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ÉTALE ^-THEORY AND ARITHMETIC 

BY WILLIAM G. DWYER AND ERIC M. FRIEDLANDER1 

The purpose of this note is to announce some new results about the alge
braic ^-theory of rings of integers in global fields. 

THEOREM 1. Let 0 denote the ring of integers in a number field K {i.e. a 
finite extension field of the rational numbers Q) and let I be an odd prime. Then 
there are natural surjective maps 

(1.1) ch. k: K2i_k(0) ® Z, - + Hk(0[l/l], Z^O), k=lor2, 2/ ™ * > 1. 

REMARK . The requirement that / be an odd prime can be dropped if K is 
totally imaginary. 

The groups on the right of (1.1) are continuous /-adic étale cohomology 
groups. Recall that Z//V(l) denotes the sheaf of ^th roots of unity, Z/P(i) = 
(Z//V(l))®/, and Z,(0 = Hmv Z/lv(i). D. Quillen has conjectured the existence of 
isomorphisms of type (1.1). B. Harris and G. Segal [4] have shown that (1.1) is 
surjective on torsion if k = 1; C. Soulé [6] in many cases proved surjectivity for 
k = 2 with i < I. 

The surjectivity of (1.1) together with A. Borel's computation of K^(0) ® 
Q [1] gives a new proof of the existence [7] of isomorphisms 

(1.2) ch. k ® Q: K2i_k{0) ® Q, ^ #*(Ö[1//], 0,(0). 

In particular, Theorem 1 implies that chj x detects "Borel classes" in K2i__x{0) 
(i.e. basis elements for ^T2/_1((})/torsion). This leads to the following corollary, 
which is consistent with long-standing conjectures about the algebraic AT-theory 
with finite coefficients of the algebraic closure of Q. 

COROLLARY 2. For any integers i > 1 and v > 0 there exists a finite solv
able field extension K' of K with ring of integers 0' such that the image of 
K2i_l(Q)ltorsion in K2i_1(0') I torsion is divisible by F. 

Conjectures by S. Lichtenbaum [5] and work by Lichtenbaum and others 
relate the values of the Dedekind zeta function of K at negative integers to the 
number of elements of finite order in the groups #*(0[1//], Z7(0). For example, 
combining (1) with known properties of Bernoulli numbers gives the new result 
that K134(Z) contains an element of order 37. 
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We have also proved a theorem analogous to Theorem 1 in the function 
field case. 

THEOREM 3. Let A be a ring of integers in a function field of character
istic p (Le., a finite extension of F (/)) and let I be a prime different from p. 
Then there are natural surjective maps 

ch.)A:: K2i_k(A) —• Hk(A, Zfi)), k = 1 or 2,2i - k> 0. 

This was first proved by C. Soulé for i <l [6]. 
R. Thomason has recently awakened interest in a type of ^-theory which is 

obtained from ordinary algebraic Â"-theory with coefficients by imposing a period
icity [8]. It is known that in many cases the periodic analogue of map 1.1 is 
either a split epimorphism [2] or even an isomorphism [9]. 

The proofs of Theorems 1 and 3 use étale ^-theory, a twisted generalized 
cohomology theory on the étale homotopy type of a noetherian ring (or scheme). 
We extend the theory developed in [3] for varieties over an algebraically closed 
field to the setting of schemes over Z[l/Z]. In particular, this gives the following. 

THEOREM 4. There are natural transformations o f ring-valued functions 

**••**( ,z/n—*?( ,z/n /v*2, 
defined on the category of noetherian Z[\ II]-algebras. For any finite, étale ex
tension A —> A' of noetherian Z[l/l] algebras, $>„, and ^ commute with the 
transfer maps on algebraic and étale K-theory. 

There are relationships between étale j£-theory and étale cohomology given 
by spectral sequences of Atiyah-Hirzebruch type. 

PROPOSITION 5. For any noetherian Z\\\l]-algébra A of finite mod / étale 
cohomological dimension, there exist natural "fringed'* spectral sequences 

EP-" = IF(A, Zjrq/2)) => tjp_q(A), 

E%'« = rf>(A, Zflv(-q/2)) => K«p_q{A, Z//") 

where Zt(-q/2) = 0 = Z/lv(-q/2) unless q is a nonpositive even integer. 

These spectral sequences necessarily degenerate for rings A of Z/Z cohomol
ogical dimension at most 2 (e.g. 0[l/l] in Theorem 1 or A in Theorem 3). In 
view of this, Theorems 1 and 3 are implied by the following theorem. 

THEOREM 6. Let A denote either a ring of integers in a function field of 
characteristic p ¥* I, or 0[l/l] with 0 a ring of integers in a number field. In the 
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second case, assume that the quotient field of A is totally imaginary if1 = 2. 
Then for any v>0(v>\ifl = 2)the natural maps 

^ : Kf(A, Vlv) -» Kf(A, Z/n (j > 1) 

are surjective. 

In the case in which A contains a primitive /vth root of unity (denoted f tv) 
the proof of Theorem 6 is not difficult because Ke*(A, Z//v) is then periodic of 
period 2. To prove Theorem 6 in general, we combine this surjectivity of ïp for 
A' = A [fzv] with the following secondary transfer theorem. 

THEOREM 7. Let A, I, v be as in Theorem 6, let A' = A [^v], and let T G 
Gal(/l', A) be a generator. Then for any i > 0 there exists a natural commuta
tive square 

Ker{Ki(A
,
9 Z/lv) ^KfA', Z//v)} ~+ coker{# /+1U', Z//v) ±+ Kt+X(A> z / 0 } 

Y 

Ker{K?(A', Z/lv) ^Kj*Ql', Z//v)} — coker{Àj« , (4 ' , Z/T) • * • * £ , (4, Z/f)} 

whose lower horizontal arrow is surjective, where tr denotes the transfer map. 
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