a steady traveling wave, the portion of the 
rarefaction wave for which resonance never occurs, that is, f(u) is never equal to 
d, propagates through and eventually reemerges as a different rarefaction wave. 
On the other hand, a rarefaction wave reflects as a compression wave whenever 
the resonance is reached. Although the interaction of these elementary waves is 
quite complicated, the outcome of the interaction is a noninteracting wave pat­
tern which can be analyzed easily. 

The above study of the nonlinear stability and instability of elementary 
waves, and of the noninteracting wave patterns is then used to construct a ran­
dom choice method using the elementary waves as building blocks. This scheme 
yields stable physical solutions. The convergence of the scheme is based upon 
an estimate of the total variation of the function ip(u) defined by 

y (u) = ) , \ — . r v ' h(u) 

Since equation (3) is singular when the resonance occurs, the approximate 
solutions may have unbounded total variation. This makes it harder to prove the 
consistency of the scheme, which is in fact established by an elaborate wave trac­
ing technique combined with the analysis of wave cancellations. Global bounded 
solutions are shown to exist when the initial data u(pc, 0) have bounded total 
variation T.V. and 

lim tfu) > max{<p(w(-°o, 0)), <p(w(+°°, 0))} 4- 3 T.V.*, 
u-+±°° 

T.V.* = ƒ _Jc(J0\di + tot. var. tfu(x, 0)). 

Condition (4) does not require the inhomogeneous term g(x - dt, u) to de­
pend on u sublinearly, as needed for standard existence theory for a quasilinear 
equation, [2, 4 ] . Instead, it is essential that the flux function f(u) be nonlinear. 
In other words, the present theory is a strictly nonlinear theory. 

The idea of using the analytical studies of elementary waves to construct a 
stable numerical scheme can be generalized in principle to general systems of con­
servation laws with source terms. The analysis of nonlinear stability and instability 
of elementary waves, and noninteracting wave patterns has been carried out for 
gas flows through a duct of varying area [7, 8]. 
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