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C.I.M.E. summer session on harmonic analysis and group representations in 
Cortona, Italy, June—July 1980. The author would like to express his thanks 
and appreciation to the organizers of the conference, Michael Cowling, Sandro 
Figà-Talamanca, and Massimo Picardello, for inviting him to deliver these 
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their interest in these lectures. Finally, we would like to thank Terese S. 
Zimmer for (among innumerable other things that we need not go into here) 
helping with the translation of [29]. 

ADDED IN PROOF. Complete and detailed proofs of all the results discussed 
in these lectures (except those in section 4), as well as further developments, 
will appear in a forthcoming monograph of the author. 

1. Basic notions. In these lectures we discuss some topics concerning the 
relationship of ergodic theory, representation theory, and the structure of Lie 
groups and their discrete subgroups. 

In studying the representation theory of groups, the assumption of compact­
ness on the group essentially allows one to reduce to a finite dimensional 
situation, in which case one often can obtain complete information. For 
noncompact groups, of course, no such reduction is possible and the situation 
is much more complex. When studying general actions of groups, a somewhat 
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similar situation arises. In the compact case every orbit will be closed, the 
space of orbits will have a reasonable structure, and one can often find nice 
(with respect to the action) neighborhoods of orbits. A large amount of 
information about actions of finite and compact groups has been obtained by 
topological methods. However, once again, if the compactness assumption on 
the group is dropped, one faces many additional problems. In particular, one 
can have orbits which are dense (for example, the irrational flow on the torus) 
and the orbit space may be so badly behaved as to have no continuous 
functions but constants. Furthermore, moving from a point to a nearby point 
may produce an orbit which does not follow closely to the original orbit. If one 
wishes to deal with actions in the noncompact case, this phenomenon of 
complicated orbit structure must be faced. For many actions, e.g., differentia-
ble actions on manifolds, there are natural measures that behave well with 
respect to the action. A significant part of ergodic theory is the study of group 
actions on measure spaces. In particular, ergodic theory aims to understand the 
phenomenon of bad orbit structure in the presence of a measure. 

Throughout these lectures, G will be a locally compact, second countable 
group. Let (S, ju) be a standard measure space, and assume we have an action 
S X G -> S which is a Borel function. Then JX (which is always assumed to be 
a-finite) is invariant if fi{Ag) = \x{A) for all A C S and g E G, and quasi-
invariant if ii(Ag) — 0 if and only if \i(A) = 0. 

DEFINITION 1.1. The action is called ergodic if 4̂ C S is G-invariant implies 
li(A) = 0or ii(S -A) = 0. 

Clearly any transitive action is ergodic, or, more generally, any essentially 
transitive action (i.e., transitive on the complement of a null set). We can then 
write S — G/G0 where G0 C G is a closed subgroup. An ergodic action that is 
not essentially transitive will be called properly ergodic. 

EXAMPLE 1.2. Let S = {z G C 11 z | = 1} and T: S -> S be T(z) = eiaz where 
a/27r is irrational. Then T generates a Z-action. If A C S is invariant, let 
XA(Z) = 2 Ö „ Z " be the L2-Fourier expansion of its characteristic function. 
Then by invariance XA(Z)

 =
 XA^^2)

 = lLane
inazn. Thus ane

ina = an and so 
an — 0 for n ^ 0. This implies %A ls constant, so the action is properly ergodic. 

REMARK. If S is a (second countable) topological space and JU is positive on 
open sets, then proper ergodicity implies almost every orbit is a dense null set. 
This is one sense in which proper ergodicity is a reflection of complicated 
orbits. Another is the following. 

PROPOSITION 1.3 [12]. Let G act continuously on S where S is metrizable by a 
complete separable metric. Then the following are equivalent. {We say the action 
is "smooth" if they hold.) 

(i) Every G-orbit is locally closed. 
(ii) S/G is T0 in the quotient topology. 
(iii) The quotient Borel structure on S/G is countably separated and generated 

{i.e., there is a countable family {At} separating points and generating the Borel 
structure). 

(iv) Every quasi-invariant ergodic measure is supported on an orbit. 
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PROOF, (i) => (ii) => (iii) are elementary. To see (iii) => (iv), let/?: S -> S/G be 
the projection, and ju an ergodic probability measure on S. Then v — p*(\x) is a 
measure on S/G with the property that for any Borel set B C S/G, v(B) = 0 
or 1. Since S/G is countably separated and generated, v is supported on a 
point, so ix is supported on an orbit. The implication (iv) => (i) is difficult (and 
we will not be using it). 

We will be making constant use of the implication (i) => (iv). For example, 

COROLLARY 1.4. Every ergodic action of a compact group is essentially 
transitive. 

If the action is on a metric space, this follows immediately. However, a 
theorem of Varadarajan [45] implies that any action can be so realized. 

COROLLARY 1.5. Every ergodic algebraic action of a real (or p-adic) algebraic 
group (more precisely, the real or p-adic points) on an algebraic variety is 
essentially transitive. 

This follows from the theorem of Borel and Borel-Serre that orbits are 
locally closed [3, 6]. 

While the decomposition of a general action into orbits may not be satisfac­
tory there is always a good decomposition into ergodic components. 

PROPOSITION 1.6. Let (S, /x) be a G-space. Then there is a standard measure 
space (E,v), a conull G-invariant set S0 C S, and a G-invariant Borel map <p: 
S -» E with <p*(/x) = v such that, writing \x — ƒ e \xy dv(y) where \xy is supported 
on <p~\y), we have ixy is quasi-invariant and ergodic under G f or almost all y. 

(E, v) is called the space of ergodic components of the action (and is 
essentially uniquely determined by the above conditions). 

We now discuss some notions of "isomorphism". 
DEFINITION 1.7. Let (S, fx), (S', /A') be ergodic (/-spaces. Call them conjugate 

if modulo null sets there is cp: S -» S' with 
(i) <p a bijective Borel isomorphism. 
(ii) <p*(ii) ~ \x' (i.e., same null sets). 
(iii) <p(sg) = (p(s)g. 
If A G Aut(G) and S is a G-space, we have a new G-action on S by defining 

s o g = s • A(g). 
DEFINITION 1.8. Call two actions automorphically conjugate if they become 

conjugate when modified by some automorphism. 
An a priori much weaker notion is simply to ask for the orbit pictures to be 

the same. Here, we can compare actions of different groups. 
DEFINITION 1.9. Suppose (S, /x) is a G-space, (S', \x') a G'-space. Call the 

actions orbit equivalent if (modulo null sets) there exists <p: S -» S' with 
(i) <p a bijective Borel isomorphism. 
(ii) <P*(M) - M'. 
(iii) <p(G-orbit) = G'-orbit. 
If <p: (X, ju) -> (Y, v) is a measure class preserving G-map of G-spaces we 

call X an extension of Y or Y a factor of X. Observe that we automatically 
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have v(Y — <p(X)) — 0. If H C G is a subgroup, and Jf is an ergodic G-space, 
we can restrict to obtain an action of H, which of course no longer need be 
ergodic. In the other direction, we can induce. Namely, suppose S is an ergodic 
if-space and H C G is a closed subgroup. Then we obtain a naturally associ­
ated G-space as follows. Let H act on S X G by (s, g)h — (sh, gh) and let 
X=(SX G)/H. Then G acts o n ^ X G b y (s, g)g = (s, g~lg), and this 
action commutes with the ^-action. Hence there is an induced action of G on 
X which will be ergodic with its natural measure class. 

DEFINITION 1.10. X is called the ergodic G-space induced from the G-action, 
and we denote it by i n d ^ S ) . 

For example, if H = Z, G = R, then X can be identified with (S X [0, l ] ) / ~ 
where ~ identifies (s,1) with (75,0). Under the induced R-action a point 
simply flows up along the line it is in with unit speed. 

Given an ergodic G-space X, it is useful to know when it is induced from an 
action of a subgroup. The following is helpful in this regard. 

PROPOSITION 1.11 [52]. If X is an ergodic G-space and H C G is a closed 
subgroup, then X = ind^(S) for some H-space S if and only if G/H is a factor 
of X, i.e., there is a measure class preserving G-map X -> G/H. 

If X is a G-space, is there a unique (up to conjugacy) smallest closed 
subgroup from which it is induced? The answer in general is no, but we have 
the following 

PROPOSITION 1.12 [54]. Suppose G is {the real points, or k-points, k a p-adic 
field) of an algebraic group and X an ergodic G-space. Then there is a unique 
conjugacy class of algebraic subgroups such that X — ind^(S') for H algebraic 
(and some S), if and only if H contains a member of this conjugacy class. 

DEFINITION 1.13 [54]. If H is in this class, call H the algebraic hull of the 
action. If this is all of G, call the action Zariski dense. 

If X = G/G0, then the algebraic hull is just usual algebraic hull of the group 
G0. 

PROOF OF 1.12. There exist minimal such groups from the descending chain 
condition on algebraic subgroups. Suppose Hx, H2 C G are two such minimal 
algebraic groups. We have <pt: X -> G/Ht. Let <p — (<Pi,<p2)

: X ~* G/Hx X 
G/H2. Then (^(jii) is an ergodic quasi-invariant measure on G/Hx X G/H2. 
But the G-action on this product is algebraic, so <p*(ju,) is supported on an 
orbit. But as a G-space, an orbit is G/(gxHxg\x O g2#2g21)- By minimality 
assumptions, Hx and H2 are conjugate. 

THEOREM 1.14 (BOREL DENSITY THEOREM [4]). If G is a connected semisimple 
real algebraic group with no compact f actors, and S an ergodic G-space with finite 
invariant measure, then S is Zariski dense in G. 

As an example of an ergodic action of such a group, we point out the 
following example. (One can show there are uncountably many inequivalent 
actions of such groups [with finite invariant measure].) 
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EXAMPLE 1.15. Let SL(«,Z) act on W/Zn by automorphisms. This is 
ergodic. The induced SL(«,R) action will be properly ergodic, essentially free 
(i.e. almost all stabilizers trivial), and have finite invariant measure. 

2. Ergodicity theorems. A natural class of actions that arises in a variety of 
situations are actions on homogeneous spaces. Thus, if Hl9 H2 C G are sub­
groups with H2 closed, Hx acts on G/H2 and the question arises as to when this 
is ergodic. This is a special case of the following question. Suppose S is an 
ergodic G-space and H C G is a subgroup. When will the restriction to H still 
be ergodic? In the special case in which S has a finite invariant measure, results 
about unitary representations can be directly applied. Namely, let (Ugf)(s) = 
f(sg)9 where ƒ G L2(S). This defines a unitary representation of G on L2(S) 
and G is ergodic on S (assuming finite invariant measure) if and only if there 
are no nonzero invariant vectors in L2(S) © C. Thus, to settle the question 
about ergodicity of restrictions in this case, we have a representation U of G 
with no invariant vectors and we ask whether or not U \ H has invariant 
vectors. Let us consider some of the classical examples, when G is transitive on 
S. 

EXAMPLE 2.1. Suppose G is compact, S = G. Then H C G is ergodic on S if 
and only if H is dense. This includes Example 1.2. 

Now let iVbea simply connected nilpotent Lie group, r c i V a lattice (i.e., T 
is discrete and N/T has finite invariant measure). For example, 

f /1 x z\ 1 

l \ 0 0 1/ J 
and T = NZ9 the subgroup with x9 y, z G Z. Then [N, N]= {A G N\ x — y 
= 0}, and N/[N9 N]T is a torus. The map N/T -*N/[N9N]T exhibits the 
3-manifold N/T as a circle bundle over the torus. In general N/T -* 
N/[N9 N]T will be a bundle over the torus with fiber [N9 N]/[N9 N] n I\ 

THEOREM 2.2 (L. GREEN [1]). H C N is ergodic on N/T if and only if it is 
ergodic on N/[N, N]T. 

As the latter is a torus, ergodicity can be determined as in Example 2.1. The 
proof of this depends on writing down the representation of TV which appear in 
L2(N/T) and examining them with respect to restriction to subgroups. See [1] 
for details. 

Results for 1-parameter subgroups acting on compact homogeneous spaces 
of solvable Lie groups have been obtained by Auslander [2] and Brezin and 
Moore [7]. 

If G = SL(2, R), T C G is a lattice in G and H C G is the group of positive 
diagonal matrices, then G/T is in a natural way the unit tangent bundle of the 
finite volume negatively curved manifold D/T where D = SO(2, R) \ G is the 
Poincaré disk, and H is the geodesic flow. Thus, a classical result of Hedlund 
[20] and Hopf [21] says that H is ergodic on G/T. C. C. Moore generalized this 
to allow G to be a very general semisimple Lie group, and H to be an aribtrary 
subgroup. 
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THEOREM 2.3 (C. C. MOORE [32]). Let G = 11 Gt where Gt is a noncompact 
connected simple Lie group with finite center and let_T C G be an irreducible 
latice. Then H C G is ergodic on G/T if and only if H is not compact. 

This theorem was proved by showing the following general result about 
arbitrary representations (not necessarily one appearing in L2(G/T)). Let G be 
a noncompact connected simple Lie group with finite center and 77 a unitary 
representation of G with no nonzero invariant vectors. Then for any vector 
x ^ O , {g & GI ir(g)x = x) is compact. This result easily implies the theorem. 
A stronger result about such representations that we will need has subse­
quently come to light. 

THEOREM 2.4. If IT is any unitary representation of a connected noncompact 
simple Lie group with finite center, then the matrix coefficients f(g) = 
(ir(g)x \y)-* 0 as g -* 00, assuming there are no 7r(G)-invariant vectors. 

A nice proof of this appears in a paper of Howe and Moore [22] although 
the basic idea is present in the work of Sherman [43] (see also [49]). The idea of 
the proof is to let G — KAK be a Cartan decomposition. Since K is compact, it 
suffices to see f {a) -» 0 as a -> 00. Consider the example G = SL(2, R), so that 
A is the positive diagonals. Let P be the upper triangular 2 X 2 matrices in G 
with positive diagonal entries. The representation theory of P is well known. 
There are 1-dimensional representations which factor through [P, P] and 2 
infinite dimensional representations induced from [P, P]. For the latter, it is 
clear that the restriction of a representation to A is just the regular represen­
tation of A for which it is clear that matrix coefficients vanish at 00. Thus it 
suffices to see that IT | P has a spectral decomposition which assigns measure 0 
to the 1-dimensional representations. But if it assigned positive measure, [P, P] 
would have to leave a vector fixed, say v. Then <p(g) = (n(g)v \ v) would be 
bi-invariant under [P, P] = N. G/N can be identified with R2 — {0}, and the 
N orbits on G/N are the horizontal lines except for the x-axis, and single 
points on the x-axis. A continuous function on G/N constant on the orbits 
must clearly be constant on the x-axis as well. This translates into <p(g) = 1 for 
all g E P , and since m is unitary, v is P-invariant. Thus <p is bi-invariant under 
P, and since P has a dense orbit on G/P, <p(g) = 1 for all g G G , showing that 
v is G-invariant. 

We thus have good information about some basic examples for the question 
of ergodicity of actions on homogeneous spaces of finite invariant measure. 
For the general homogeneous space we make use of the following observation. 

PROPOSITION 2.5 [49]. If S is an ergodic G-space {general quasi-invariant 
measure) and H C G is a closed subgroup, then H is ergodic on S if and only if G 
acts ergodically on the product G/H X S. 

To see this, suppose A C G/H X S is G-invariant. For each x G G/H, let 
Ax = {s G S I (x, s) G A}. By quasi-invariance one easily sees that A and all 
Ax are simultaneously either null, of null complement, or neither. A[e] is an 
//-invariant set, and clearly any //-invariant set B C S is of the form B = A[e] 

for some G-invariant A. 
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COROLLARY 2.6 [32]. IfT.HCG are closed subgroups, then H is ergodic on 
G/T if and only if T is ergodic on G/H. 

This enables us to use information about ergodicity of restrictions on spaces 
for which there is a finite invariant measure to obtain results in the case no 
such measure exists. 

COROLLARY 2.7 (MOORE). G — Il Gi9 T as in Theorem 2.3. If S is a transitive 
G-space, then T is ergodic on S if and only if the stabilizers in G of points in S are 
not compact. 

EXAMPLE 2.8 (MOORE). SL(«, Z) is ergodic on R", n> 2. This follows since 
SL(«,R) is essentially transitive on R" and the stabilizers in the orbit of full 
measure are not compact. 

EXAMPLE 2.9. Consider the action of SL(2,R) on the Poincaré disk 
SL(2, R)/SO(2, R). This action extends to the boundary circle, and the 
boundary can be identified with SL(2, R)/P, where P is the upper triangular 
matrices in G. If T C SL(2, R) is a torsion free lattice, then T acts in a properly 
discontinuous fashion on the disk, and the quotient space D/T is a Riemann 
surface of finite volume. On the other hand, since P is not compact, the action 
of T on the boundary will be properly ergodic. More generally, if G is any 
semisimple Lie group and P C G is a minimal parabolic subgroup, then G/P is 
the unique compact G-orbit in the boundary of a natural compactifiation of 
the symmetric space X — G/K, K C G maximal compact. Here again, F is 
ergodic on G/P. Thus these ergodic actions of T on homogeneous spaces of G 
arise very naturally in a geometric setting, and the study of these ergodic 
actions is extremely useful in understanding T. 

Since this is such an important example, let us point out that for G/P 
compact (e.g. P a parabolic) that ergodicity of T on G/P can be demonstrated 
in a much less sophisticated fashion. Namely if there is a P-invariant vector in 
L 2 (G/ r ) 0 C then there is a compact G-orbit in the Hubert space. As is well 
known, this implies that there exist finite dimensional subrepresentations, 
which for G, it is also well known, must be the identity. This is impossible. 

Corollary 2.7 deals with the restriction of transitive G-actions to T. We now 
deal with the properly ergodic case. 

THEOREM 2.10 [49]. If G = II Gi9 Gt connected noncompact simple Lie groups 
with finite center, T C G an irreducible lattice and S is a properly ergodic 
G-space, then T is ergodic on S. 

PROOF. Suppose not. Let A C S X G/T be invariant. For each s, let 
fs E L2(G/T) 0 C be the image under orthogonal projection of the character­
istic function of As= {x G G/T | (s, x) G A}. We can suppose fs ^ O o n a set 
of positive measure. Invariance of A is easily seen to imply that if we let 
B C L 2 (G/r ) 0 C be the unit ball and let G act on the right in G via the 
unitary representation of G on L2(G/T), then O: S -> B, $(s) = fs is a G-map. 
Then ^ ( J U ) is a quasi-invariant ergodic measure on B. 

But by vanishing of the matrix coefficients (Theorem 2.4), for w G 5 , 
w - g -> 0 weakly as g -> oo. This implies G-orbits in B are locally closed, i.e. 
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the action is smooth. It follows that 3>*(/A) is supported on an orbit, so we can 
suppose <I>: S -» G/G0 where G0 is the stabilizer of a point in this orbit. This 
implies S — ind^ (S0) where S0 is an ergodic G0 space. But G0 is compact, so 
G0 is transitive on S0. This implies G is transitive on S, which contradicts our 
hypotheses. 

Similar results can be proven for other groups for which there is a vanishing 
theorem for matrix coefficients. 

THEOREM 2.11 [50]. Let G be an exponential solvable Lie group and S an 
ergodic G-space. Suppose [G, G] is ergodic on S. Then T is also ergodic on S for 
every cocompact T C G. 

The proof uses the result of Howe and Moore [22] that for such a group, the 
matrix coefficients (ir(g)v | w) -> 0 as g -> oo in G/Pm where P„ = {g | ir(g) is 
scalar}. Here IT is assumed irreducible. 

3. Cocycles. If X is a G-space and Y a Borel space, let F( X, Y) be the space 
of measurable functions X -> 7, two functions being identified if they agree off 
a null set. G acts on XX 7 by (x, ƒ) • g — (xg, y) and on F(X, Y) by 
(g ' ƒ )(*) ~ f(xS)- If ^ is also a n //-space for some group //, we can define 
"twisted" actions. Namely, (x, y) • g = (xg, ƒ • a(x, g)) where a(x, g) G //, 
and for ƒ G F(X, Y) (where for convenience we usually take H to be acting on 
the left), (g • f)(x) = a(x, g)f(xg). For these to define actions, we need the 
following compatibility condition: a(x, gh) = a(x, g)a(xg, h). Such a Borel 
function a: X X G -> / / will be called a cocycle. (The question as to whether 
this holds everywhere or almost everywhere is an important technical point 
which we will not discuss. See [41].) When endowed with this action we shall 
denote XX Yby XXaY. I f 7 = 0 C a Hubert space, H = U(%)9 the unitary 
group of the Hubert space, and the measure on X is invariant, then the 
a-twisted action on F(X, Y) restricts to L2(X;%) to yield a unitary representa­
tion Ua. If a, jÖ: XX G -» H are cocycles there is a certain relation which 
immediately implies equivalence of the actions or representations. Namely if 
we have a Borel map (p: X -* H such that a(x, g) = <p(x)P(x, g)<p(xg)~\ this 
will be the case. We then call a and ft equivalent, or cohomologous, and write 
a~p. 

To get some further feeling for this notion, consider the case X — G/G0. If 
a: G/G0 X G -> H is a cocycle, then a \ [e] X G0 defines a homomorphism 
G0 -> H. Equivalent cocycles yield conjugate homomorphisms. Furthermore, 
every homomorphism G0 -» H arises from a cocycle a in this way. Namely, let 
y: G/G0 -> G be a Borel section. Then for (x, g) G G/G0 X G, y(xg) and 
y(x) • g are equal when projected to G/G0. Thus y(x)gy(xg)~] G G0. We can 
suppose y([e]) = e, and then (x, g) -> y(x)gy(xg)~l is a cocycle G/G0 X G -> 
G0 which when restricted to [e] X G0 yields the identity G0 -> G0. Thus if 77: 
G0 -> / / is a homomorphism, a(x, g) = ^(y(^)gy(.x:g)~1) is the required 
cocycle. Thus we have 

THEOREM 3.1. a -» a\[e] X G0 defines a bijection between equivalence classes 
of cocycles G/G0X G -* H and conjugacy classes of homomorphisms G0 -* H. 
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We remark that if H — U{%\ and IT: G0 -> H is a unitary representation, 
we have an associated cocycle a: G/G0X G -* //, and then an associated 
representation Ua of G on L2(G/G0;%). Of course Ua = indgo(7r). See [45] 
for this approach to induced representations. 

We now consider some other examples. 
EXAMPLE 3.2. (a) If h: G -> / / is a homomorphism, X a G-space, then 

a(.x, g) = h(g) is a cocycle. If X — G/G0, this corresponds to a homomor­
phism G0 -» //, which is simply /* | G0. Thus in general we shall sometimes call 
a the restriction of h to X X G and write a = h | AT X G. 

(b) Suppose X is an ergodic G-space with quasi-invariant measure ju. Let 
rfXx9 g) = ^(^gOAW*)» t n e Radon-Nikodym derivative. The chain rule im­
plies r^. X X G -> R+ is a cocycle, called the Radon-Nikodym cocycle. If 
JU ~ *>, so dju, = ƒ ö?̂ , ƒ > 0, then 

^(xg )/<//*( x) = / (x)~^K*g)/^W)/(*g)> 
i.e., r^~ rv. Therefore the cohomology class we obtain does not depend upon 
the measure, only the measure class. In particular, there is an equivalent 
a-finite invariant measure if and only if the cocycle is trivial (i.e. equivalent to 
the identity a(x, g) = 1). 

(c) Suppose X is a G-space, X' a free G'-space, and that the actions are orbit 
equivalent, with 0: X -» X' the orbit equivalence. Then for (x, g) G X X G, 
0(x) and 0(xg) are in the same G'-orbit, say 0(x)a(x, g) = 6(xg) for a(x, g) 
G G'. Then a: X X G -» G' is a cocycle. If G = G', we have the following. 

PROPOSITION 3.3 [55]. If a is equivalent to the restriction of an automorphism 
A E Aut(G) to X X G, then X and X' are automorphically conjugate. If this 
automorphism is inner, then X and X' are conjugate. 

PROOF. If a(x, g) = \(x)A(g)X(xg)~\ then 0{(x) — 0(x)X(x) satisfies 
0{(xg) — 0{(x)A(g), so we have automorphic conjugacy. If A(g) = hgh~\ let 
02(x) = 0x(x)h. This is then a G-map. 

There are many other naturally arising situations in which cocycles appear, 
but we shall not have time to discuss them here. Instead, we turn to an 
important invariant attached to a cocycle, namely the Mackey range. Let a: 
S X G -» H where H is also locally compact. Form the twisted G-action 
S XaH where we view H as acting on itself by right translations. H also acts 
on S XaH by (s, h) • h0 = (s, h^h), and this H action commutes with the 
G-action. Note that if i: G -> H is an embedding of G into a larger group and 
a = i\S X G, this is exactly the situation in the inducing procedure. As in the 
latter, we obtain an action of H on the space of G-orbits. But this space may 
not be a decent measure space, so instead, we let X be the space of G-ergodic 
components of the action of G of S Xa H. Then H will act on X as well, and 
this will be an ergodic ^-action. 

DEFINITION 3.4. If a: S X G -> H is a cocycle, the associated //-space X will 
be called the Mackey range of a. This is a cohomology invariant of a. 

EXAMPLE 3.5. (a) If r. G -> H is an embedding of G as a closed subgroup of 
//, and a(s, g) = /(g), i.e. a = i\S X G9 then the Mackey range of a is 
i i < ( S ) . 
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(b) If 6: X -> X' is an orbit equivalence, a: X X G -* G' the associated 
cocycle, then the Mackey range is the G'-space X'. 

(c) If S = G/G0 and a corresponds to a homomorphism TT: G0 -> # , then the 
Mackey range of a: G/G0 X G -> H is the #-space 7 / / TT(G0). 

Finally, the following relates the Mackey range to the cohomology class of a. 

PROPOSITION 3.6. If a: S X G -> H, the following are equivalent. 
(i) a ~ ft where fi(S X G) C 7/0, H0 C H a closed subgroup. 
(ii) H/H0 is a factor of the Mackey range. 
(iii) X = ind^(5'0) /or .some S0, w/*ere X w the Mackey range. 

For a proof, see [47, 52]. 

4. Generalized discrete spectrum. Suppose (S, ju) is an ergodic space with JU, 
finite and invariant. In this lecture we try to see what the algebraic structure of 
the representation m of G on L2(S) says about the geometric structure of the 
action. 

DEFINITION 4.1. We say that the action has discrete spectrum if TT is the 
direct sum of finite dimensional irreducible subrepresentations. 

EXAMPLE 4.2. Let K be a compact group, H a closed subgroup, and <p: 
G -> K a homomorphism with y(G) dense in K. Let G act on K/H by 
[£] • g — [k<P(g)]- Then this action has discrete spectrum. 

THEOREM 4.3 (VON NEUMANN-HALMOS-MACKEY). These are all the examples. 
That is, if S is a G-space with discrete spectrum, then there exists a compact 
group K, a closed subgroup H, and a homomorphism y: G -> K with dense range 
such that S and K/H are conjugate G-spaces. 

This was originally proved by von Neumann and Halmos for G = Z or R, 
and by Mackey [26] for general G. We sketch Mackey's proof. 

Let L2(S) — 2 e Wt where Wt are TT(G)-invariant and finite dimensional. Let 
B = II U(Wt\ the product of the associated unitary groups, which is a compact 
subgroup of U(L2(S)). Further, TT: G -» B. Let K=TT(G)9 SO that K is also 
compact. Let M be the abelian von Neumann algebra on L2(S) consisting of 
multiplication by elements of L°°(S). Then clearly 7r(g)M7r(g)_1 = M, and by 
passing to the strong limit, we obtain TMT~X = M for all T G K. From this 
one can deduce that each operator T in K is induced by a point transformation 
of S, and thus the G-action on S extends to an action of K. (There is some 
delicate measure theory we are ignoring here.) Since the G-action is already 
ergodic, so is the ^-action. Since K is compact, K must act transitively, so we 
can identify S s K/H. 

Theorem 4.3 can be generalized to extensions. Namely, suppose X -> Y is an 
extension of ergodic G-spaces with finite invariant measure. The Hubert space 
L2(X) not only has a natural representation of G on it, but L2(X) is also an 
L°°(7)-module in a natural way. (Namely, lift a function on 7 to a function on 
X and multiply.) Alternatively, we can express this by saying that there is a 
natural system of imprimitivity for TT on L2(X) based on Y. 
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DEFINITIONJI.4 [47]. We say that X has relatively discrete spectrum over Y if 
L2( X) — 2 e Wt where Wi are G-invariant subspaces that are finitely generated 
as L°°(y)-modules. 

EXAMPLE 4.5. Suppose Y is an ergodic G-space with finite invariant measure, 
a: Y X G -* K is a cocycle where K is compact, and H C K is a closed 
subgroup. Then X — Y XaK/H is an extension of Y with relatively discrete 
spectrum. To see this, observe that L2(X) = L2((Y);L2(K/H)). Write 
L2(K/H) = 2 e Z ; where Z, are finite dimensional and ^-invariant. We then 
have L2(X) = 2 e L2(7; Zf) and L2(7; Zf) will be G-invariant since G acts from 
fiber to fiber in X by an element of K, and Zi is X-invariant. Clearly 
L2{Y\Zt) =L°°(Y, Zf.) and the latter is finitely generated over L^iY). 

THEOREM 4.6 [47]. TTiese are all the examples. That is, if X -> Y is an ergodic 
extension with relatively discrete spectrum, then there exists a compact group K, 
a closed subgroup H C K9 and a cocycle a: Y X G -> K, such that as extensions 
ofY,X= YXaK/H. 

Thus Theorem 4.6 tells us how to recognize extensions of the form YXa K/H 
from information about the unitary representation of the extension. There is 
now a larger class of actions whose "structure" we know. 

DEFINITION 4.7 [48]. We say that X has generalized discrete spectrum if X 
can be built from a point via the operations of taking extensions with relatively 
discrete spectrum and inverse limits. More precisely, there is a countable 
ordinal a and for each a < a a factor Xa of X such that 

(i) X0 = point, 
(ii) Xa+1 -» Xa is an extension with relatively discrete spectrum, for a < a, 
(iii) if a is a limit ordinal, Xa — lim {Xp9 /? < a}, 

(iv)Xa = X. 
In light of Theorem 4.6, we have an exact picture of the structure of such 

actions. We would now like to see which actions arise in this fashion. 
DEFINITION 4.8. If G acts continuously on a compact metric space X, G is 

called distal on Xif x9 y G X, x ^ y, implies infgeG d(xg, yg) > 0. 
Clearly any isometric action is distal. However, not every distal action 

admits an invariant metric. For example, if TV is a nilpotent Lie group and 
T C N is a lattice, then the action of N on N/T is distal. This was first shown 
in [1]. 

DEFINITION 4.9 (PARRY [38]). If (S, jut) is an ergodic G-space, call the action 
measure distal if there is a decreasing sequence of sets of positive measure {At} 
with ii(At) -> 0, such that if x9 y E 5, xgi9 ygt E Ai for some sequence gt E G, 
then x — y. (We have ignored some measure theoretic issues in this definition, 
which arise if G is not discrete. See [48] for a more careful formulation.) 

Any distal action with an invariant measure that is positive on open sets is 
clearly measure distal. 

THEOREM 4.10 [48]. A finite measure preserving ergodic action {on a non-
atomic measure space) is measure distal if and only if it has generalized discrete 
spectrum. 
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This is an analogue for measure theoretic actions of the Furstenberg 
structure theorem for minimal (i.e. every orbit dense) distal actions on compact 
metric spaces [16]. 

Another situation in which actions with generalized discrete spectrum arise 
is the following. 

THEOREM 4.11. Let N be a nilpotent group. Suppose S is an ergodic N-space 
for which L2(S) is a direct sum of irreducible representations (not necessarily 
finite dimensional). Then S has generalized discrete spectrum (and the ordinal in 
Definition 4.7 can be taken to be finite). 

This theorem is false for solvable groups. Let us give an example of such a 
properly ergodic N-space. Let N be the Heisenberg group, Nz = T the integer 
points, so that T is a lattice. There is an injective homomorphism T -> K where 
K is compact. For example, let K = II Nz/pZ, where the product is taken over 
all primes. Then K is a T-space with discrete spectrum. Let X= ind Y(K). 
Since a finite dimensional representation of T induced to N decomposes into a 
direct sum of irreducibles, and TT on L2(X) can be expressed as TT — indp(a) 
where a is the representation of T on L2(K), it follows that L2(X) is a direct 
sum of irreducibles. 

It is natural to ask which groups have actions of the sort we have been 
discussing in a nontrivial way, say an effective or essentially free action. A 
group will have an effective or free action with discrete spectrum if and only if 
there are enough finite dimensional unitary representations to separate points. 
In the connected case, such groups are identified by a classical theorem of 
Freudenthal. 

THEOREM 4.12 (FREDUENTHAL [14]). A connected group has a free (or 
effective) action with discrete spectrum if and only if it is isomorphic to Rn X K 
where K is compact. 

To describe the analogous result for generalized discrete spectrum, we recall 
that a connected group is said to be of polynomial growth if for any compact 
neighborhood of the identity, W, the Haar measure m(Wn) grows no faster 
than a polynomial in n. (If this is true for one compact neighborhood, it is true 
for all such neighborhoods.) For Lie groups, this condition is equivalent to the 
group being of type (R) [19, 23]. We recall that this means that every 
eigenvalue of Ad(g) lies on the unit circle for all g £ G . For example, 
nilpotent groups and Euclidean motion groups are type (R), while semisimple 
groups and the ax + b group are not. The following is joint work with C. C. 
Moore. 

THEOREM 4.13 [34]. A connected group has a free (or effective) ergodic action 
with generalized discrete spectrum if and only if it is of polynomial growth. 

PROOF. We indicate the proof for the ax + b group. The general proof is 
based on this argument and some structure theory for Lie groups, particularly 
that of solvable Lie groups. 

Let G — AB be a semidirect product where B = R is normal and A — R+ 

acts on B by multiplication. If X is a G-space with generalized discrete 
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spectrum, and Xx is the factor of X with discrete spectrum, then B must act 
trivially on Xx since all finite dimensional unitary representations of G are one 
dimensional and thus factor through B — [G9G]. It therefore suffices to show 
the following: suppose <p: X -> Y is an extension of G-spaces with relatively 
discrete spectrum and suppose B acts trivially on Y; then B acts trivially on X. 
To prove this assertion, let L2(X) — 2 e Wi9 Wi a finitely generated L°°(Yy 
module which is G-invariant. Let ja, ^ be the given measures on X and Y 
respectively, and decompose /x with respect to v over the fibers of qp. Thus, we 
write ju = j[iydv(y) where [iy is supported on <p~*(y). This gives us a direct 
integral decomposition L2(X) = ƒ ® L2(cp~l(y), \iy)dv. For each y9 g we have 
a(j>,g): £2(<P_1(yg), Mvg) -* ̂ 2(<P_1(J), Hy) given by [a( j , g)f](z) = f(zg) 
for z G <p_1(ƒ). Fix /. Saying that Wt is finitely generated over L°°(Y) and 
G-invariant means that there is Vy C L2(<p_1( ƒ)), a finite dimensional sub-
space, such that Wt — j®Vy dv(y) and a(y9 g)Vyg = Vy. For g G #, yg = y9 so 
a |{ j>}X2?isa unitary representation of B on Vy. Say diml^ = n. Then for 
each y, we have « elements in B = character group of B. Furthermore, G acts 
on B and one can check that the cocycle identity for a implies 

(*) 
( « ! ( ƒ } X B) ' g = a\ {yg} X B, where = means unitary equivalence. 

Let Bn/Sn (Sn is the symmetric group on n letters) be the set of unordered 
«-tuples of elements of B. We have a map $: Y -> Bn/Sn9 and (*) implies that 
$ is a G-map. The action of G on Ê = R has three orbits, namely the origin 
and the 2 half lines. From this it is easy to see that every G-orbit in Bn 

(and hence in Bn/Sn) is locally closed, and that the only compact G-orbit is the 
identity (i.e. the origin). But ^ ( J U ) is a finite invariant ergodic measure on 
Bn/Sn. By smoothness, this must be supported on an orbit and by finiteness 
and invariance, this must clearly be the zero orbit. Thus, a \ {y} X B is the 
identity for all y, so B acts trivially on each Wt. Therefore, B is trivial on 
L2( X) and hence on X as well. 

Finally, we remark that the notion of generalized discrete spectrum yields a 
type of structure theorem for general actions with finite invariant measure that 
is sometimes useful. If S is an ergodic G-space, it is not always true that S X S 
is also ergodic, where G acts by (s, t)g — (sg, tg). If this additional ergodicity 
property holds, the action is called weakly mixing. More generally, if X -> Y is 
an ergodic extension of Y, the fibered product X X Y Xhas a natural G-invariant 
measure on it [47], but this action no longer need be ergodic. Once again, if 
this extra ergodicity holds, the extension X is called relatively weak mixing 
over Y. Given any ergodic G-space X9 there is a unique maximal factor Z of X 
such that Z has generalized discrete spectrum and X is relatively weakly mixing 
over Z. Thus we break X up into a factor whose structure we know explicitly, 
and an extension with extra ergodicity properties. Of course, simply by 
knowing that an action or extension is weak mixing does not say very much 
about its detailed structure, so for most questions, this is not a satisfactory 
structure theorem aside from the factor Z. Nevertheless, weak mixing does 
clearly have some information, and thus one can hope to find this decomposi­
tion useful in some circumstances. An example of this appears in recent work 
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of Furstenberg. Szemeredi recently succeeded in proving a conjecture of Erdös 
which asserts that every set of positive integers of positive upper density 
contains arithmetic progressions of arbitrary (finite) length. In [17], Fursten­
berg gave another proof of Szemeredi's theorem, first by converting this to a 
statement about measure preserving integer actions, and then proving the latter 
by proving it first for actions with generalized discrete spectrum, and then 
showing the property is preserved by passing to relatively weakly mixing 
extensions. 

5. Amenability. The notion of an amenable group can be described in a 
variety of ways. Here, we shall focus on the fixed point property. 

Let E be a separable Banach space, E* the dual, E'f the unit ball in £*, and 
Iso(£) the group of isometric isomorphisms of E. Suppose IT: G -> Iso(Is) is a 
representation of G on E, and that A C Ef is a compact convex G-invariant 
set. (Here G acts on E* via the adjoint representation, 7T*(g) = (^(g-1))*.) 

DEFINITION 5.1. G is amenable if for all n and A as above, there is a fixed 
point for Ginv4. 

For example, if G is amenable and G acts continuously on a compact metric 
space X, then there is a G-invariant probability measure on X. We simply 
apply the definition to E = C(X) where A C C(X)* is the set of probability 
measures. In fact a standard convexity argument shows that G is amenable if 
and only if there is a G-invariant measure on every compact metric G-space. 

Abelian groups are amenable by the Markov-Kakutani fixed point theorem, 
and compact groups are easily seen to be amenable. U0-*A-*B^C->0is 
an exact sequence, then B is amenable if and only if A and C are amenable. 
Thus, groups with a cocompact solvable normal subgroup are amenable. Every 
connected amenable group is of this form, but this is no longer true among all 
discrete groups [18]. 

We now wish to define the notion of an amenable ergodic action of a group, 
originally introduced in [51]. This will include all actions of amenable groups, 
as well as some actions of nonamenable groups. We begin by describing certain 
classes of G-invariant compact convex sets that arise from an ergodic G-space 
S. 

So suppose S is an ergodic G-space and a: S X G -» lso(E) is a cocycle. We 
then have the adjoint cocycle a*(s, g) = (a(s, g)"1)*, and the a*-twisted 
action on L°°(S, £*), given by (g • ƒ X*) = a*(j, g)f(sg), for ƒ G L°°(S, E*). 
We observe that L°°(S, E*) = (L\S, E))*, so that L°°(S, E*) is a dual space. 
We want to describe certain G-invariant compact convex sets in the unit ball of 
this dual space. One natural possibility is to take A C E f compact, convex, 
and satisfying the condition a*(s, g)A = A. Then F(S, A) (= measurable 
functions S -> A) will be a compact convex G-invariant set in L°°(S9 £*). 
However, it is also possible to vary the set A as we move from point to point in 
S. Thus, suppose {As} is a collection of compact convex subsets As C E*, 
which vary measurably in s, and satisfying the condition a*(s, g)Asg = As. 
Then F(S, {As}) = {ƒ E L°°(S, E*) \ f(s) G As) is a compact convex G-
invariant set. 
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DEFINITION 5.2 [51]. Call a set of the form F(S, {As}) a compact convex set 
over S. An ergodic action of G on S is called amenable if every compact 
convex G-invariant set over S has a fixed point. 

Thus while amenability of G demands a fixed point in every compact convex 
set, amenability of the action demands a fixed point only in compact convex 
sets over the action. We also remark that the condition that one has a fixed 
point simply means a*(s, g)f(sg) ~ f(s) for ƒ: S -> E*, f(s) £ As. As an 
example of how one can use this condition, suppose S is an amenable G-space 
and that X is a compact metric G-space. Let M(X) be the space of probability 
measures on X. We have a representation TT\ G -> lso(C(X)) and hence a 
cocycle a: S X G -» Iso(C(X)) by restriction, i.e. a(s, g) = 77(g). M(X) will 
be a G-invariant compact convex set, and thus we can take As — M(X) for all 
s. (So for this example, we did not have to vary the compact convex set in 
going from point to point.) Amenability of the action then implies that there is 
a function/: S -> M(X) such that a*(s, g)f(sg) = ƒ(*), i.e., ^(g)f(sg) = ƒ(*). 
Switching to a right action on M( JQ, we obtain that f(sg) — f(s) • g. Thus, we 
conclude that if S is an amenable ergodic G-space, X a compact metric 
G-space, then there is a measurable G-map ƒ: S -> M(X). 

We now list some basic properties. Proofs can be found in [51, 52]. 

PROPOSITION 5.3. (a) If G is amenable, every ergodic G-space is amenable. 
(b) If S is an amenable ergodic G-space with finite invariant measure, then G is 

amenable. 
(c) If S — G /H, then G/H is an amenable G-space if and only if H is 

amenable. 
(d) If S is an amenable ergodic G-space, and T C G is a closed subgroup, then 

the restriction of the action on S to T is amenable. 

EXAMPLE 5.4. Let T C SL(2, R) be a lattice and consider the ergodic action 
of T on the boundary circle of the Poincaré disk. This is just the action of T on 
SL(2, R) /P where P is the upper triangular subgroup. Since P is amenable, the 
T-action on the boundary circle is amenable by (c) and (d) of the above 
proposition. More generally, let G be a semisimple Lie group, T C G a lattice, 
and P C G a minimal parabolic subgroup. Then P is amenable and so T acting 
on G/P is amenable. 

This example indicates how natural and important examples of actions of 
nonamenable groups are amenable. Assertion (c) of the above proposition 
shows that any group has amenable transitive actions. More generally, we have 
the following. 

PROPOSITION 5.5 [52]. If H C G is a closed subgroup and S is an ergodic 
H-space, then S is an amenable H-space if and only if ind^S) is an amenable 
G-space. 

This proposition raises the following question. Although one can have 
amenable actions of nonamenable groups, does every such action come in a 
simple way from an action of an amenable subgroup, namely just by inducing? 
In fact, the answer in general is no. One can show that if T C SL(2, C) is a 
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lattice, then T is amenable on CP1 (this is just Example 5.4) but that this action 
is not induced from an action of an amenable subgroup. This latter fact is not 
trivial, and a proof is given in [52]. On the other hand, we do have the 
following. 

THEOREM 5.6 [52, 55]. Let G be a connected group. Then every amenable 
ergodic action of G is induced from an action of an amenable subgroup. 

PROOF. We give the proof for G semisimple. Let S be an amenable G-space 
and P C G be a minimal parabolic subgroup. Since G/P is compact, by the 
remarks following Definition 5.2, there is a measurable G-map ƒ: S -> M(G/P\ 
where the latter is the space of probability measures on G/P. The proof will 
now follow from two basic results about the action of G on M(G/P). The first 
is due to the author, the second to C. C. Moore [33]. 

THEOREM 5.7 [52, 55]. Let G be a connected semisimple Lie group and P C G 
any parabolic subgroup. Then every element in M(G/P) has a locally closed orbit 
under the G-action. 

THEOREM 5.8 (C. C. MOORE [33]). Let G be a connected semisimple Lie group 
with trivial center and P C G a minimal parabolic subgroup. Let /x G M(G/P) 
and G^ the stabilizer of jut in G. Then G^ is an amenable algebraic group. (By 
algebraic, we mean the intersection of G with an algebraic subgroup of G, where 
the latter is an algebraic subgroup containing G as a subgroup of finite index.) 

To conclude the proof of Theorem 5.6 given these results, we simply observe 
that Theorem 5.7 asserts the smoothness of the G-action on M(G/P\ so if m 
denotes the measure on S, then f*(m) is quasi-invariant and ergodic on 
M(G/P) and hence supported on an orbit. Thus we can consider ƒ as ƒ: 
S -> G/H, where H is the stabilizer of an orbit. But by Theorem 5.8, H is 
amenable so the result follows from Proposition 1.11. 

Without giving a proof of Theorems 5.7 and 5.8, let us at least try to give 
some indication of why they are true. To this end, we state the following 
lemma of Furstenberg [15]. 

LEMMA 5.9 (FURSTENBERG). Suppose g„GSL(/?,R), gn -> oo. Let \i G 
M(P r t_1) and suppose \i • gn -* v for some v G M(Pn~l). Then v is supported on 
a union of two proper projective subspaces. 

REMARK, (i) Since the set of measures supported on a union of two proper 
projective subspaces is closed, this shows that the orbit of any /x not so 
supported is locally closed. This is the beginning of an inductive procedure for 
proving Theorem 5.7. 

(ii) If H C SL(«,R) leaves a measure fixed, then H is either compact or 
leaves the union of finitely many proper subspaces invariant. Both of these 
conditions are "algebraic". Proceeding inductively, one should obtain either 
compactness or further splitting. This should result in an algebraic object 
which is a compact extension of a solvable group. In this way, Lemma 5.9 
suggests Theorem 5.8 as well. 
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PROOF OF LEMMA 5.9. Let hn = gn/\\gn\\- Then \\hn\\ = 1, det(hn) -» 0, so 
we can assume hn -> /z, /z ^ 0, det(/z) = 0. Let F = range(Zz), TV = ker(/z), [F], 
[TV] the corresponding projective subspaces in Pw _ 1 . Write ju = jitj + /x2 where 
suppor t^) C [TV], suppor t^ ) C P n _ 1 - [N]. If x G Pw_, - [TV], then as 
« -> oo, hn(x) -* h(x) E [K]. Passing to a subsequence, we can write 

p = lim /x • g„ = lim /A, • g„ + lim /x2 • g„, 

and the previous sentence implies lim /x2 • gn is supported on [K]. We also have 
lim ju2 • gn supported on [W] where lim[TV] • gn — \W\. 

We now turn to the theory of orbit equivalence for amenable actions. We 
begin with an observation. 

PROPOSITION 5.10. For free ergodic actions amenability is an invariant of orbit 
equivalence. 

The circle of ideas concerning orbit equivalence began in the late 1950s with 
the work of H. Dye [10, 11] and for amenable actions has been brought to 
complete form very recently. We begin with the fundamental theorem of Dye. 

THEOREM 5.11 (DYE [10]). All finite measure preserving {properly) ergodic 
Z-actions are orbit equivalent. 

This was later extended to the a-finite case by Krieger [25]. 

THEOREM 5.12 (KRIEGER). All a-finite (but not finite) measure preserving 
Z-actions are orbit equivalent. 

Krieger also extended the theorem to the case of quasi-invariant measure 
without equivalent invariant measure. He showed that a measurement of the 
extent to which the action fails to be measure preserving is a complete 
invariant of orbit equivalence. Namely, let X be an ergodic G-space, and r: 
XX G -» R+ be the Radon-Nikodym cocycle. Let A: G -> R+ be the modular 
function of G, and let m: X X G -> R+ be m(x, g) = r(x, g)A(g)-1. We call m 
the modular cocycle. The Mackey range of this cocycle will be an ergodic 
R+ -action, which we call the modular flow or the modular range. For 
unimodular groups, the modular flow will be translation of R+ on R+ itself if 
and only if there is an invariant measure for the action (for then the 
Radon-Nikodym cocycle is trivial (Proposition 3.6)). 

THEOREM 5.13 (KRIEGER). For Z-actions with quasi-invariant measure, and 
not possessing (an equivalent) finite invariant measure, the modular flow is a 
complete invariant of orbit equivalence. 

A good account of Krieger's work is [44]. 
EXAMPLE 5.14. Let us see how to compute the modular flow in some 

examples. Let T C SL(2, R) be a lattice, P the upper triangular subgroup. The 
Radon-Nikodym cocycle for the action of G — SL(2, R) on G/P is the cocycle 
a: G/P X G - ^ R + corresponding to the homomorphism P -» R+ given by AP, 
the modular function of P. Clearly r: G/P X T -* R+ is just a | G/P X I\ 
Now the T action on G/P X T -* R+ that appears in the construction of the 
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Mackey range is just the restriction to T of the G-action G/P X a R + . Since A: 
P -* R+ is surjective, as is well known, this is the G-action G/P XaP/kçràP 

on which G acts transitively with stabilizer kerAP. Thus as a T-space, 
G/P X r R

+ is just the action of T on G/ker AP. Since ker AP is not compact, 
by Moore's ergodicity theorem (§2) T is ergodic on this space. Thus there is 
only one ergodic component, and so the modular flow is the action of R+ on a 
point. This computation can clearly be carried out on any semisimple noncom-
pact Lie group. If T is a lattice in such a group G, and P C G is a minimal 
parabolic, then the modular flow of the action of T on G/P will be the action 
of R+ on a point. 

The Dye-Krieger theorems were extended over the years by a number of 
persons to include within its framework actions of larger classes of groups. (In 
fact Dye did not restrict himself to the integers.) This work has recently 
culminated with the following theorems. 

THEOREM 5.15 (CONNES-FELDMAN-ORNSTEIN-WEISS [8, 37]). (i) A free prop­
erly ergodic action of a discrete group is amenable if and only if it is orbit 
equivalent to a Z-action. 

(ii) The Dye-Krieger Theorems 5.11-5.13 hold for the class of amenable 
properly ergodic actions of discrete groups. 

THEOREM 5.16 (CONNES-FELDMAN-ORNSTEIN-WEISS [8, 37]). (i) A free prop­
erly ergodic action of a continuous group is amenable if and only if it is orbit 
equivalent to an R-action. 

(ii) For such actions, the modular flow is a complete invariant of orbit 
equivalence. In particular, any two free properly ergodic actions of continuous 
amenable unimodular groups with invariant measure are orbit equivalent. 

EXAMPLE 5.17. If G is a semisimple noncompact Lie group, T C G a lattice, 
P C G a minimal parabolic, we saw in Example 5.14 that the modular flow of 
T on G/P is independent of G and T. Since these actions are amenable, 
Theorem 5.15 says that they are all orbit equivalent. 

6. Rigidity: The Mostow-Marguiis theorem and a generalization to ergodic 
actions. In this lecture we shall describe the proof of the Mostow-Marguiis 
rigidity theorem for lattices in semisimple Lie groups and indicate how this 
result can be extended to yield results about orbit equivalence for ergodic 
actions of semisimple groups and their lattices. 

THEOREM 6.1 (MOSTOW-MARGULIS RIGIDITY). Let G, G' be connected semi-
simple Lie groups with finite center, no compact factors, and T, T' irreducible 
lattices in G, G' respectively. Suppose R-rank(G) > 2. Then 

(i) if T and T' are isomorphic, then G and G' are locally isomorphic. 
(ii) In the center free case, any isomorphism T -> T' extends to a rational 

isomorphism G -* G'. 

This was first proved for cocompact lattices by Mostow [36] and for 
noncocompact lattices by Margulis [27]. In an extraordinary and highly 
original and innovative paper, Margulis then gave an alternate proof in [28] 
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which subsumed both cases, gave stronger results on the extension of homo-
morphisms from T to G', and which was powerful enough to prove the 
arithmeticity of lattices. In [55] we showed how Margulis' techniques could be 
incorporated into a proof of rigidity for ergodic actions. Theorem 6.1 is also 
true without the R-rank assumption as long a s G ^ PSL(2, R). This is due to 
Mostow [36] and Prasad [39]. We now describe rigidity for ergodic actions. 

DEFINITION 6.2 [55]. Suppose G is a semisimple connected Lie group with 
finite center and no compact factors. An ergodic G-space S is called irreducible 
if every noncentral normal subgroup of G is also ergodic on S. (Thus if T is a 
lattice, G/T is irreducible if and only if T is irreducible.) 

THEOREM 6.3 [55] (RIGIDITY FOR ERGODIC ACTIONS). Let G, G' be connected 
semisimple Lie groups with finite center and no compact factors, S, S' free 
irreducible ergodic G-, G'-spaces, respectively, with finite invariant measure. Let 
R-rank(G) > 2. Suppose the actions are orbit equivalent. Then 

(i) G and G' are locally isomorphic, 
(ii) in the centerfree case, we can take G = G', and then the actions on S and 

S' are automorphically conjugate. 

Thus, this theorem asserts that one has behavior that is diametrically 
opposed to the behavior of actions of amenable groups. Although Theorems 
6.1 and 6.3 look rather different, let us show that they are both direct 
consequences of the following theorem. 

THEOREM 6.4 [55]. Let G, G' be connected semisimple Lie groups with trivial 
center and no compact factors, and let S be an irreducible ergodic G-space with 
finite invariant measure. Assume R-rank(G) > 2. Let a: S X G -> G' be a 
cocycle whose Mackey range is Zariski dense in G'. Then a is equivalent to a 
cocycle p that is the restriction of a rational epimorphism TT: G -> G'. 

To deduce Theorem 6.1 from Theorem 6.4, one observes that when applied 
to the case S = G/T and a: G/T X G ^ G' a cocycle corresponding to a 
homomorphism T -> G', Theorem 6.4 yields the following theorem of Margu­
lis. 

THEOREM 6.5 (MARGULIS). G, G' as in Theorem 6.4, (R-rank (G) > 2), 
T C G an irreducible lattice. Suppose IT T -> G' is a homomorphism with TT(T) 
Zariski dense in G''. Then IT extends to a rational epimorphism G -> G'. 

Theorem 6.1 then follows. To deduce Theorem 6.3 from Theorem 6.4, one 
simply applies Theorem 6.4 to the cocycle a: S X G -» G' coming from an 
orbit equivalence. The hypotheses of Theorem 6.4 are satisfied since the 
Mackey range of a is the G'-space S" and the Borel density theorem implies 
Zariski density. The conclusion of 6.4 implies that of 6.3 by Proposition 3.3. 

Let us give an example of how to apply Theorem 6.3 to some natural 
examples. 

COROLLARY 6.6 [55]. Let G, G' be connected simple noncompact Lie groups 
with finite center, T, T' C G, G' lattices and suppose S, S' are free ergodic T-, 
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T'-spaces with finite invariant measure. Suppose R-rank(G) > 2, and that the 
r-action on S and T'-action on S' are orbit equivalent. Then G and G' are locally 
isomorphic. 

PROOF. Let X = 'md^(S), X' = ind£(S"). Then one easily checks that the 
hypothesis of Theorem 6.3 is satisfied. 

EXAMPLE 6.7 [55]. As we vary n, n ^ 2, the natural actions of SL(H, Z) on 
W/Zn by automorphisms are mutually nonorbit equivalent. 

We now turn to some proofs. We will not prove Theorem 6.4 here, but 
rather only Theorem 6.5 (which therefore gives us a proof of Theorem 6.1). The 
first part of the proof we present is different from Margulis' original argument. 
Instead, we present an argument which generalizes nicely when one attempts to 
prove Theorem 6.4. It is perhaps also more transparent than the original 
argument. The second part of the proof will be that of Margulis, although we 
shall try to give some motivation. For the proof of Theorem 6.4, see [55]. 

PROOF OF THEOREM 6.5. Let P C G, P' C G' be minimal parabolic sub­
groups. We have a homomorphism m\ T -» G' and hence G''/P' becomes a 
compact metrizable T-space. On the other hand, as we observed in Example 
5.4, the action of Y on G/P is ergodic and amenable. By the remarks following 
Definition 5.2, there is a measurable T-map <p: G/P -» M(G'/P'), the latter 
space being the space of probability measures on G'/P'. By Theorem 5.7, the 
action of G' on M(Gf/P') is smooth, so M(G'/P') = [M(G'/P')]/G' is 
countably separated and generated. Since (p is a T-map, (p(-xy) = <p(x)7r(y), so 
cp(xy) = <p(x) in M(G'/P'). By ergodicity of T on G/P, the projection of cp 
into M(G'/P') is essentially constant, i.e. <p(G/P) can be assumed to lie in one 
G'-orbit in M(G'/P'). Thus, we can view cp as a T-map <p: G/P -> G'/H', and 
by Theorem 5.8, H' is an amenable algebraic subgroup. What we have done is 
to obtain a T-map <p where the image is no longer an infinite dimensional space 
M(G'/P') but an algebraic variety G''/H'. The existence of such a measurable 
map <p is the first main step in the proof. The second step is the following 
fundamental lemma of Margulis. 

LEMMA A. <p: G/P -> G''/H' is a rational mapping of algebraic varieties. 

Let us show why this lemma suffices to prove the theorem. Suppose cp: 
G/P -> G'/Hr is a rational mapping such that <p(xy) = (p(x)Tr(y). Let 
R{G/P, G'/H') be the space of rational mappings. Then G X G' acts on 
R(G/P, G'/H') by 

[(g,gf)'f](x)=f(xg)'(gr
l-

The fact that <p is a T-map means <p is fixed under T̂_ where T is identified 
with the subgroup of G X G' given by {(y, TT(Y))}. Let T be the algebraic hull 
of T in G X G'. Then cp is also fixed under T. We clairn_that T is the graph of 
homomorphism G -> G'. Since T is Zanski dense in G, Y must project onto all 
of G. So suppose (g, hx), (g, h2) E T. Then cp(xg) — <p(x)hx and y(xg) = 
<p(x)h2. Therefore hxh~2

x leaves <p(G/P) pointwise fixed. But 7r(T) leaves 
(p(G/P) invariant, and since 7r(T) is Zariski dense in G', cp(G/P) must be 
Zariski dense in G'/H'. Therefore hxh~2 leaves all G'/H' pointwise fixed, and 
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since H e ^ g ^ ' g - 1 = {e} (since it is an amenable normal subgroup), hxh^ = 
e. Therefore T is the graph of a function G -> G\ which is a homomorphism 
since F C G is Zariski dense and the map is a homomorphism on T. 

We now return to the proof of the lemma. We must show that a certain 
measurable mapping between varieties is actually rational. There is one well 
known situation in which a measurable map is known to have much stronger 
properties, namely if the map is a homomorphism. For example, any measura­
ble homomorphism between Lie groups is C°°, and similarly, any measurable 
homomorphism between real algebraic groups R -* R\ with R reductive, will 
be rational on all unipotent subgroups of R. Of course our map <p is defined on 
G/P which is not a group. However, up to a set of measure 0, it is a group. For 
example, consider G — SL(«,R), P = upper triangular subgroup. Let £/be the 
lower triangular unipotent matrices. Then the natural map G -> G/P carries U 
onto an open subset of measure 1. Furthermore, this establishes an isomor­
phism of U with its image as algebraic varieties. Thus, we can view <p as a map 
U -> G'/H'. Now, although we have <p defined on a group, it is not a 
homomorphism (as the image is not even a group). We do however, have some 
sort of algebraic relation, namely the fact that cp is a T-map. Thus we might 
hope to be able to force this algebraic relation to show that <p only depends 
upon a homomorphism of U. This, however, is not possible. As we shall see, 
when we try to force the algebra, we shall need some commutativity of U with 
elements of A, where A is the positive diagonals. But the centralizer of U in A 
is trivial. In the R-rank 1 case, we can proceed no further, but in higher rank 
all is not lost. Let us fix an element t G A, and consider the centralizer Cr For 
example, in SL(3, R), let 

/ = 0 X 0 , C = ( f ^ ~ ) wherea = (detM)" 1] . 

Let 

r/i o on 
ct

u = ctnu=\\a i o k 
[\0 0 1/J 

Now U ^ R3, and Ct
u = R. Thus Ct

u will give us one direction in U9 and Ct is a 
reductive group that has a centralizer in A. As we shall see, this will be enough 
to show that <p: U -> G''/H' depends rationally on Ct

u. But now if we vary 
/ G A, we can pick up the other directions in the same way. The following 
lemma of Margulis is now clearly relevant. 

LEMMA B. Let cp be a measurable function defined on RnXRk.Ifq) is rational 
in x for almost all j E R ^ and rational in y for almost all x 6 R " , then <p is 
rational. 

The above remarks about SL(«, R) extend to general G. Thus, if we let U be 
the unipotent radical of the parabolic opposite to P, then U -* G/P is an 
isomorphism of algebraic varieties with its image, the latter being open and of 
full measure. Let A C P b e a maximal abelian R-diagonalizable subgroup and 
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t G A, t 7̂  0. Let Ct be the centralizer of t in G. Then Ct is reductive. Letting 
Ct

u = U H Cn U can be built from the various Ct
u by varying t. Thus, using 

Lemma B, it suffices now to prove the following. View <p: G/P -» G'/H' as a 
map (JP: G -> G'/H', with y(pg) = <p(g)> for/? G P. 

LEMMA C. For almost all g G G, <p(cg) depends rationally on c for c G Cr" 
( / o r û«y ƒ G v4). 

PROOF. Let C, — C. We want to study dependence of <p on C, so for each 
g <EG, define <og: C -> G'/fiP by œg(c) = <p(cg). 

Thus we have a map <o: G -» F(C, G'/H'), the latter being the space of 
measurable maps C -» G ' /# ' . Let T- {tn}. Then <o,g(c) = u(ctg) = co(teg) 
= co(cg) (since f G P), and so we have corg(c) = w (c). Thus we can view w as 
a map w: G/T -» F(C, G'/Hf). We now use T-invariance of qp: 

ugy(c) = <p(cgy) = <p(cg)7r(y) = cog(c) • 77(7). 

Thus, œgy and <og are in the same G'-orbit in F(C, G'/H'), where G' acts on the 
latter pointwise. We now need another smoothness result. 

LEMMA D. Every G'-orbit in F(X,G'/H') is locally closed, where X is a 
measure space. 

We observe that if Xis finite, this is immediate from the fact that F( X, G'/H') 
would then be a variety. Margulis observed that the lemma is true for any 
measure space X. For a simple proof, see the appendix of [55]. 

Returning now to the proof of Lemma C, we have that ugy = co when 
projected to [F(C,G'/H')]/G'. By Lemma D, this latter space is countably 
generated and separated, and by Moore's theorem T is ergodic on G/T. 
Therefore, all (ùg are equal when projected to [F(C, G' /H')]/G', or equiva-
lently, all o)g lie in the same G'-orbit. So for a, g G G, we have 

where h(a, g) G G' and h is measurable. For any ƒ G F(C, G'/H'), let G'f be 
the stabilizer, and Nf the normalizer of G'f in G'. Clearly for Û G C , G' = G'œ , 
so for a G C, h(a, g) G Nu . Suppose now that ax, a2 ^ ^ Then 

<*g(c) ' h(ala2, g) = o>aia2g(c) = <p(caxa2g) 

= wa2*(Cfll) = "g(Ca\) ' M*2> g) 

= <P(«*lg) ' A(fl2» # ) = <*axg(c) ' h(a2> g) 

= iog{c) -h(aug)h(a2,g). 

Thus, for almost all g, a -> /*(<z, g) is a measurable homomorphism 

We have <p(cag) = <p(cg) • /Ï(Ö, g). Thus for 0 in any unipotent subgroup of 
C, a -» <p(cag) depends rationally on a. Choosing this subgroup to be c~xCt

uc, 
we obtain <p(bg) depends rationally on b G Ct

u. This completes the proof. 
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7. Complements to the rigidity theorem for ergodic actions: Foliations by 
symmetric spaces and Kazhdan's property (T). The rigidity theorem for ergodic 
actions stated in §6 allowed us to distinguish ergodic actions of lattices on the 
basis of orbit equivalence if the actions had finite invariant measure (e.g. 
Corollary 6.6 and Example 6.7). However, some of the most interesting actions 
of lattices, e.g., the action of SL(n, Z) on P w _ 1 or other flag and Grassman 
varieties, do not have finite invariant measure. We now indicate how to extend 
the rigidity theorem to enable us to deal with this situation. The main step is to 
first extend the rigidity theorem to actions of general connected groups. 

Let H be a connected group. Every locally compact group has a unique 
maximal normal amenable subgroup N. If H is connected H/N will be a 
product of noncompact connected simple Lie groups with trivial center. We 
shall say that an ergodic action of H is irreducible if the inverse image in H of 
each of these simple factors of H/N is still ergodic. 

THEOREM 7.1 [56]. Let H, Hr be connected locally compact groups, N, N' the 
maximal normal amenable subgroups. Suppose R-rank(H/N) > 2. Let S, S' be 
free ergodic irreducible H-, H'-spaces with finite invariant measure, and suppose 
the actions are orbit equivalent. Then H/N and H'/N' are isomorphic, and N is 
compact if and only if N' is also compact. 

Thus, for connected groups, orbit equivalence implies isomorphism of the 
semisimple parts of the groups. The proof of this result is an extension of the 
proof of the rigidity theorem for ergodic actions of semisimple groups. To see 
how to apply this to obtain results about actions of lattices without invariant 
measure, observe that the orbit space of T acting on G/H can be identified 
with the orbit space of H acting on G/T. Theorem 7.1 deals with the latter 
situation since now G/T has a finite //-invariant measure, so we can try to 
apply this to the action of T on G/H. One can then prove the following precise 
result. 

THEOREM 7.2 [56]. Let G, G' be connected semisimple Lie groups with finite 
center, T, T' irreducible lattices. Let H C G, H' C G' be almost connected 
noncompact subgroups. Assume the actions of T on G/H and T' on G'/H' are 
essentially free and orbit equivalent. Let N, N' C H, H' be the maximal normal 
amenable subgroups, and suppose R-rank(H/N) > 2. Then H/N and H'/N' 
are locally isomorphic. 

EXAMPLE 7.3 [56]. As we vary n, n > 2, the actions of SL(«, Z) on P n _ 1 are 
mutually nonorbit equivalent. This follows by simply observing that the 
semisimple parts of the corresponding maximal parabolics in SL(«,R) are not 
isomorphic. (Actually, Theorem 7.2 will not apply to compare the cases n — 2 
and n = 3. However, the action of SL(2, Z) on P1 is amenable, while the 
action of SL(3, Z) on P 2 is not.) In a similar fashion, one can read off a large 
number of results about actions of lattices on the flag and Grassman varieties. 

A natural question that arises in light of Theorem 7.1 is how sensitive orbit 
equivalence is to the way in which H is built from JV and H/N. For example, 
what is the relation of actions of SL(«,R) X Rn to that of SL(«,R)@Rn, 
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where the latter semidirect product just results from the natural action of 
SL(«,R) on R"? To answer this question, we recall Kazhdan's notion of 
property (T) for groups, and then indicate how to define this for actions. 

Let G be a locally compact group, and / the one dimensional trivial 
representation. If iTn, IT are unitary representations of G, then recall fun -> 77 
means that for any unit vectors vx,.. .,vk G //„ there exist unit vectors 
v",...,vn

k G H such that (%(g)v" \v?)-+ (<rr(g)vi \ Vj) uniformly on compact 
sets in G for each /, j . Kazhdan [24] defined a group to have property (T) if 
mn -» I implies / < mn for n sufficiently large. 

THEOREM 7.4 (KAZHDAN [24, 9]). (i) Semisimple Lie groups with all simple 
factors having R-rank at least 2 have property (T). (Actually, Kazhdan proved 
this assuming R-rank > 3. That one only need assume R-rank > 2 was observed 
by a number of persons, e.g. [9].) 

(ii) Any lattice subgroup of a group with property (T) also has property (T). 

We shall also need the following result of Wang. 

THEOREM 7.5 (WANG [46]). SL(«, R)@R" has property (T), and hence so does 
SL(«, Z)(s)Zn (n ^ 3). 

We now define property (T) for ergodic actions. For simplicity, we restrict 
attention to actions of discrete groups. This notion for actions originally 
appeared in [57]. 

Let G be a discrete group, S an ergodic G-space. Let a: S X G -> U(H) be a 
unitary group valued cocycle. Let v,w: S -* H be Borel functions with IkH^ 
= llwll^ = l .Le t / t t f ü f W :SXG^Cbegivenby 

fa,v,w(s> S) = <«(^ g)v(sg) I W(J)>. 

We consider favw as a function G -> F(S, C), and we endow F(S, C) with the 
topology of convergence in measure. For cocycles an, a, we say an -» a if given 
t ? ! , . . . , ^ : 51 -> Ha9 II /̂ II oo = 1, there exist U ^ , . . . , ^ : S -> ^a^ such t h a t / a < t ; « 
-* /a>1; pointwise on G (i.e. in measure on S for each g G G) for all /, j . 

DEFINITION 7.6 [57]. The action of G on S has property (T) if an -> I implies 
<xn >• I for n sufficiently large. Here I is the one dimensional trivial cocycle and 
a > I means a ~ ft where p(s, g)v = v for some nonzero vector v. 

We then have the following results. 

THEOREM 7.7 [57]. (a) If G has property (T), and S has a finite invariant 
measure then S has property (T). 

(b) If S has property (T), finite invariant measure and is weak mixing (i.e. 
there are no finite dimensional invariant subspaces in L2(S) 0 C), then G has 
property (T). 

(c) For free actions of discrete groups, property (T) is an invariant of orbit 
equivalence. 

Combining 7.5 and 7.7, we have the following, showing that, in fact, orbit 
equivalence is quite sensitive to the way H is constructed from N and H/N. 
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COROLLARY 7.8 [57]. Let n ^ 3, and Tx = SL(n, Z) X Z", T2 = 

SL(«, Z)(s^Zn. Then Tx and T2 do not have free orbit equivalent weakly mixing 
actions with finite invariant measure. 

We shall now describe a geometric interpretation of the rigidity theorem for 
ergodic actions. We begin by recalling the geometric formulation of the 
Mostow-Margulis theorem. Let G be a connected semisimple Lie group with 
finite center and no compact factors, K C G a maximal compact subgroup, 
and r C G a torsion free lattice. Then G/K is a Riemannian symmetric space 
(diffeomorphic to Euclidean space), and V operates properly discontinuously 
on X — G/K. Thus T \ X is a locally symmetric space of finite volume, and 
irx(T\X)^T. 

THEOREM 7.9 (MOSTOW-MARGULIS RIGIDITY, GEOMETRIC FORM). Let Mx, M2 

be locally symmetric Riemannian manifolds of finite volume whose universal 
covers, Xx, X2 are symmetric spaces of purely noncompact type, and whose 
fundamental groups TT^M/) act as irreducible groups of isometries of Xt. Suppose 
further that the rank of Mx is at least 2. Then any isomorphism TTX(MX) -> 7TX(M2) 
is induced by a diffeomorphism Mx -> M2 that is an isometry modulo normalizing 
scalar multiples. 

Rougly speaking, this asserts that for a particular class of Riemannian 
manifolds, i.e. suitable locally symmetric spaces, that a purely topological 
invariant, namely the fundamental group, determines the Riemannian struc­
ture. We now describe an analogous geometric interpretation of the rigidity 
theorem for actions which will make an assertion about foliations by symmet­
ric spaces. 

Let G be a connected semisimple noncompact Lie group with finite center 
and no compact factors, K C G a maximal compact subgroup, and (S, ju) a 
free ergodic G-space with finite invariant measure. Let Y = S/K. Then be­
cause K is compact, Y is a standard Borel space, and the orbits in S yield an 
equivalence relation ?T on Y in which each equivalence class can be identified 
with G/K. Thus, (Y,^) is a "Riemannian measurable foliation", i.e., a 
measure space with an equivalence relation ?T in which each equivalence class 
(or "leaf') has the structure of a C°°-Riemannian manifold, so that these 
structures vary measurably in a suitable sense [53] over Y. Given Y, Y\ two 
spaces supporting Riemannian measurable foliations, we call them isometric if 
there is a measure space isomorphism between Y and Y' that carries leaves 
onto leaves isometrically (possibly after discarding null sets of leaves). By a 
transversal for (Y,$) we mean a Borel set intersecting almost every leaf in a 
countable set. Such a set T will have a natural equivalence relation on it with 
countable equivalence classes (namely ?T| T), and a natural measure class v 
satisfying the condition that for B C T9 v(B) = 0 if and only if the union of 
the leaves intersecting B has ju-measure 0 [13, 41]. We call two Riemannian 
measurable foliations transversally equivalent if they have isomorphic transver­
sals. By an isomorphism of transversals, we mean isomorphism as measure 
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spaces with equivalence relations, i.e., a measure space isomorphism carrying 
one equivalence relation onto the other. This is a purely measure-theoretic 
invariant of the foliation. The following is the geometric version of Theorem 
6.3. 

THEOREM 7.10 [55] (RIGIDITY FOR FOLIATIONS BY SYMMETRIC SPACES). Let G, 

G', S, S' be as in Theorem 6.3. Let Y = S/K, Y' = S'/K' where K, K' C G, G' 
are the maximal compact subgroups. Let (Y, ?T), (Y',^') be the associated 
Riemannian measurable foliations by symmetric spaces. If the foliations are 
transversally equivalent, then they are isometric, modulo normalizing scalar 
multiples (independent of the leaves). 

Thus, roughly speaking, for suitable foliations in which the leaves are 
symmetric spaces, a purely measure-theoretic invariant, namely the measure 
theory of the transversal, determines the Riemannian structure on almost every 
leaf. 

As we have already remarked, the rigidity theorem for lattices holds in the 
R-rank 1 case as well as long a s G ^ PSL(2, R), although the proof we have 
given in §6 does not apply, and one must use other techniques, for example 
those of Mostow [36] and Prasad [39]. It is natural to inquire as to what extent 
the rigidity theorem for ergodic actions holds in the R-rank 1 case as well. In 
[58] we proved the following result in this direction, applying basic results of 
Mostow [35] on quasi-conformal mappings. 

THEOREM 7.11 [58]. Let S, S' be free ergodic SO(l, n)/{±, I}-spaces with 
finite invariant measure, and assume n > 3. Let (Y,5"), (Y', ?T') be the associ­
ated measurable foliations by hyperbolic space (as in the discussion preceding 
Theorem 7.10). If(Y, ?T ) and (Y', 9"') are quasi-conformally equivalent, then they 
are isometric (modulo a normalizing scalar independent of the leaf), and the 
actions of SO(l, n)/{±I) on S and S' are automorphically conjugate. 

Here, of course, quasi-conformal equivalence asserts the existence of a 
measure space isomorphism taking (almost all) leaves to leaves quasi-
conformally. We remark that the analogous statement for R" actions can be 
shown to be false by many counterexamples. 

8. Margulis' finiteness theorem. In §6, we saw how the analysis of the 
ergodic action of T on G/P led to Margulis' proof of the rigidity theorem. 
Margulis has also demonstrated some other deep properties of this ergodic 
action and used this to obtain very strong results about the structure of T. 
More precisely, he has shown the following. 

THEOREM 8.1 (MARGULIS [30, 31]). Let G be a connected semisimple Lie group 
with finite center and no compact f actors, and assume R-rank(G) > 2. Let T C G 
be an irreducible lattice, and H = T/N a nonamenable quotient group. Then 
N C Z/Z(G), the center of G, and in particular, is finite. 

If we further assume that the R-rank of every simple factor of G is at least 2, 
then T has property (T) of Kazhdan [24], and hence if H = T/N is an 
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amenable quotient, H must also have property (T) and hence is finite. Thus, we 
conclude the following. 

COROLLARY 8.2. Let G be a connected semisimple Lie group with finite center 
and assume R-rank of each simple factor of G is at least 2. Let Y C G be an 
irreducible lattice. Then every normal subgroup of G is either finite or of finite 
index. 

Margulis' results are in fact significantly more general, both in terms of 
taking lattices in products of algebraic groups defined over various local fields 
and in terms of rank restrictions. The basic difficult step in the proof of 
Theorem 8.1 is the following result concerning the action of T on G/P. Let P' 
be another parabolic subgroup containing P. Then there is a T-map G/P -> 
G/P\ i.e. G/P' is a T-space factor of G/P. 

THEOREM 8.3 (MARGULIS [30]). Let G, Y be as in Theorem 8.1, P C G a 
minimal parabolic. Then any measurable factor of the T-space G/P is of the form 
G/P -> G/P' for some parabolic Pr D P. 

In other words, every measurable T-factor of G/P is actually also a G-factor. 
This theorem is difficult and we will not prove it here. Instead, we show how to 
deduce Theorem 8.1 from it. 

Let H — T/N be a nonamenable quotient. Then there is a compact metric 
//-space X so that there is no //-invariant measure on X. We can also view X as 
a compact metric T-space. Since the action of T on G/P is amenable, by the 
discussion following Definition 5.2, there is a measurable T-map <p: G/P -> 
M(X), where the latter is the space of probability measures on X. If we let ju be 
a measure on G/P in the natural measure class, then (M(X), <P#(/A)) is a 
T-space factor of G/P. Thus, there is some parabolic P' so that as T-spaces, 
(M(X), <?*(/*)) is conjugate to G/P'. Since there are no fixed points in M(X) 
under T, P' ^ G. But TV acts trivially on M(X) by definition, so TV is trivial on 
G/P' which implies N C Hg(EG gP'g-1, a proper normal subgroup of G. 
Dividing G by its center, it clearly suffices to observe that if T C II/(E/ Gt is an 
irreducible lattice in a product of simple Lie groups with trivial center, that 
N = T Pi II içzjGj is trivial for / C / a proper subset. But since N is normalized 
by T and II J-JG^ it is normalized by the product of these groups which is 
dense in G by irreducibility. The result follows. 

9. Margulis' arithmeticity theorem. (This section will require a bit more 
knowledge about algebraic groups than previous sections. We also caution the 
reader that in this section, by algebraic group, Zariski closure, etc., we shall 
mean with respect to the algebraically closed field, unless we explicitly declare 
otherwise in a given instance.) 

In this section we describe the proof of Margulis' arithmeticity theorem for 
lattices in semisimple Lie groups. The proof of the rigidity theorem in §6 was 
based on a result asserting that under suitable hypotheses, a homomorphism of 
T into a real algebraic group extended to a homomorphism of G. This result is 
also basic to the proof of the arithmeticity theorem. However, we shall also 
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need results concerning homomorphisms of T into complex groups and alge­
braic groups over local fields. With some additional comments, the proof of 
Theorem 6.5 can be applied to give us these needed results, so that the bulk of 
the work of the proof of arithmeticity has in fact already been done. But before 
passing to these arguments, let us recall the statement of the problem. 

The first example of a lattice in a Lie group is the integer lattice Zn CR". 
This is of course not the only lattice in R". However if L is any lattice there is 
an automorphism^: Rn -> R" such that^4(Zn) = L. Thus, L is "arithmetically" 
defined. 

To get other examples of lattices, suppose G C GL(«,C) is an algebraic 
group defined over Q, i.e. there is an ideal / C Q[aiJ9 det(ö/y)~l] such that 
G = {a E GL(n,C) | p(a) = 0 for all p E ƒ}. As usual, if B C C is any 
subring, we let 

GB= [a EG\ ai} E B, for all /, j and det(^0)_ 1 E B) . 

THEOREM 9.1 (BOREL-HARISH-CHANDRA [5]). If G is semisimple, then Gz is a 
lattice in GR. 

For example, for G = SL(rc,C), we have SL(«, Z) is a lattice in SL(«,R). 
The question the arithmeticity theorem answers is to what extent this is a 
general construction, i.e. to what extent are lattices arithmetically defined? We 
now exhibit two ways of modifying a given lattice to obtain a new lattice. 

DEFINITION 9.2. If T, T' are discrete groups, then T and T' are called 
commensurable if [T: T H T] < oo and [r r: T n T] < oo. 

PROPOSITION 9.3. If T, Y' C G, T is a lattice and F, r ' are commensurable, 
then T' is a lattice. 

For example, given that SL(«, Z) is a lattice, {a E SL(«, Z)\a — /mod p 
for a given prime p) is a commensurable lattice. 

Here is another way to get new lattices. 

PROPOSITION 9.4. If T C H is a lattice, y: H -> G a surjective homomorphism 
with compact kernel then qp(r) is a lattice in G. 

Margulis' theorem says that aside from these two types of rather trivial 
modifications, every lattice in a semisimple Lie group of higher R-rank arises 
as in Theorem 9.1. More precisely, let us make the following definition. (If H is 
a group, H° denotes the topologically connected component of the identity.) 

DEFINITION 9.5. Let G be a connected semisimple Lie group with trivial 
center and no compact factors. Let T C G be a lattice. Then T is called 
arithmetic if there exists an algebraic group H defined over Q, and a surjective 
homomorphism <p: HR -» G such that 

(i) kernel(<p) is compact; 
(ii) <p(Hz n 7/R) is a lattice in G commensurable with T. 

THEOREM 9.6 (MARGULIS [28]). Let G be as in Definition 9.5, and assume 
R-rank(G) > 2. Then any irreducible lattice in G is arithmetic. 
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As we indicated above, the proof is based on two further results about 
homomorphisms of T. 

THEOREM 9.7 (MARGULIS [28]). Let T C G be an irreducible lattice, G as 
above, R-rank(G) > 2. 

(i) If II is a (complex) simple algebraic group, connected and with trivial 
center, then any homomorphism 77: T -» H with TT(T) Zariski dense in H either 
satisfies 7T(T) compact or extends to a rational endomorphism G -> H, where G is 
the Zariski closure of G (embedding G in the linear transformations in the 
complexified Lie algebra for example). 

(ii) Any homomorphism 77: T -* HK where H is a semisimple algebraic group 
over K, and K is a local totally disconnected field of characteristic 0, with IT(T) 
Zariski dense, satisfies ir(T) is compact. 

The proof we present is in the spirit of the proof we gave of Theorem 6.5 so 
as to be generalizable to cocycles defined on general ergodic (/-spaces. We 
expect these generalized results to be of use in describing "arithmetic" features 
of an ergodic action, but we do not discuss this here. 

PROOF, (i) The proof we gave of Theorem 6.5 can be applied if we can find a 
measurable T-map cp: G/P -» H/H0 where H0 is an algebraic subgroup of H 
such that nhÇEHhH0h~l — {e}. As in Theorem 6.5, we can let P' C H be a 
minimal parabolic subgroup, use amenability to find a T-map cp: G/P -> 
M(H/P') and prove that each orbit in M(H/Pf) under H is locally closed. 
Again, as in 6.5, we can then assume cp: G/P -> H/Hx where Hx is the 
stabilizer of a measure in M(H/Pf). Unlike the real case however, this 
stabilizer need not be algebraic. For example, the group may be compact which 
in the real case implies that it is the real points of an algebraic group, while in 
the complex case, of course, a compact group will not be algebraic. However, 
we can suppose H is rationally represented on a finite dimensional complex 
space in such a way that P' is the stabilizer of a point in projective space. Let /x 
be the measure on H/P' stabilized by Hx. If Hx is not compact, then using an 
argument as in Furstenberg's lemma (Lemma 5.9) we see that \x must be 
supported on the intersection of H/P' with the union of two proper projective 
subspaces. Choose a proper subspace F so that \i(H/Pf Pi [V]) > 0, and F has 
minimal dimension among all subspaces with this property. By the minimality 
property of [F] and Hx-invariance of jix, the Hx-orbit of [V] must clearly be a 
finite union of projective subspaces. Hence, if we let H0 be the Zariski closure 
of Hx, then H0 C H is a proper algebraic subgroup. Since H is simple and with 
trivial center Pi hH0h~x = {e}, and as we remarked at the beginning of the 
proof, this suffices. 

We must now consider the case in which Hx is compact. We then have a 
T-map <p: G/P -> H/Hx, so that if we let v — (p*(ju)> ^ is a quasi-invariant 
ergodic measure for the action of T on H/Hx. (Unlike the previous paragraph, 
JU is now the natural measure class on G/P.) Consider the T-map cp X qp: 
G/P X G/P -> H/Hx X H/Hx. It is well known that on G/P, the P-action is 
essentially transitive, the conull orbit having P C\ P as stabilizer, where P is the 
opposite parabolic to P. Thus as a G-space, G/P X G/P will be essentially 
transitive with stabilizer POP, which is noncompact. By Moore's ergodicity 
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theorem (§2), T is therefore ergodic on G/P X G/P. It follows that T must 
also be ergodic on (H/Hx, v) X (H/Hx, v). Since Hx is compact, the //-orbits 
on H/Hx X H/Hx are closed. Since (v X v) is ergodic under T, and T-orbits 
are of course contained in //-orbits, smoothness of the //-action on H/Hx X 
H/Hx implies that v X v must be supported on an //-orbit. From Fubini's 
theorem, one easily deduces that v must be supported on an H2 orbit in H/Hx 

where H2 is a conjugate of Hx, and in particular is compact. Thus, support(*>) 
is compact. Since v is quasi-invariant under 77-(r), support(*>) is 77(r)-invariant, 
and since Hx is also compact, it follows that TT(T) is contained in a compact 
set. This completes the proof of (i). 

(ii) Let P' C H be a minimal parabolic J^-subgroup, so that HK/Pf
K is 

compact, and P'K contains no normal algebraic subgroup. We again wish to 
apply the same type of argument as in the proof of Theorem 6.5. The first step 
is to prove the analogue of Theorem 5.7 over K. In fact the proof in [52] shows 
that GL(«, K) acts smoothly on M(Pn~\K)). We can assume that we have a 
faithful rational representation of HK on Kn so that HK/P'K is an orbit in 
Pn~l(K). By amenability of the T-action on G/P, there is a T-map y: 
G/P -> M(HK/P'K) C M(Pn~\K)). By smoothness of the GL(«, A>action 
on M(Pn~\K)), we can view <p as a map <p: G/P -> [JU • GL(«, K)] D 
M(HK/P'K) where fi G M(HK/P^). Let S be the stabilizer of /i in GL(n, K). If 
S is compact in PGL(«, K), then by the argument in part (i), 7r(T) will be 
compact in PGL(«, K), and so 77-(r) will also be compact in //. If not, then 
using an argument as in Furstenberg's lemma (Lemma 5.9), we can, as in part 
(i), assume the Zariski closure L of S is a proper algebraic subgroup. Further­
more, we can clearly assume from the construction of L as in part (i), that for 
any g G GL(«, K), dim(// D gLg~x) < dim H. By the condition of Zariski 
density, it therefore suffices to see that TT(T) C gLKg~l for some g G GL(«, A'). 
We have <p: G/P -* GL(«, K)/LK a measurable T-map. In the real case we 
showed <p was rational by showing it could be built from homomorphisms of 
unipotent subgroups of G which had to be rational. In the present situation, we 
can construct the same type of homomorphism using the argument of Theorem 
6.5, but now, since the image group is totally disconnected, these maps must be 
constant. We thus conclude that <p: G/P -> GL(«, K)/LK is essentially con­
stant. Since TT(T) leaves cp(G/P) fixed, this implies TT(T) is contained in a 
GL(«, /£ )-conjugate of LK, and this completes the proof. 

We now turn to the proof of Theorem 9.6 itself. We may take the semisimple 
Lie group to be G^, where now G C GL(«,C) represents an algebraic group 
defined over Q. Thus T C G^ is an irreducible lattice. The following lemma is 
classical, and follows for example from an argument of Selberg [42] (see also 
[40, Proposition 6.6] for the same argument). This argument is based on 
expressing the embeddings of T into G as an algebraic variety, and then 
choosing a real algebraic point of this variety. However, with Theorem 9.7 at 
hand, we present an alternative argument due to Margulis [29]. 

LEMMA 9.8. There is a real algebraic number field k and a rational faithful 
representation of G such that, identifying G with its image under this representa­
tion, r c Gk. 
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PROOF. The first step is to show that for K the field of real algebraic 
numbers we have Tr(Ad(y)) G K for all y. Following Margulis, we let a be an 
automorphism of C. Then o acts on matrices with entries in C by taking 
(ztj) -> (a(z£.y)), and since G is defined over Q, a induces an automorphism of 
G. (Of course this is an automorphism of G only as an abstract group, and will 
in general not be measurable.) Let us assume for the moment that G is simple. 
Then a | T satisfies either (i) o(T) is compact; or (ii) a \ T extends to a rational 
automorphism of G. This follows from Theorem 9.7. In the first case, all 
eigenvalues of Ad(a(y)) will have absolute value one, and in the second case, 
these eigenvalues coincide with those of Ad(y). (We remark that if A: G -> G is 
an automorphism we have dA ° Ad(^4(g)) ° (dA)~l = Ad(g), so Tr(Ad A(g)) 
= Tr(Ad g).) Hence for each y G T, (a(Tr(Ad(y))) | a G Aut(C)} is bounded. 
The same can easily be seen if G is semisimple by examining the composition 
of a | T with projection on the simple factors. However, since Aut(C) is 
transitive on the transcendental numbers, it follows that Tr(Ad(y)) is algebraic 
for all y G T. 

Thus, identifying G with Ad(G), we have T C G with Tr(y) G K for all 
y G T. The next step, which is classical, is to observe that this implies that 
there is a faithful rational representation of G, defined over K, such that 
T C GK, once again, identifying G with its image under this representation. We 
recall the construction. Consider Tr: G -> C, and let V = C-linear span of 
T-translates of Tr. By the Borel density theorem V will also be G-invariant. 
Choose a basis of V of the form yz • Tr. Then one can verify in a straightfor­
ward manner that with respect to this basis, the matrix elements of y G T 
acting on this space are all in K. Since T is finitely generated (in the property 
(T) case this follows easily [9]) we can find an algebraic number field k with 

We now recall the basic operation of restriction of scalars. Suppose G is an 
algebraic group defined over an algebraic number field k. Then there exists an 
algebraic group G defined over Q such that 

(i) there is an injective map a: Gk -» GQ; and 
(ii) there is a surjective rational homomorphism p: G -» G defined over k 

such thatP(GQ) = Gk and/? o a: Gk -> Gk is the identity. 
We recall here two ways of describing this construction. We can take 

G = IIa a(G) where a runs through the distinct embeddings of k in C. Then a: 
Gk -> G is the map a(g) — (o^g),... ,ar(g)), and p: G -> G is projection onto 
the factor corresponding to a = id. Alternatively, let [k: Q] — r, and choose an 
identification kn «-> Qnr. Then we have a map a: Gk -> GL(«r, Q), and we let G 
be the Zariski closure of a(Gk) in GL(«r, C). In this formulation, p arises from 
the fact that the entries of g G Gk are described by /c-linear combinations of 
the entries of a(g). These linear expressions allow us to define a linear map 
from nr X nr Q-matrices to n X n /c-matrices, and thus a map G -* G. (Recall 
that G is the Zariski closure of Gk.) Since this map is clearly a homomorphism 
on a(Gk) (being the inverse of a), it is also a homomorphism on its Zariski-
closure, G. 

COMPLETION OF PROOF OF THEOREM 9.6. We let k be as in Lemma 9.8, and 
G, /?, a as above. We have T C Gk, and we let H C G be the Zariski closure of 
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T. We still havep(H) = G by Zariski density of T in G. Since G is semisimple, 
p trivial on the radical of H, and, replacing H by the quotient of H by its 
radical, we can assume H is a semisimple group defined over Q, and with 
trivial center. 

We now claim that (ker/?)R is compact. Let F be a simple factor of ker/?. 
Then as algebraic groups defined over R, we can write H = G X F X F' where 
F ' is the product of the remaining simple factors. Since a(T) is Zariski dense in 
ƒ/, (q o a)(T) is Zariski dense in F where q is projection of H onto F. We claim 
JFR must be compact. If not, then (^ o a)(r) cannot have compact (topological) 
closure since compact real matrix groups are real points of algebraic groups. 
This would imply by Theorem 9 7 that q ° a extended to a rational homomor-
phism h: G -> F. But then {(g, h(g\ f')\ge 6, ƒ' G F } would be a proper 
algebraic subgroup containing a(T), contradicting Zariski density of «(F) in 
H. This verifies compactness of FR, and doing the same for each factor, 
compactness of (ker/?)R. 

Now consider a: T -> HQ. For each prime a, the image of a(T) in HQ must 
be bounded by Theorem 9.7(ii). This means that the powers of each prime 
appearing in the denominators of matrix entries of a(y) E HQ are bounded 
uniformly over y G T. But T is finitely generated, and hence only finitely many 
primes will appear at all. This is readily seen to imply that a(T) D Hz is of 
finite index in a(F), and hence, applying/?, that T n p(Hz) is of finite index 
in T. This in turn implies that T H p(Hz) is a lattice in GR. By Theorem 9.1 
and Proposition 9.4, p(Hz) is a lattice in GR, and since (T D p(Hz)) C p(Hz) 
is an inclusion of lattices, we also have [p(Hz): T D p(Hz)]< oo. This shows 
commensurability of T and p(Hz), completing the proof. 
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