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§1. Introductory remarks 

Determining unramified coverings over various base spaces is a classical 
activity, which can take place in many contexts: topological, complex analytic, 
algebraic, and arithmetic. The abelian coverings are simpler to handle than 
the non-abelian ones, and in these lectures, we shall concentrate on abelian 
cases. Furthermore, the base space will have mostly dimension 1. 

It turns out that the study of the arithmetic case is inextricably inter­
twined with that of the other cases, in many ways. Thus even though I (for 
example) start being motivated by the arithmetic case, I come eventually to 
a consideration of the other cases. 
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"Motivation", by the way, is a very relative term. What is motivation for 
one is an irrelevancy for another. I hope that somewhere in the combination 
of different problems which I shall list, most people will find some motivation 
for themselves. 

One source of motivation for many is that the problems which are con­
sidered have their roots in 19th century mathematics. I personally don't make 
a fetish of this particular item, but it is indeed the case for the arithmetic prob­
lems which we shall encounter here. The solutions (as far as they have gone 
today) however, lie in contemporary mathematics, including the vast panoply 
of algebraic geometry-commutative algebra developed by Grothendieck and 
his school, ranging over several thousand pages. 

For the topologist, unramified coverings of a space are classified by the 
fundamental group, and the abelian ones are classified by the first homology 
group. Although I restrict these lectures to number theory and algebraic 
geometry, I cannot refrain from mentioning an application of cyclotomic 
theory to free actions of finite groups on spheres in §2. 

Before passing to the arithmetic, which by definition will be our prime 
source of interest, I would like to mention briefly the general setting for the 
considerations of algebraic geometry and complex analytic geometry of curves 
which will play an important role. This may provide motivation for some 
analysts or geometers. 

Let X be a (compact, oriented) Riemann surface, and let D = D(X) be 
the free abelian group generated by the points on X. This is called the group 
of divisors. A divisor 

P 

is called linearly equivalent to 0 if it is the divisor of a (meromorphic) function 
on X. This means that there exists a function ƒ on X such that np = ordp ƒ 
is the order of the zero (pole) of ƒ at P . Since the number of zeros of a function 
is equal to the number of poles, the divisor of a function is contained in the 
group of divisors of degree 0, that is divisors such that X) n P = 0- The factor 
group 

Do/A = Pic(X) 

of divisors of degree 0 by divisors linearly equivalent to 0 is called the Picard 
group of X, or also the group of divisor classes of degree 0. If ƒ is a function, 
we let (ƒ) denote its associated divisor. 

Over the complex numbers, it is known (theorem of Abel-Jacobi) that 
Pic(X) is isomorphic to a complex torus of dimension g, where g is the genus 
of X, that is 

Pic(X) « CVA, 

where A is a lattice in C9. In particular, the structure of its torsion subgroup 
is clear. For each positive integer AT, let Pic/v(X) denote the subgroup of 
elements of order N. Then 

Piciv(X) « (Z/NZf9. 
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This group is directly related to unramified coverings as follows. Let Û be 
a representative divisor for an element of Picjv, so there exists a function ƒ 
such that 

Na = (ƒ). 

Let K = C(X) be the function field of X, i.e. the field of all meromorphic 
functions on X. Then 

Kif1/") 
is the function field of an unramified covering. Taking roots in this manner for 
all elements of Pic^ yields a maximal unramified abelian covering of exponent 
N (meaning that if T is an element of the group of covering transformations, 
then TN = id). Furthermore, if Y/X is this maximal covering, and G is its 
Galois group (group of covering transformations), then it can easily be shown 
that as finite abelian groups, G and Pic^ are canonically dual to each other 
(Kummer theory), and in particular are isomorphic (non-canonically), so have 
the same order. Thus the abelian coverings of X are determined in terms 
of divisor classes, and conversely, divisor classes are interpreted in terms of 
abelian coverings. The description of the Kummer theory is so simple that I 
give it. 

Let c G PicAT and let T be a covering transformation. Let a be a divisor 
representing c with Na = (ƒ) as above. Let cp be a meromorphic function 
on the covering such that <pN = ƒ (so loosely speaking, ip = fx^N, but two 
N-th roots of ƒ differ by an AT-th root of unity). Let fijsr denote the group of 
all iV-th roots of unity. Then the association 

defines a pairing between the group G and Pic^v, which is easily shown to give 
the above mentioned duality. 

The Riemann surface X may be associated with an algebraic curve defined 
over the rational numbers. In that case, we would reserve the letter X to 
denote the curve, and the complex analytic manifold of its complex points 
would then be denoted by XQ or X(C). The curve itself may be defined in 
projective space, or an affine open set may be defined by a single polynomial 
equation 

$(x, y) = 0, 

where $ is a polynomial in the two affine coordinates x, y. If the coefficients 
of $ lie in a field k, we say that the curve is defined over k. Important 
curves for us later will be defined over Q or over other interesting algebraic 
number fields, namely finite extensions of the rational numbers. Among these 
curves will be the so-called modular curves, discussed at greater length in §3. 
Certain subgroups of the divisor class group for these curves at first present a 
striking analogy with ideal class groups in algebraic number theory, and recent 
discoveries have actually established precise connections which will provide 
much of the substance of these lectures. 

Let X be a curve defined over a number field K. Associated with this 
curve is what is known as its Jacobian variety J = J(X), which gives an 
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algebraic representation of the Picard group Pic(X). Indeed, the analytic 
manifold Pic(X)c « C9/A (complex torus of dimension g) admits a projective 
embedding so that the group law on the torus corresponds to an algebraic 
group law. The image of Cg/A in projective space is called the Jacobian 
variety. Of course, there exist many such projective embeddings, and all such 
are algebraically isomorphic. Let us suppose that X has a rational point O 
in K (that is, X is coordinatized, defined over if, and there is a point all of 
whose coordinates lie in if). Then there is a projective model for J which is 
defined over if, and an embedding 

X - » J 

such that O (in X) goes to the origin in J. The embedding of X in J is in 
fact given by the map 

P h-> class of (P) - (O) in Pic(X) « J; 

furthermore X, identified with its image in J, generates J. 
Having coordinatized J in that fashion, we may then speak of rational 

points of J in some extension L of if. They are the points whose affine 
coordinates lie in L. Such points form a group, denoted by JL- The group 
of complex points JQ is complex analytically isomorphic to C9/A. If L is a 
number field, the theorem of Mordell-Weil asserts that JL is finitely generated. 
We are interested here in the subgroup of torsion points Jtor-

For a given positive integer N, the group of points of order N in J will 
be denoted by J M or J[N}. This is a finite subgroup, consisting of points 
which are algebraic over if (all their coordinates are algebraic over if). Let 
us denote by 

K(JN) 

the field generated by the coordinates of all points in J M over if. Then 
K(JN) is a Galois extension of if, and the effect of any automorphism 
G G Gal(if (JN)/K) is determined by its effect on the points in JN- Since 
we have an isomorphism JJV ^ {Z/NZ)2g, where g is the genus of X, we 
obtain a representation of this Galois group in GL29{Z/NZ). To determine 
the image of this representation in general is a fundamental problem relating 
number theory and algebraic geometry. When g = 1, so X = J, fundamental 
results have been obtained by Serre [Se], but here we want to concentrate on 
other cases which affect the theory of cyclotomic fields, and give rise to abelian 
unramified extensions. 

In fact, it is necessary to consider certain special subgroups g of J. We 
denote by if (g) the extension obtained by adjoining to if all coordinates of all 
points of g. For special choice of curve X and group g, we get interesting ex­
tensions. This is part of the general framework of giving explicit irrationalities 
via algebraic geometric objects for the generators of extensions predicted from 
purely internal structures of algebraic number theory, like ideal class groups. 
In other words, we want to construct (parametrize) explicitly the algebraic 
extensions of a given number field. For our purposes, we limit ourselves to 
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abelian extensions, and even to special number fields like cyclotomic fields, 
for instance fields generated by roots of unity over the rational numbers, since 
the general problems are already very substantial in those cases. 

In §2, §3, §4, §5, and §7 you will see examples of a situation with a group 
3 of order p, in a Jacobian variety or in the multiplicative group, admitting 
a group of automorphisms of order p — 1. This situation is represented in 
different (but related) contexts, with a Galois group having a representation 
by 2 X 2 matrices 

(a b \ with a, d e (Z/pZ)*, b G Z/pZ. 

Thus the study of abelian coverings leads to non-abelian coverings. 
One particular way of obtaining interesting subgroups g as mentioned above 

is the following, which ties up divisor class groups with units in the context 
of Riemann surfaces. 

Let X be a Riemann surface again. Let S be a finite non-empty set of 
points. Let R be the ring of functions on X which have no poles outside S, 
that is functions whose poles lie in S. Then the points of S may be viewed as 
points at infinity, and we may say that the elements of R are the functions 
with poles only at infinity. Let R* denote the group of units in R (invertible 
elements). Then R* is the group of functions whose zeros and poles are at 
infinity. Consider the map 

ƒ-(ƒ)= E (°r<wxn 
pes 

Let s = \S\ be the cardinality of S. The above map is a homomorphism of 
R* into a free group of rank s generated by the points in S. Its kernel is 
precisely the group of constant functions (a function without zeros and poles 
on a compact Riemann surface is constant); and its image is contained in the 
group of divisors of degree 0, so its image has rank at most 5 — 1. "Usually" 
this image will have much smaller rank. We shall meet later a special situation 
when for suitable choice of X and S, this rank is precisely s — 1. Let 
Ds = DS(X) be the group of divisors with support in S. Then the group 

D$/Df = Pic5(X) C Pic(X) 

is the subgroup of the divisor classes with support in S, or at infinity. When 
the above rank is s — 1, then this subgroup is finite, and provides a very 
interesting object. For the modular curves considered in §2, they provide 
geometric counterparts for the ideal class groups in algebraic number theory. 
The interplay of the algebraic number theory and the theory of divisor classes 
for certain special number fields and special curves is precisely the topic of 
these lectures. These modular curves will be obtained as a quotient of the 
upper half plane by a subgroup of SL,2(Z), of finite index. Such a quotient 
turns out to be the "affine part" of the complex points on a curve, and the 
points at infinity, classically called the cusps, furnish the set S. In this way, 
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both the classical and contemporary theory of modular functions enter the 
picture. 

Remark. The word "usually" used above can be made more precise as 
follows. The Manin-Mumford conjecture asserts that fixing a point O on X, 
there is only a finite number of points P such that the divisor (P) — (O) is of 
finite order in the Picard group Pic(X). Essentially this gives a bound on the 
size of the set S for which the £-units have maximal rank. The conjecture was 
reduced to a Galois theoretic statement in [L 3], and Shimura observed that 
this statement can be proved in a case known as the complex multiplication 
case, so the conjecture is true in that case. For a partial result in the general 
direction, cf. Bogomolov [Bo]. [Raynaud recently proved the conjecture.] 

The above concepts are partly topological and partly geometric, over the 
complex numbers. However, they can be viewed as being merely the "local" 
concepts associated with more global concepts of geometric objects over rings 
of finite type over the integers. In that case, reduction mod primes p, or 
the associated objects over p-adic fields give other local objects, and gives 
the possibility for p-adic local results. Putting all these results together for 
various p and also the archimedean places gives rise to global results. So far, 
a few results and conjectures are known in various directions. Starting from a 
very classical situation, I shall expand the range of considerations throughout 
these lectures to arrive at a more encompassing outlook, pointing to broader 
directions in which each one of these considerations merely represents one 
facet of what eventually will become one huge theory. 

I shall start with what I hope is a self contained and reasonably accessible 
level of exposition for a broad audience. As things move forward, the level 
will rise unavoidably. The actual lectures covered only the first part of the 
material. There was no reason why the written exposition should abide by 
the same limitations as the oral exposition. 

§2. Cyclotomic Fields 

(a) The basic objects. As good a point as any to start is the Fermât problem 
about the solutions to the equation 

The left hand side factorizes as 

HO* - a) 

where the product is taken over all iV-th roots of unity. This immediately 
leads into the study of cyclotomic fields, namely the field Q(/fzv)> where I*N 
denotes the group of N-th roots of unity. By a number field we shall mean 
a finite extension of the rational numbers. If K is a finite extension of Q, 
we denote by OK (or o if the reference to K is clear) the subring of algebraic 
integers. When K = Q(/tijv), then 

°K = 1[fiN] 
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is the ring generated over the ordinary integers Z by the roots of unity. If R is 
any ring, we let R* be the group of units (invertible elements) in that ring. In 
the early study of the Fermât curve, many mistakes were made because people 
thought that ring had unique factorization into irreducible (prime) elements, 
which turned out to be false. For instance, a recent issue of the Mathematical 
Intelligencer (1979) reproduces a page of the Compte Rendu des Séances de 
l'Académie des Sciences of 1 March 1847 where Lamé announces a proof of 
the Fermât problem. (Cf. the Lenstra article, p. 6.) This announcement is 
followed by critical remarks of Liouville, pointing out that Lame's paper is 
deficient in not taking into account the lack of unique factorization. 

The obstruction to unique factorization of course lies in the ideal class 
group, which is defined as follows. Let a, -6 be two ideals (7^ 0) of 0. We say 
that a and h are linearly equivalent, or lie in the same ideal class, if there 
exists an element a of K such that a = ah. Under this equivalence relation, 
the ideals form a group called the ideal class group Cl(K) of K, and this 
group is finite. Its order is denoted by HK and is called the class number. 

Kummer proved that if the class number of Q(/LCP) is not divisible by p, 
then the Fermât problem is solved affirmatively for p. We shall describe below 
other deeper considerations of Kummer concerning this class number and the 
Fermât problem. 

A fundamental problem about number fields is the determination of the 
class number and of the structure of the ideal class group. For instance: how 
large is h^ By what primes is it divisible? How does it behave asymptotically 
with TV when K = Q(/iiv)? Or K = Q(/v*) with a fixed prime p and n 
variable? 

The ideal class group is directly related to unramified coverings as follows. 
For any extension L of if, the primes \)of K may decompose in this extension: 

$*L = Vl '••$?> 

where the right hand side is the unique factorization of joox, into power 
products of prime ideals. If the exponents e~\_ ,..., e f are all equal to 1, we say 
that \) is unramified. If every prime \) of K is unramified, and if in addition 
every embedding of K into the real numbers extends only to real embeddings 
of L, then we say that L is unramified over K. A fundamental fact of class 
field theory asserts: 

Let L be the maximal abelian unramified extension of K. 

Then there is a canonical isomorphism 

CK « Gal(L/üC) 

of the ideal class group of K with the Galois group of L over K. 

Another difficulty encountered in analyzing the Fermât curve, besides the 
ideal class group, was due to the units of oK. Kummer had understood the 
deeper significance of the units, and of a distinguished subgroup of the units 
which he could write down immediately. Indeed, let £ be a primitive AT-th 
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root of unity, and let i, j be positive integers prime to N. Then 

1 — ^" 

is a unit. This is easily seen. First we note that 

i=£ = i+ f+.. .+ ? i - i , 

so 1 — £ divides 1 — çl. But we can find a positive integer a such that 
aj = 1 mod N since j is assumed relatively prime to N, so we get also that 
1 — ç3 divides 1 — ç, as asserted. 

Let K = Q(/ijv). We let Ecyc(K) be the group generated by all roots of 
unity in K and all the units of the form 

l<a<N 

We call Ecyc(K) the group of cyclotomic units. It is a subgroup of the 
units E{K). A classical theorem of Dirichlet asserts that E{K) (so Ecyc{K)) 
are finitely generated, of the same rank. In fact, we have 

mnkE{K) = ^ ^ - - l , 

where [K : Q] is the degree of K over Q, which is known to be equal to 
<t>{N) (0 is the Euler function). Although one knows the group ECyc(K)f the 
structure of E(K), and especially the factor group E/Ecyc remains a mystery. 

It is clear that the essential aspects of the units have to do with the real 
subfield K+ of K. Indeed, let E+ denote the group of units in K+. With 
Hasse, define the index 

Q = (E: pKE+). 

Then it is easy to show that Q = 1 if N is a prime power, and Q = 2 if 
N is composite. In addition, concerning the cyclotomic units, suppose for 
simplicity that N is odd. If ç is an iV-th root of unity, we can write ç = X2 

for some 7V-th root of unity X, and then 

1 _ X2 = X ( \ - ! _ X). 

This immediately shows that up to roots of unity, the cyclotomic units are 
real. 

In the formula for the rank given above, the factor of 1/2 is due to the 
fact that up to roots of unity, the units come from the real subfield; and we 
subtract 1 because there is a relation analogous to the property in function 
fields that a function has the same number of zeros and poles, counting 
multiplicities. In the present instance, the places at infinity are simply the 
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embeddings of a number field into the complex numbers. If v denotes such an 
embedding, and | \v denotes the absolute value induced by the embedding, 
then one has the relation for any unit e: 

]T>g|e|„=0. 
V 

If ri denotes the number of real embeddings and 2r^ the number of complex 
embeddings, then it is clear that the rank of the units is at most r\ -f- r<i — 1, 
and Dirichlet's theorem implies that the rank is precisely equal to this number. 
In the cyclotomic case K = Q(/i;v) with N > 3 there is of course no real 
embedding of K. 

We shall now see more precisely what is known and what is conjectured 
about the ideal class group and unit group in the cyclotomic fields. 

We must view the various groups we have introduced as representation 
spaces for the Galois group 

G = Gal(Q(Mjv)/Q). 

This group G is isomorphic to (Z/iVZ)*, under the association 

a h+ aa. 

If a is an integer prime to N, then aa is the automorphism of QQMAT) such 
that 

The group of principal ideals is stable under G, so G acts on CK with 
K = QQi;v). It is also clear that the group of cyclotomic units is stable 
under G, so G acts on E/Ecyc- What is the structure of these groups as 
G-modules? 

In any representation theory, one tries to decompose representation spaces 
into eigenspaces for the characters of the group. The first immediate such 
decomposition that we deal with is that arising from complex conjugation. 
Note the element cr_i in G such that 

If A is any G-module we let A+ be the (+l)-eigenspace for cr__i, that is the 
subgroup of elements fixed by o—\. We let A~~ be the (—l)-eigenspace, that 
is the subgroup of elements x such that u—\x = —x for x G A (writing the 
operation of A additively). If multiplication by 2 is invertible on A, then we 
have a direct sum decomposition 

A = A+@A~. 

Consider the group of ideal classes C = CK- Let K+ denote the real 
subfield of K. An ideal a in K+ lifts to an ideal of K, namely 

a »-> aoK-
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This induces a homomorphism on the ideal class groups 

CK+ —• CK 

which can be proved to be injective. Likewise, we have a norm map 

NK/K+ *• CK - * CK+ 

given by c K-> ccp, where p = cr_i is complex conjugation. It can be shown 
that this norm map is surjective. By definition, the kernel of the norm 
map consists of those ideal classes c such that c*+p = 1, or in other words 
cp = c"-1. This kernel is precisely the (—l)-eigenspace for complex conjuga­
tion. Thus we have an exact sequence 

1 —• C^ —• CK —• CK+ —• 1. 

(For proofs, cf. [L 1], Chapter 3, §4.) We let: 

h^~ = order of C + and h~~ = order of C~~. 

Then h+ is the class number of the real subfield, and we have 

h = h~h+. 

We are thus led to study h~+~ and h~ separately. 

(b) Plus eigenspaces. Let us begin with /i+. First there is a relation of this 
number with units. We assume for simplicity that N = p is a prime > 3 and 
K = Q(|ip). We then have a coincidence of orders: 

Theorem 2.1. h+ = {E : Ecyc). 

This theorem is due to Kummer. Its proof today is viewed as elementary, 
and results from the factorization of the zeta function into Dirichlet L-series. 
There is no need to go into the proof here. Kummer made the first basic dis­
coveries concerning these class numbers, and made the first basic conjectures. 
Especially: 

Conjecture 1. For Q(|ip)? ̂ + is prime to p. 

The history of that conjecture is interesting. Kummer made it in no uncertain 
terms in a letter to Kronecker dated 28 December 1849. Kummer first tells 
Kronecker off for not understanding properly what he had previously written 
about cyclotomic fields and Fermat's equation, by stating "so liegt hierin ein 
grosser Irrthum deinerseits... " ; and then he goes on (Collected Works, Vol. 
1, p. 84): 
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Deine auf dieser falschen Ansicht berühenden Folgerungen fallen 

somit von selbst weg. Ich gedenke vielmehr den Beweis des 

Fermatschen Satzes auf folgendes zu grunden: 

1. Auf den noch zu beweisenden Satz, dass es für die Ausnahmszahlen 

X stets Einheiten giebt, welche ganzen Zahlen congruent sind 

für den Modul X, ohne darum Xte Potenzen anderer 

Einheiten zu sein, oder was dasselbe ist, dass hier niemals 

D/A durch X theilbar wird. 

In our notation: X = p and D/A = /i+. Writing h+ in this form is 
explainable in terms of the expression in Theorem 2.1. The quotient D/A 
represents the order of the factor group E/Ecyc. Thus Kummer rather 
expected to prove the conjecture. According to Barry Mazur, who reviewed 
Kummer's complete works when they were published recently by Springer-
Verlag, Kummer never mentioned the conjecture in a published paper, but he 
mentioned it once more in another letter to Kronecker on 24 April 1853 (loc 
cit p. 93): 

Hierein hangt auch zusammen, dass eines meiner Haupresultate auf 

welches ich seit einem Vierteljahre gebaut hatte, dass der zweite 

Faktor der Klassenzahl D/A niemals durch X theilbar 

ist, falsch ist oder wenigstens unbewiesen.. .Ich werde 

also vorlaufig hauptsachlich meinen Fleiss nur auf die Weiterfiihrung 

der Theorie der complexen Zahlen wenden, und dann sehen ob 

etwas daraus entsteht, was auch uber jene Aufgabe 

Licht verbreitet. 

So the situation was less clear than Kummer thought at first. Much later, 
Vandiver made the same conjecture, and wrote [Va 1]: 

.. .However, about twenty-five years ago I conjectured that this 

number was never divisible by p [referring to h+]. Later on, 

when I discovered how closely the question was related to 

Fermat's Last Theorem, I began to have my doubts, recalling how 

often conjectures concerning the theorem turned out to be 

incorrect. When I visited Furtwàngler in Vienna in 1928, he 

mentioned that he had conjectured the same thing before I had 

brought up any such topic with him. As he had probably more 

experience with algebraic numbers than any mathematician of his 

generation, I felt a little more confident... 
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Vandiver, like others before him, wanted to have such a result for the applica­
tion to what is called the first case of Fermat's theorem: there are no solutions 
other than the trivial ones to the equation 

XP + yP = ZP 

in relatively prime integers x, y, z which are also prime to p. Many years 
ago, Feit was unable to understand a step in Vandiver's "proof that 
p\h+ implies the first case of Fermat's Last Theorem [Va 2], and stimulated 
by this, Iwasawa found a precise gap which is such that there is no proof. 

In number theory, or elsewhere, when two groups arising naturally in the 
course of a theory have the same order, one immediately asks whether this 
coincidence is not due to the fact that the groups are isomorphic. Iwasawa has 
an example showing that C+ and E/Ecyc are not isomorphic as G-modules. 
It is generally believed that the two groups are not always isomorphic, even 
as abelian groups. However, in this direction, one has the next best thing. 

Theorem 2.2. For any prime I not dividing the degree [K : Q] with 
K = Q(/ip) the I-primary parts of C+ and E/Ecyc have isomorphic semi-
simplications. 

Recall that the /-primary part A® of a torsion abelian group A is the 
subgroup generated by all elements whose order is a power of I. 

We also recall briefly the definition of semisimplification. Let A be a 
representation module for G. We say that A is simple (or gives a simple, 
or irreducible representation of G) if A 7^ {0}, and if A has no G-submodules 
other than 0 or itself. The module A may of course have a coefficient ring or 
field acting on it, commuting with the action of G. If A is a finite group, we 
may take this ring to be Z. Suppose that A is finite, or finite dimensional over 
a field. Then A has a chain of submodules 

A = i o D A O - O A 

such that every Aj/Ai_j_i is simple. The direct sum 

is uniquely determined as a G-module, up to isomorphism, and is called the 
semisimplification. In earlier terminology, the simple components Ai/Ai+i 
are called the Jordan-Holder factors. 

Theorem 2.2 was conjectured for several years, stemming from the work 
of Leopoldt [Le 2]. The conjecture is made explicit in Gras [Gra]. A related 
conjecture appears as a "Remark" in Coates-Lichtenbaum [Co-L], p. 520. 
Greenberg [Gr 2] showed that the statement of Theorem 2.2 was a consequence 
of a standard conjecture concerning certain infinite extensions, now proved 
by Mazur-Wiles, see below Theorem 2.10. 
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By going up the tower of pn-th roots of unity, one can make a conjecture 
concerning the limiting behavior of units and ideal classes as modules over the 
infinite Galois group. This is more elaborate to state, and we shall touch on 
that aspect of the question at the end of this section. 

The group theoretic situation in the case when N is composite was unclear 
for a long time. Sinnott [Si 1], [Si 2] made a breakthrough when he discovered 
the appropriate group-ring formulation needed to handle the analogue of 
Theorem 2.1 in the composite case. In this case, the reader should be warned 
of at least one important new phenomenon: the presence of a power of 2 in 
the relation of Theorem 1.1, between fo+ and the index (E : E^yc)* namely 

(E : Ecyc) = ( £ + : £ + c ) = 2"h+, 

where v = 2 t — 2 -f-1 — t, and t is the number of prime factors of AT, whenever 
t > 2. Thus when t = 1 or 2, 2U = 1, but u > 0 otherwise. 

(c) A topological interlude. Let G be a finite group operating freely on 
the n-sphere Sn with n > 3, and let Sn/G be the quotient space. Then 
G = 7Ti(Sn/G) is the fundamental group. Such operations therefore give rise 
to maximal unramified coverings, which are even finite. One wishes to classify 
such actions up to various equivalence relations. Two representations Ri, Ri 
of a group G in the group of topological automorphisms of a space X are 
called topologically conjugate if there exists a topological automorphism T of 
X such that TRi(g)T~1 = /^(ôO for all g £ G. A folklore conjecture asserts 
that: 

a topologically free action of a finite group on the 3-sphere S3 

is topologically conjugate to a free linear action. 

Seifert must have known this possibility. Milnor drew attention to the prob­
lem in the late fifties, and solved a special case. The problem is stated in 
Thurston's Lecture Notes from Princeton (in circulation). For background 
material, see J. Hempel's book on 3-Manifolds (Ann. of Math. Studies 96, 
1976). 

In higher dimensions, there is of course always the linear action of finite 
subgroups of 0(n) on Sn. For such linear theory, cf. for instance J. Wolf, 
Spaces of Constant Curvature, 2nd Edition, Publish or Perish. I am indebted 
to C. B. Thomas for drawing my attention to the above literature, and to 
forthcoming papers of his, concerning the classification of free actions of finite 
groups on Sn which C. T. C. Wall has already shown to depend in part on the 
2-primary component of the ideal class group in real cyclotomic fields Q(MAT)~*~ 

for suitable N. 
In particular, Thomas tells me that given any free action of a finite group G 

on Sn with n > 5, there exist infinitely many distinct topological conjugacy 
classes of actions of G on Sn, and there are only finitely many topological 
conjugacy classes of linear actions. Using the algebraic background of a paper 
of Wall [Wa], applied to the surgery exact sequence, Thomas gives examples 
for the binary dihedral group Z>4P of order 4p operating freely on S4k~1 



266 SERGE LANG 

with k > 2, when p is a prime such that ft+ is odd, e.g. p < 163. These 
operations are even homotopically distinct from the classical linear actions. 
[For the convenience of the reader, I reproduce a definition of D±p. It can be 
represented as the group generated by the matrices 

G "o') - G A ) 
where ç is a primitive p-th root of unity. It is one of the extensions of the cyclic 
group of order p by the cyclic group of order 4. In the above representation, 
it acts linearly on C2, whence on S3 which is naturally contained in C2.] 

Furthermore, according to Thomas, there exist free actions by D±v which 
can be topologically distinguished only by an invariant in the 2-primary part 
of the ideal class group of Q(MP)"*~- A paper of Kubert [Ku 1] shows the 
existence of a large 2-primary component in Q(/L*;V) when N is divisible by 
many primes, but says nothing about the 2-primary part for Q(/ip). 

In the above context, the ideal class group (2-primary part) intervenes. I am 
indebted to J. Milgram for pointing out to me the existence of a substantial 
literature which relates the existence of free action of finite groups on spheres 
to units in cyclotomic fields, and especially cyclotomic units. For example in 
[Mi 1], [Mi 2] Milgram reduces questions of which groups act on Sn (n > 3) 
to explicit questions involving the structure of such units. Since my main 
interest here was only to point out briefly a connection of units and ideal class 
groups with topology, and constitute an aside for the main topics of these 
lectures, I refer interested readers to the discussions and bibliographies at the 
end of Milgram's papers for further information. 

(d) The minus eigenspaces. So much for the plus part of the class number 
and the units at this time. Let us look at the minus part. The situation is 
now radically different. We are seeking all relations for the ideal classes C~ in 
the group ring R = 1[G\. Classical relations are provided by a construction 
of Kummer and Stickelberger, as follows. 

Given a real number modZ, say x E R/Z, we let (x) denote its unique 
representative in R such that 

0 < (x) < 1. 

We define the first Bernoulli polynomial 

(There will be a second Bernoulli polynomial later.) We then define the 
Stickelberger element in Q[G]: 
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This element 0 has rational coefficients in the group algebra. How to integral-
ize it? Note that for any positive integer c odd and prime to p, the rational 
numbers 

are integers. From this it follows at once that (ac — c)0 E Z[G]. In other 
words, let / be the ideal in the group ring Z[G] generated by all elements 
oc — c with c prime to 2p. Then 

10 C Z[G], 

and in fact, if we let R = Z[G], then 

R0r)R = 10. 

Furthermore, 0 = 0~. We call 10 the Stickelberger ideal S. 

Theorem 2.3. The elements of the Stickelberger ideal annihilate C~~. 
(Actually, they also annihilate C.) 

This theorem of Kummer and Stickelberger is proved by showing that for 
any ideal a, the ideal aa is principal when a = (o~c — c)0, and by exhibiting 
explicitly the algebraic number generating this ideal, which is a quotient of 
Gauss sums. We do not go into this explicit determination here since we 
want to emphasize other aspects of the theory. For a general context, see 
Conjecture 8.3. Kummer had already proved the theorem by getting the 
relation for prime ideals of degree 1 over Q, see [Kum 2], p. 628, and by using 
the "Stickelberger element" in special cases. 

Iwasawa [Iw 3] proved: 

Theorem 2.4. (R~ :S) = h". 

As for the cyclotomic units, this relation holds without extra factor when 
dealing with N equal to a prime power, and with an extraneous power of 2, 
as determined by Sinnott, when N is composite. We stick to the prime case 
for simplicity. 

Iwasawa and Leopoldt emphasized repeatedly the problem of determining 
the relation between the factor module R~/S and C~~. 

Theorem 2.5. Let K = Q(/ip). For any prime I not dividing the degree 
[K : Q], the I-primary parts of C~~ and R~/S have isomorphic semi-
simplifications. (Here we may have I = p.) 

Theorem 2.5 was conjectured by Leopoldt [Le 2], [Le 3], and like its 
plus counterpart, follows from the Mazur-Wiles general theorems. For the 
p-primary part, one has in addition: 

Conjecture 2. The p-primary part ofC~ is cyclic over the group ring, namely 
it is generated by one element, and consequently there is an isomorphism 

(R-/S){p) « C~^\ 

where the superscript (p) indicates p-primary part. 
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In this manner, the study of the minus p-primary part of the class group 
would be reduced to the study of the Stickelberger ideal. 

Note. Conjecture 2 stems from the work of Iwasawa and Leopoldt, but 
neither have explicitly stated it as a conjecture. They certainly drew attention 
to its possibility, and for convenience, it may be useful to refer to it as the 
Iwasawa-Leopoldt conjecture. If it is true, they should get the credit, and if 
it is false, I should get the blame. 

When studying the eigenspaces for the characters of G (after a suitable 
extension of scalars), one encounters the character values 

p—i / \ 

X(0) = Y, M - )x(a) = #i,x by definition, 

identifying aa with a in (Z/pZ)*. Following Iwasawa, Leopoldt, and Mazur, 
this sum can be written as an integral 

*'* = .L.***" /Z/pZ 

but we do not discuss this aspect of the question. However, we note that the 
divisibility properties of h~ depend on the divisibility properties of these sums 
x(0), which are still very difficult to determine. Indeed, it is shown classically 
also by elementary L-series considerations that one has the explicit formula: 

Theorem 2.6. h~ = w JJ B1}X. 
xodd 

Here w is the number of roots of unity in QQttp), namely 2p. The product 
is taken over odd characters x> meaning characters such that x(—1) = —1-
Thus the divisibility properties of h~ are determined by the divisibility 
properties of the numbers # i , x , the "generalized Bernoulli numbers" of 
Leopoldt [Le 1] who investigated their congruence properties, picking things 
up where Kummer left them a century before. 

So we look at characters x of (Z/pZ)*, even or odd since we are going to 
deal with the cyclotomic fields and the modular curves. The group (Z/pZ)* 
is merely the multiplicative group of the prime field Z/pZ, and consists of 
(p — l)th roots of unity. On the other hand, the p-adic integers Zp contain 
the (p — l)th roots of unity as a subgroup of Z*, and reduction modp gives 
an isomorphism 

/xp_! - (z/pzr 
of the group of (p — l)th roots of unity in characteristic 0 with the (p — l)th 
roots of unity in characteristic p. The inverse of this isomorphism, 

w : (Z/pZ)* - / v _ i 

is called the Teichmuller character. So w(a) is the unique root of unity 
congruent to a mod p. 
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Instead of the group ring Z[G], let us look at the group ring ZP[G] over 
the p-adic integers. We lose nothing in so widening the coefficients when we 
look at representations of G in finite abelian groups whose order is a power 
of p; and we gain a lot, because the usual idempotent projecting on the x-
eigencomponents can now be written with coefficients in Zp, namely 

As usual, \G\ denotes the order of G, namely p — 1 in the present case. Note 
that p — 1 is invertible in Z*, so ex G ZP[G]. Let M be a G-module on which 
multiplication by p — 1 is invertible. Then exM is the x-eigenspace, namely 
the subgroup of all elements x such that 

ax = x(°")x-

This eigenspace will be denoted by M(x). 
Here we let M be the co-Stickelberger module, 

M = ZP[G]-/ZPS. 

According to Conjecture 2, we have M œ C~~(p\ In any case, one can ask two 
questions: what is the structure of M, and how closely does it approximate 

Theorem 2.7. (i) Ifx = u, then M(x) = 0. 
(ii) x is an odd character, x ^ w then M(x) is cyclic, 

M{x) ~ Zp/Si,xZP-

In particular, ordp M(x) = ord p Bi^ . 

This theorem is an immediate consequence of the definitions. Theorem 2.5 
then implies that 

ordpC-W(x) = ordpJ3ilXl 

and Conjecture 2 predicts that C~(p\x) is cyclic, for an odd character x 7^ w, 
of order p m M, where m(x) = ordpBi)X. Thus the study of M is reduced to 
the study of p-divisibility of the Bernoulli numbers. 

The above conjectures and theorems constitute an essential part of the 
present vision of what the structure of units and class numbers should be like. 
It can be shown that the Kummer-Vandiver conjecture h+ prime to p is true 
implies all the theorems and conjectures of this section. Thus the conjectures 
are related, and in fact are related via Kummer theory and class field theory 
as follows. 

Consider the maximal abelian unramified extension of K = Q(/LIP) which 
is of exponent p, meaning that if Q is its Galois group, then av = 1 for all 
a G 9- By Kummer theory, if L is a cyclic subextension of degree p, then 

L = K{ex^) 
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for some element e. The Kummer-Vandiver conjecture implies that e can be 
taken to be a cyclotomic unit. But then the representation of Gal(i£/Q) on 
the cyclotomic units is sufficiently explicit so that by mixing Kummer theory 
and class field theory one obtains the cyclicity of C~ over the group ring. 
Actually, the situation is more involved, because as described above, we are 
only dealing with the subgroup of elements of order p, and to get the full 
structure, one has to consider higher cyclotomic fields of pn-th roots of unity, 
for n tending to infinity. In other words, one has to go up the cyclotomic 
tower. This requires a more elaborate foundation and the introduction of new 
concepts which are more technical. In any case, one is led to consider double 
decked extensions 

i^e1/?) 

K = Q(/ip) 

Q 
such that each layer is abelian, but the composite layer is not; and similarly 
when p is replaced by pn for arbitrarily large n. Attempts to recognize directly 
which extensions K(e1^p) are unramified over Q(/ip) have failed for a century. 
The newly developed methods via algebraic geometry replace the ordinary p-th 
root of a unit by another p-th root, namely the root taken relative to the group 
law on Jacobian varieties, where the additional structure is more complicated, 
richer and leads to results which so far were unobtainable otherwise. 

In the tower, we should note a theorem of Washington [Wash]. 

Theorem 2.8. Let C~ be the minus part of the ideal class group in Q(/t*pn+i). 
Let I be a prime 7^ p. Then the powers of I dividing the orders of C~ are 
bounded. 

One asks not only for the behavior of class numbers 'Vertically", that is in 
the tower of fields Q(/V*) for n tending to infinity, but one also asks for the 
"horizontal" behavior of these class numbers. This amounts to the horizontal 
behavior of B\)X from the point of view of divisibility, when x is a character 
of (Z/pZ)*, and p is viewed as variable. As far as I know, there are no results 
in this direction. Computations indicate a perturbation of random behavior. 
For instance, Trotter has done some computations for the class number 

h = —B1}X 

of an imaginary quadratic field F = Q(\/—p), where x is the associated 
quadratic character. Consider the primes = 3 mod 4, with 7 < p < 48,611. 
There are 2,512 such primes. We have mod 3: 

h = 0 for 964 (out of 2,512) or 38.4 0/0, 

h = 1 for 761 (out of 2,512) or 30.3 0/0, 

h = 2 for 787 (out of 2,512) or 31.3 0/0. 
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As Trotter remarks, the evidence is strong that h = 0 mod 3 occurs more often 
than a third of the time, quite strong that h = 0 mod 5 occurs more than one 
fifth of the time, and definitely suggests that h = 0 mod 7 occurs more than 
one seventh of the time. One awaits more precise conjectures and proofs. 

However, the distribution over all quadratic fields Q(v/—D) appears to be 
random, cf. Davenport and Heilbronn [Da-H], cf. see also Kuroda-Leopoldt in 
[Zi],p.42. 

When the quadratic subfield F is contained in the cyclotomic field Q(/ip), 
then the ideal class group of F occurs as a quotient group of the ideal class 
group of Q(/xp), by considerations of class field theory, so the class numbers 
of subfields of Q(/ip) are important components of the class numbers of the 
full cyclotomic field itself. 

(e) The cyclotomic p-tower. In this last part I shall summarize briefly 
the way one formulates results in the infinite tower of p-extensions, first 
investigated by Iwasawa. The algebra becomes a little heavier. The reader 
might omit this part at first, in order to minimize the obstacles preceding 
the discussion of geometric connections of number theory and groups of finite 
order on Jacobian varieties, given in §3 and §4 for Q(/Jp). 

I limit the discussion to the standard cyclotomic case, so let p be an odd 
prime, and let 

oo 

Kn = Q(/V+0> ^oo = (J Kn. 
n=l 

Let: 

9n = Gal(Xn/X0), 

Qoo = GaliKoo/Ko) = projective limit of the groups Qn. Then 

Qoo ~ Zp. 

7 = topological generator of £00, for instance 7 = &\-\-v. 

A = projective limit of Zp[£n]. Then there is a unique isomorphism 

A«ZP[[X]] 

with the power series in one variable over Zp, such that 1 -f- X corresponds 
to the chosen generator 7. This means that the image of 1 -f X in Zp[£n] is 
equal to the image of 7 in Qn for all n. We call A the Iwasawa algebra. Cf. 
[Iw 1] and [Se 2]. Let: 

An = p-primary part of Cl(Kn)~ and 

A = \imAn. 

Then A is a A-module, which can be proved to be torsion and finitely 
generated, and A is also a topological 7-module. Cf. Iwasawa [Iw 1] and Serre 
[Se 2]. Let further: 

Gn = Gal(Kn/Q). 
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Then A is a Go-module. Since /t*p_i C Zp, if x denotes odd characters of G0, 
we may form the decomposition 

* = ©>«x). 
X 

For each n there is a Stickelberger ideal Sn, and the co-Stickelberger module 
at level n: 

Mn = Zp[Gn]-/ZpSn. 

We let the co-Stickelberger module be the projective limit 

M = (lim Mn. 

If the Iwasawa-Leopoldt conjecture is true, then we have an isomorphism for 
each odd x ^ w : 

A(x) « M(x)-

We wish to describe the Mazur-Wiles theorem concerning the structure of A 
as A-module. 

Two modules M\ and M% are called quasi-isomorphic if there is a homomor-
phism h : M\ —• M2 with finite kernel and finite cokernel. It is a theorem 
of Serre [Se 2] that any finitely generated torsion module over A is quasi-
isomorphic to a direct sum 

0A/p'«A©0A//,-A 
* 3 

where each f3- is a Weierstrass polynomial, namely a polynomial in X with 
leading coefficient 1, and all other coefficients congruent to Omodp. Such a 
module will be said to be of Jacobian type if there are no factors of type 
A/prA. 

Theorem 2.9. (Ferrero-Washington) The module A and the co-Stickelberger 
module are of Jacobian type. 

The proof in [Fe-W] relies on p-adic measure theoretic considerations, and 
we do not go into it here. If ƒ is a Weierstrass polynomial, then A//A is free 
of dimension deg ƒ over Zp. For a module of Jacobian type, we define the 
characteristic polynomial to be 

H*-
It is the characteristic polynomial of 7 — 1 acting on the Qp-vector space 
obtained by.tensoring with Qp. 

Theorem 2.10. (Mazur-Wiles) For any odd character x 7^ w, x 7^ ü, 
the modules A(x) and M(x) have the same characteristic polynomials. 
Equivalently, the Qp-vector spaces Q,pA(x) andQpM(x) have isomorphic semi-
simplifications as A-modules. 
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A generator of the ideal formed with the characteristic polynomial is deter­
mined only up to a unit in A. Another generator of independent interest arises 
in the theory and illuminates Theorem 2.10, namely a power series gx having 
the following property. Let ip be a character of l-fpZp, and let n be the small­
est positive integer such that 1 + pnZp is contained in the kernel of ip. Such 
p n is called the conductor of i/>. One can define generalized Bernoulli numbers 
Bi)Xip. Identifying £oo with 1 + pZp by using the topological generator 7, we 
may view ip as a character on £cx>. Then ^(7) is a primitive pn—x-th root 
of unity. There exists a unique power series gx = gxn (of Kubota-Leopoldt) 
such that for all ?/>, we have 

The Ferrero-Washington theorem is equivalent with the property that the 
coefficients of gx are not all divisible by p, and hence that 

gx{X) = co + c\X -\ \- c\Xx -f higher terms, 

where cu = Omodp for v < X, and c\ is a p-adic unit. The Weierstrass 
preparation theorem states that gx differs from a Weierstrass polynomial by 
a unit in ZP[[X]]. The following theorem is a direct consequence of the 
definitions and p-adic interpolation, belonging to the basic theory of p-adic 
L-functions due to Iwasawa. 

Theorem 2.11. The characteristic polynomial 0/7—1 on the co-Stickelberger 
module M(x) is the Weierstrass polynomial of the Kubota-Leopoldt power series 

Although the Mazur-Wiles theorem does not completely elucidate the 
module structure of A, or at the first level of CY~(Ko)(p\ it is sufficient to 
imply consequences for the orders of these groups. We shall state such a 
consequence in a later section in connection with the algebraic-geometric con­
siderations entering in its proof. 

The Iwasawa-Leopoldt conjecture would be more precise than the Mazur-
Wiles theorem for the classical cyclotomic tower that we have considered. 
It is related to the simplicity of the roots of the characteristic polynomials 
involved. 

On the other hand, Mazur-Wiles treat more general ground fields than 
the rationals, namely any abelian field (a subfield of a cyclotomic field); and 
thereby they deal with a more general character decomposition than that of 
the group Gal(ÜTo/Q). For these more general ground fields, the analogue 
of the Iwasawa-Leopoldt conjecture is definitely not always true. It is still a 
problem, even in the most classical tower over Q, to determine the extent to 
which the modules M(x) and A(x) differ, for instance: is A(x) quasi-cyclic, 
or equivalently are M(x) and A(x) quasi-isomorphic? To what extent are the 
characteristic roots simple? 

One should not miss the importance of having these more general ground 
fields and characters, and I want to add a few words about that. Let F be 
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an abelian extension of the rationals, contained in some cyclotomic field. For 
each prime number p, the Galois group Gal(Q(/ipoo)/Q) has a finite torsion 
subgroup, whose fixed field Zp is a Zp-extension of Q, that is 

Gal( V Q ) ~ ZP. 

Let FZP be the composite. Then FZP is called the cyclotomic Zp-extension 
of F. Let 7P be a topological generator of Gal(FZp/F). For odd character 
X with conductor divisible at most by the first power of p, one may form 
the projective limits AF,P{X)

 a n d Mp)P(x) as before using the appropriate 
generalized Bernoulli numbers. The Mazur-Wiles theorem asserts that these 
two Ap-modules have the same characteristic polynomial fPfX for 7P — 1. 

For almost all p we can make a canonical choice of 7P. Indeed, if p is 
odd, then Gal(Zp/Q) is generated by <7i+p, and if p = 2, then by cri+4. For 
almost all p, F is disjoint from Zp, so <Ji_|-p may be viewed as a generator 
of Gal(FZp/F). For this choice of generator one may then ask more refined 
questions concerning the coefficients and the roots of the characteristic poly­
nomial, for a given character x> or after taking a product over x for the 
characteristic polynomial fp of <7i_|_p — 1 on QpMp)P. One may also ask ques­
tions concerning the behavior of fp for varying p, for instance: are the degrees 
bounded as a function of p; how do they vary with p; what is the nature of 
the roots; what is the distribution of p for which the roots are simple; etc. 
Some of these questions are now being thought about by those active in the 
field, but nothing is known at present. This leads into the consideration of 
extensions of type 

FZPl--ZPt 

for a finite set of primes p\,.. .,p*, and in general passing to the limit. Such 
extensions have recently been considered by Greenberg and Friedman follow­
ing Iwasawa. 

Finally, I should also emphasize that one can take much more general 
ground fields than abelian fields, and one can define a Stickelberger element 
and ideal via the zeta function instead of doing it ad hoc as we did here 
with Bernoulli polynomials. Cf. §8, where this will be done in a different 
context. Similar questions then arise for arbitrary Zp-extensions: we are faced 
with (at least) two modules, the projective limit of the ideal class group (p-
primary part) and the co-Stickelberger module, so that the investigation of 
their relation can be posed as a problem in this generality. Cf. [Co 1]. 

§3. Modular curves 

Let § be the upper half plane, that is the set of complex numbers 
r = x + iy with y > 0. Let T(l) = £L2(Z) be the modular group, that 
is the group of matrices 

- ( : 3 
with integer coefficients, determinant 1. Then T(l) operates on § by 

ar + b 
CT -f- a 
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and ± 1 operates trivially, so we get a faithful representation of T(l)/ i 1. 
The coset space T(l) \ § has a representative fundamental domain which has 
the well-known shape pictured below. 

1 1 1 
-1/2 0 1/2 

There is a classical function, holomorphic on § and invariant under T(l), 
called the j-function, which gives a complex analytic isomorphism 

i :T(l) \$ -Pfe-{oo} 

with the affine line (projective one-dimensional space from which infinity is 
deleted). If one takes q = e27rzr as a local uniformizing parameter at infinity, 
then one can compactify T(l) \ § by adjoining one point at infinity, thus 
obtaining a compact Riemann surface namely FQ. In terms of q, the function 
j has a Laurent expansion 

j = - + 744 + 196884c + higher terms. 
Q 

One can characterize j analytically by stating that j(i) = 1728 and 
j(e27™/3) = 0, while j(oo) = oo. This is rather ad hoc. A better way to 
conceive of j is in terms of isomorphism classes of complex toruses as follows. 

Let A = [a>i,u;2] be a lattice in C, with basis Wi,uJ2 over the integers. 
This means that A is the abelian group generated by ÜJI,ÜÜ2, and that these 
two elements are linearly independent over the real numbers. In addition, 
we shall always suppose that Ui/oj2 lies in the upper half plane, so we put 
u)1/üj2 = r. Then the invariance of j under SL,2(Z) shows that the value j(r) 
is independent of the choice of basis as above, and in addition, is the same 
if we replace [wi ,^] by [CCÜI,CO;2] for any complex number c ^ O . Thus we 
may define 

i(A) = i(r), 
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and we have j(cA) = j(A). But C/A is a complex torus of dimension 1, 
and the above arguments show that j is the single invariant for isomorphism 
classes of such toruses. The value 1728 is selected for usefulness in arithmetic 
applications. One can give many analytic expressions for j , arising from the 
theory of elliptic functions. For instance, associated with the lattice are the 
two invariants 

02(A) = 6 O j > - 4 and g3(A) = 140 ] [ > - 6 , 

where the sums are taken for u) G A, w ^ 0. Then 

j = mSgl/(gl-27gl). 

Now let T be a subgroup of T(l), of finite index. Then T \ § is a finite 
(possibly ramified) covering of T(l) \ § . We shall be specifically interested in 
some very special subgroups T, which we now describe. Let N be a positive 
integer. We define: 

T(N) = subgroup of elements 7 = 1 j mod N; 

Ti(N) = subgroup of elements 7 = 1 J mod N with arbitrary 6; 

r0(iV) = subgroup of elements 7 = ( ) mod N with arbitrary a, b. 
V0 dj 

Since det 7 = 1 and a, b, c, d are integers, we must have 

d = a~~x modiV, 

and a, d are prime to N. It is then easily seen that 

ro(N)/ri( iV)«(Z/iVZ)*. 

In fact we get two exact sequences: 

1 -> T(N) -> r ( l ) -> SL2(Z/NZ) - • 1 

where the right hand map is reduction mod JV; and 

1 -> Ti(iV) -> T0(N) -> (Z/NZy - • 1 

where the right hand map is the projection on a mod N. 
If Ti C r 2 then we have a covering (possibly ramified): 

MS - r 3 \ $ . 
For any T, the projective embedding j of T(l) \ Jp can be lifted to a projective 
embedding 

/r 
T \ § -* some projective space 
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such that the image of / r is an affine curve, denoted by Y(r)ç . The coor­
dinate functions of / r can be chosen in many ways, suited for different ap­
plications, and exhibiting different properties of this affine curve, which is 
called a modular curve. The discussion of such functions becomes technical, 
and will be omitted, except that in §6 we discuss one possible generator for 
projective coordinates. Cf. Klein [Kl] and [Ku-L 1]. 

When T is one of the three groups defined above, then the corresponding 
affine curve is denoted by 

Y(N), Yi(iV), Y0{N) respectively, 

with the subscript C when we refer to the Riemann surface of its complex 
points. Thus we have a commutative diagram of coverings: 

Ti(N)\^ - Yt(N)c 

I i 
r 0 ( A O \ § - Yo(N)c 

To slide into the algebraic terminology, we shall speak more systematically 
of elliptic curves rather than complex toruses C/A. The curves Y\(N) and 
YQ(N) have an interpretation as parametrizing certain isomorphism classes of 
objects, similar to Y(l) (that is T(l) \ § ) parametrizing isomorphism classes 
of elliptic curves, as follows: 

Yo(N) parametrizes isomorphism classes of pairs (A, Z), where A is an 
elliptic curve (complex torus) and Z is a cyclic subgroup of order N. 

Yi(N) parametrizes isomorphism classes of pairs (A,P), where A is an 
elliptic curve and P is a point of order exactly N. 

In terms of the analytic objects, if A = C/[r, 1], we take P to be the point 
represented by 1/iV, and we take Z to be the subgroup generated by P. The 
invariance under the groups To(N) and Ti(AT) gives the bijection between 
T0(N) \ Sç resp. Ti(iV) \ § and isomorphism classes of pairs as stated above. 

However, using the algebraic language and formulation has one advantage: 
it can be used in an arithmetic context, because relative to a suitable choice 
of coordinatization, the curves Yi(N) and YQ(N) are defined over the rational 
numbers. 

In terms of the above representation, the covering map Y\(N) —• Yo(N) 
associates to each pair (A,P) the pair {A,Z) where Z is the cyclic group 
generated by P. 

Now let us look at the points at infinity. 
The affine curve Y(T) can be compactified, and the points in the inverse 

image of oo on the j-line are called the points at infinity, or the cusps. The 
projective curve consisting of Y(T) and the points at infinity is denoted by 
X(T). Thus we have 

x(r)==Y(r)ux°°(r) 
where X°°(r) is the set of cusps. 
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The cusps have a simple model as follows. Let 

£* = § UQU{oo}. 

Then 5L2(Z) operates on Q U {oo}. One can give a topology and complex 
analytic structure to §* such that T \ §* is a compact Riemann surface. A 
typical neighborhood of a rational number r is a disc in the upper half plane 
tangent to r; and a typical neighborhood of oo is the part of the upper half 
plane lying above a horizontal line, as shown in the figure. 

Neighborhood of r 

Then X°°(r) is the set of equivalence classes of Q U {00} with respect to 
the action of Y. 

Again, when V is one of the three special subgroups defined above, the 
corresponding projective curve is denoted by 

X{N\ Xx(iV), X0{N) respectively. 

The (ramified) covering Y\{N) —• Y0(N) extends to a (ramified) covering 

X1(N)-^Xo(N). 

If, as before, we let G ^ (Z/JYZ)*, then this covering has a group of covering 
transformations G/ ± 1, under the association 

a ^ 7 a 

where 7 a is any element of To (AT) satisfying 

I mod N. la - C . - • ) • 
Now take N — p prime> 3. It turns out first that there are precisely two 

cusps on X0(AT) lying above j = 00. The degree of the covering is given by 

[Xi(J\0:X0(J\0] = 
N — 1 
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and it is easily seen that the covering is unramified over the cusps. Therefore, 
if we denote by Qo and Q\ the two cusps of Xo(N), then there are precisely 
(N —1)/2 distinct points on Xi(iV) lying above each of these two points. We 
now let: 

S = set of (N — l)/2 points onXi(N) lying above Q0-

We take this as a particularly interesting set of points at infinity, according to 
the general situations mentioned in the introductory remarks. More precisely, 
Qo and the set of points in S are chosen to be the rational cusps (rational 
points in Q). 

\S\ = (p-l)/2 (P-D/2 

*7<p) 

x?(p) 

r°(i) 

Just as in the case of ideal classes, we seek all relations in the cuspidal 
divisor class groups C°°(T) = Pic°°(X(r)) for the V introduced above. The 
finiteness of this group was originally proved by Manin-Drinfeld [Dr], but the 
investigation of its structure in more explicit form was begun and carried out 
in the Kubert-Lang series of papers. Cf. also [Ku-L 1]. Here we shall limit 
ourselves to describing some results from that series which give a striking 
analogy with the cyclotomic case, and lead into the deeper connections estab­
lished subsequently by Wiles and Mazur-Wiles. These results pertain to the 
group Cf(N) for N prime, where Cf(N) = Pic5(Xi(7V)). 

We are dealing again with the group ring Z[G], or rather Z[G/ ± !]• Let 

B2(x) = x2 — x-\— 

be the second Bernoulli polynomial. Note that B2(l — x) = B2(x) for 
0 < x < 1. We let 

0(2) = N Yl 
aeZ(N)*/±l H(^)K' 
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be the Stickelberger element of order 2. Let: 

/(2) = ideal of Z[G/ i 1] generated by the elements ac — c2 with 

c prime to 6N. 

R = z[G/ ± 1] = the group ring. 

R0 = ideal of elements in R of degree 0, and Jo = I C\ Ro> 

We let the Stickelberger ideal S^ be the ideal 

s^ = Ro^nRo = i(^2\ 
and we then get the co-Stickelberger module Ro/S^. For the rest of this 
section we omit the superscripts (2) since we deal only with them. Otherwise, 
we have to have a notation to distinguish the present situation from that 
dealing with the first Bernoulli polynomials. 

Theorem 3.1. (i) There is a natural isomorphism 

Roi S « Cf(N). 

(ii) We have the class number formula 

(R0:S) = N]1±\B2)X 

where 

B2)X = 2 V £ B 2 ( ^ ) x ( a ) . 

Here x ranges over the characters of (Z/iVZ)*/ J t 1; or what is the same, the 
even characters of (Z/iVZ)*. 

When AT is a prime power, the situation is somewhat more complicated, 
since the Stickelberger ideal needs to be refined, cf. the [Ku-L] series; and 
when N is composite, Jing Yu [Yu] has applied the Sinnott methods to get 
corresponding structure theorems for Cf(N) and C°°(N). 

It is at the moment a problem to give similar geometric interpretations for 
the co-Stickelberger module formed with the higher degree Bernoulli polyno­
mials, defined by the generating series 

tetx ^ tk 

Cf. Kubert-Lang, as in [L 1], Chapter 2 and Bergelson [Be] for purely algebraic 
index computations of Stickelberger ideals involving such polynomials. 

The proof of Theorem 3.1 is done by a complete characterization of the 
group of functions (modulo constants) which have zeros and poles only at the 
cusps, or in the set S as stated above. Such functions can be constructed 
explicitly in terms of "modular forms", but such a discussion gets more 
technical and we wish to proceed with our general survey rather than go into 
these more elaborate constructions. 

In any case, what was Conjecture 2 in the cyclotomic theory is a theorem 
in the context of the cuspidal divisor class group on the modular curve. The 
analogue of the theorem on eigenspces, namely the analogue of Theorem 2.7, 
is then true not only for the group ring modulo the Stickelberger ideal, but 
for the cuspidal group itself. We suppose that p > 5. 
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Theorem 3.2. Let x be an even character of G and let 

M = Zp[G]o/S« where S<?> = ZPS<2>. 

Then 
Cf(p)W « M, 

and we have the following eigenspace descriptions. 

(i) If x is trivial, or x = ^ 2 #&en Af(x) = 0-
(ii) ƒƒ x 7^ 1 and x ^ ^ 2 #^n 

M(x) « ZP/£2,*ZP, 

50 tfizs (/roup Z5 CÎ/C '̂C of order pn(x\ where n(x) = ordpJB2,x-

§4. The Wiles and Mazuiv Wiles connection 

So far, we have described two analogous theories. The possibility that 
the geometric theory would affect the cyclotomic theory was immediately 
apparent (cf. [L 1], p. 53), but it was Wiles who first showed precisely how 
this connection would come about, following work of Ribet. The situation is 
now going to get more complicated, and we have to expand very considerably 
the range of notions which intervene. 

We are concerned with the p-primary component of the group of ideal 
classes in Q(/Jp), say; by class field theory this corresponds to an abelian 
unramified extension. Can one obtain this extension "geometrically", by 
means of certain finite groups on appropriately selected Jacobians of curves as 
in the introduction? Indeed, let us go back to Theorem 2.10, which implies a 
conjectural existence of a certain abelian unramified extension of K = Q(/*p), 
of order pm where 

m = m(x) = ordpBi^, 

for x 7^ w. Ribet [Ri] proved that if p divides £i,x> then there exists a cyclic 
unramified abelian extension of degree p, of the appropriate character, so that 
p divides |C~W(x)|. 

He introduced the theory of modular functions, and especially the curve 
Xi(p), via a fundamental theorem of Shimura [Sh 1], Theorem 7.14. Ribet 
showed that by selecting an appropriate finite subgroup of torsion points in 
a quotient of the Jacobian Ji{p) of Xi(p), he could generate a cyclic extension 
of degree p, 

Q(MP)(9), 

by adjoining the coordinates of the points in this group. However, more has 
now been proved: 

Theorem 4.1. Suppose that x is an odd character, and x ^ ^ x ^ w . Then 
the order ofC~~(p\x) is exactly pm(x). 
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With the additional hypothesis that C~(p\x) is cyclic, this theorem was 
proved by Wiles [Wi]. By an extension of the methods, it was proved as stated 
by Mazur-Wiles [Ma-W]. These methods link the algebraic geometry of the 
modular curves in §2 with the arithmetic of the cyclotomic fields, and are based 
extensively on deep, original and far reaching results of Mazur concerning the 
arithmetic properties of these modular curves and their Jacobians, via his 
theory of the "Eisenstein ideal" in [Ma 1]. I am going to try to explain how 
this comes about, following the introduction and first section of Wiles' paper 
[Wi]. 

Note that if x is an odd character 7^ a;, 7^ a;, then x^ is an even character 
7^ 1, (JJ2. Let Z be the cyclic cuspidal group 

Z = Cf (P)(X")(P) « Zp/B2|XEyZp. 

In other words, Z is the p-primary part of the cuspidal group on Xi(p), with 
support in the set of cusps S described in §2, and forming the x<^-eigenspace. 
The algebra of endomorphisms of Ji(p) contains a subalgebra T, called the 
Hecke algebra, which we shall describe very briefly below. For purposes of 
this section, the Hecke algebra T is assumed to have coefficients in Zp. 

Theorem 4.2. Let x be an odd character^ w, 7^ Q. Letlxu} = I be the 
ideal in T annihilating the cyclic group Z above, and let g be the finite group of 
zeros ofl in J\(p), namely the group of points x £ J\{p) such thatlx = 0. Let 
pn = \Z\ be the order ofZ. Then 

Q(/V0(8) 

is an unramified abelian extension ofQ(iipn), of degree pn. 

This theorem describes how to construct certain abelian unramified exten­
sions by means of torsion points on the Jacobian of the modular curve. Even 
though Z is a cuspidal group, 9 is not. Note that Theorem 4.2 constructs an 
abelian extension of Q(/ipn) but not of Q(/*p), which is what we wanted in 
the first place. Thus it is still a complicated matter to "descend" the above 
construction back to Q(/xp). The matter is sufficiently complicated that I shall 
limit myself to describe in general terms what is done in the papers of Wiles 
and Mazur. This involves the following steps. 

(i) For arbitrary "levels", that is for arbitrary curves X±(pu) and ap­
propriate cuspidal divisor class groups, construct abelian unramified exten­
sions of cyclotomic fields Q(/xpn) with suitable, and arbitrarily large prime 
powers p n , in a way similar to the construction of Theorem 4.2. 

(ii) Express the limiting result (injective limit or projective limit) in the 
category of continuous modules over the Galois group Gal(Q(/npoo)/Q(/zp)); or 
alternatively of modules over the "Iwasawa algebra", equal to the projective 
limit of the group rings formed at finite levels, namely 

A = limZp[£n] 

where Qn = Gal(Q(/L*pn+i)/Q(/zp)); and do this for the eigenspaces relative to 
the characters of Gal(Q(fjp)/Q), as in §2. 
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(iii) Elaborate the algebraic theory of the "twist" which allows one to shift 
from eigencomponents of even characters, arising from the algebraic geometry, 
to the odd characters arising from the ideal-class-group theory; and follow this 
twist by taking Galois invariants to recover the structure (as far as possible) 
of the ideal class group of Q(/ap). See [L 1], Chapter 2, §7; and [Ma-W], as 
well as the end of [Wi], p. 33 where Wiles goes from " p n " to " p m " . 

For these lectures, I preferred to emphasize the connection between the 
algebraic number theory and the algebraic geometry; and to give the flavor 
of the geometric construction used to obtain unramified abelian extensions of 
cyclotomic fields, rather than to enter into the relatively heavy algebra needed 
to describe more precisely the above three steps, except for the last part of 
§2-

We finish this section with a few words concerning the Hecke algebra. It 
is generated by endomorphisms denoted T\ (for I 7^ p), Up, (a) (for a prime 
to p), and Wç. Their descriptions can be given in various contexts, especially 
as correspondences on the modular curve Xi(p), whose points are viewed as 
pairs (E, P) where E is an elliptic curve, and P is a point of order p; or in 
analytic terms, as function of the variable r in the upper half plane. To keep 
this discussion brief, we use the first context. 

Ti is the correspondence 

(E9P)^^(E/Bf(P + B)/B) 
B 

which to each pair (E, P) associates the formal sum shown above, taken over 
all subgroups B of order I in E. 

Uv is the correspondence 

tE,P)K> £ ( £ / £ , (P + B)/B) 
B 

where the sum is now taken over the subgroups of order p but unequal to the 
subgroup generated by P itself. 

(a), for an integer in (Z/pZ)*, is the correspondence 

(E,P)~(E,aP). 

Finally, to describe Wç, one needs to know that there is a canonical pairing 

6p : Ep X Ep —• /Xp, 

which makes Ep self dual, and is alternating. Fix a primitive p-th root of 
unity Ç. To each point P of order p, we let P' be a point (well determined in 
E/{P) by the alternating property) such that 

ep(P9P
,) = (. 

Then w^ is the correspondence such that 

(E,P)»(E/(P),P'). 
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Mazur [Ma 1] had studied extensively this algebra in relation to the cuspidal 
points on Xo(p). By extending this study to Xi(p), Wiles was led to his 
theorems, subsequently completed and extended by Mazur-Wiles. 

For the convenience of the reader, I also give explicitly generators for the 
ideal Ixu) (the Eisenstein ideal, better called the (S, xc^)-cuspidal ideal.) 

Theorem 4.3. Let x be an odd character j ^ w, 7^ Q. Then the cuspidal ideal 
lXUJ of Theorem 4.2 is generated by the elements 

Tt-(1 + 1(1)), Up-1, (o) - X w(o) , pn 

where pn is the exact power ofp dividing B2^UJ. 

Remark. The above generators for the cuspidal ideal correspond to the 
choice of rational cusps which we have made, and is therefore a slight variation 
of the choice made in [Wi] relative to the other set of cusps lying above Q\. 

The situation is obviously deep and complicated. I want to emphasize that 
the techniques and ideas used to solve certain concrete classical problems bring 
out the full panoply of commutative algebra-algebraic geometry over rings of 
Grothendieck and his school, put to work in concrete contexts (especially of 
modular curves). In particular, to show that extensions obtained by adjoining 
coordinates of certain torsion points are unramified, one needs the general 
theory of commutative group schemes of Oort-Tate and Raynaud [O-T], [Ray]; 
the general theory of modular schemes over Z, as in Deligne-Rapoport [De-
Rap]; all based extensively on assorted EGA and SGA to the tune of several 
thousand pages, cf. for instance the bibliography at the end of Wiles' paper 
listing four of these volumes. Not only that, but Mazur-Wiles also use the 
Langlands Antwerp paper [Lgds] based on representation theory-trace formula 
techniques to be able to handle the ramification for J\{pv) for arbitrarily large 
powers pu'. However, the applicability of these last techniques is itself based 
on a good understanding of the algebraic geometry of the various moduli 
schemes involved. The appeal to representation theory can be replaced by a 
direct appeal to the work of Katz-Mazur [Ka-M] on these moduli schemes. 

My listing of the above items is not meant to discourage anyone from 
reading the Mazur-Wiles papers. I merely did not want to hide what was 
involved. However, it should also be understood that few people have a 
complete grasp of all the elements put together by Mazur-Wiles. Some people 
may have the ability to take much for granted; to make just the right selection 
of items culled from more extensive works, and be comfortable with this 
selection; and to develop their intuition from carefully worked out special 
cases, for instance Xo(37) and Xi(37). To each his own. 

§5. Geometric class field theory 

It is possible to give a geometric context for some problems of class field 
theory. I shall select here a special case which can be easily formulated, and 
I follow a joint paper with Katz [Ka-L]. (For varieties over finite fields, cf. 
[L 4] and [L 5].) Although [Ka-L] deals with varieties in general, I limit myself 
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to curves here for simplicity of language. (In higher dimensions, the Jacobian 
must be replaced by the Albanese variety or its dual.) 

Let X be a projective non-singular curve defined over a number field k. 
Unramified coverings of X are usually defined over an algebraic extension of 
k. One may ask for those which are defined over k, and which, furthermore, 
are abelian over k: the elements of the group of covering transformations are 
defined over k also. The following theorem is an analogue of the finiteness of 
the class number. 

Theorem 5.1. Let XQ be a rational point ofX in k. There exists a maximal 
abelian unramified covering 

7T : X ' -+ X , 

also defined over k, such that Xo splits completely in the covering, that is 
TT~1(XQ) consists of d distinct k-rational points, where d = [X' : X] is the 
degree of the covering. 

Note that implicit in the statement of Theorem 5.1 is the fact that the 
maximal abelian unramified covering in which XQ splits completely is actually 
finite. The proof is done by reducing mod good primes, to the case of curves 
over finite fields, where the situation is known by more classical class field 
theory. 

We can generalize the notion of covering to include constant field extensions 
of k, which are then regarded as "unramified" over k. Then from [Ka-L] we 
have: 

Theorem 5.2. The maximal abelian unramified covering of k{X) is the 
composite of the maximal abelian extension A:ab of k and the geometric covering 
whose existence is asserted in Theorem 5.1. 

This geometric covering is in fact obtained by pull-back from the Jacobian: 
there exists a corresponding covering J7 —> J of the Jacobian of X, defined 
over /c, such that X' is the pull-back of J': 

X1 -> J' 

i i 
X -» J. 

In the canonical map of X in J, the point xo is assumed to map on the 
origin of J which splits completely in J'. Thus the problem of determining 
unramified abelian extension of X is reduced to the same problem over the 
Jacobian. The group of covering transformations Aut(J'/J) can be identified 
with a group of translations by rational points of J' in k; that is an element 
T G A\it(J'/J) acts as Ta for some a G ^tor(^)» where 

Ta(y) = y + a. 

Then J can be viewed as the quotient of J' by a finite subgroup 9 C Jf{k) of 
/^rational points of J'. 
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By an elementary duality, the group of rational points on a covering J' of 
J correspond to a certain group on J itself as follows. Let x £ JN be a point 
of order N on J, rational over some finite extension of k. Let fca denote the 
algebraic closure of k (the field of all algebraic numbers), and Gal(fca//c) = Gk 
the Galois group of A;a over A;. We shall say that x is a /x-point if the cyclic 
group generated by x is Gfc-isomorphic to the group fiN of all iV-th roots of 
unity. In particular, x is rational over /c(/i;v). A finite subgroup of J is called 
a //-group if all its points are /te-points. Then it can be shown by duality that 
finite fc-rational subgroups of points on a covering J' of J as above are in 
bijection with /i-groups on J. 

Theorem 5.3. The maximal ^subgroup is finite. 

This statement is equivalent with the finiteness of the maximal geometric 
unramified abelian covering of J (or X) over /c, and follows from Theorem 5.1. 
This led to the conjecture that not only is the maximal fi-subgroup finite, but 
so is the group of torsion points of J in the maximal cyclotomic extension of 
k. This conjecture was proved in [Ka-L] in the case of complex multiplication, 
and was extended to the general case by Ribet (see the appendix to [Ka-L]). 
Since Theorem 5.3 can thus be proved ab ovo, it provides an alternative proof 
for the finiteness of the maximal covering in Theorem 5.1. 

For each curve X it is then interesting to determine precisely the nature 
of this maximal /i-type group, especially for the modular curves which have 
proved so important in other contexts. Let us return to the ramified covering 

X1(p)-+X0(p) 

discussed in §3. It is cyclic of degree (p — l)/2. Let 

n = numerator of . 
12 

Let G be the group of covering transformations. Then G has a unique factor 
group of order n, which corresponds to an intermediate covering denoted by 
X2(p), so Xi(p) —• X2(p) is cyclic of degree (p — l)/2n, and the covering 

7r :X 2(p)^Xo(p) , 

which is cyclic of degree n, is called the Shimura covering. Mazur had deter­
mined the maximal \i-subgroup of Jo(p) in [Ma 1]. In the general framework 
of [Ka-L], this was interpreted as an explicit determination for Xo(p) of the 
notion arising in Theorem 5.1: 

Theorem 5.4. The Shimura covering is the maximal abelian unramified 
covering ofXo{p), defined over Q, in which the rational cusp at infinity splits 
completely. 
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On the other hand, one may consider models for Xo{p) (or an arbitrary 
curve X) over the ring of integers of k. For the modular scheme as above, it is 
remarked in [Ka-L] that there is total ramification over one of the components 
at p, and therefore that scheme-theoretically, there is no unramified covering 
as in Theorem 5.4. One may also ask for the decomposition laws of "primes" -
in this case, maximal ideals locally, in rings of dimension 2-in such coverings. 
Such decomposition laws would amount to higher dimensional "reciprocity 
laws", cf. [L 4] and [L 5], where the problem is raised in a general context of 
schemes over the integers (not yet called by that name). For instance in [L 5] 
I pointed out the surjectivity of the reciprocity law mapping from 0-cycles of 
the base space into the Galois group. Recently, Spencer Bloch [B] has made a 
great advance in this, direction, by discovering how to formulate such laws for 
curves having everywhere non-degenerate reduction, following work of Kato 
[Kato] and Parshin [Pa]. Bloch formulates the decomposition laws in terms of 
the i<T-group of the base space. It remains to extend his results to more general 
cases (the modular curves have degenerate reduction at p, for instance), and 
to make his results explicit in the case of the modular curves. In any case, the 
maximal ^-subgroup can then be interpreted as a "class number", the number 
of classes being those in a suitable group of K-theory, in the unramified case 
of Bloch, and ultimately in the ramified case with conductor. 

§6. Modular units 

In this section, we describe briefly how one constructs the units in the 
modular function field, i.e. the meromorphic functions on X(N) which have 
zeros and poles only at the points at infinity. We then show how one obtains 
units in the rings of integers in abelian extensions of imaginary quadratic 
fields. 

(a) The function field 

First consider an arbitrary lattice A in the complex plane C. Then C/A 
is a complex torus, of complex dimension 1, real dimension 2. It admits 
a projective embedding in the projective plane, by means of the classical 
Weierstrass go-function and its derivative, which provide affine coordinates: 

where 
1 *M = ̂  + £ 

*'(*) = £ 

z' ^ 

i i 
(z-uy 

{z-uf 
and the sums are taken for w G A, or UJ jé 0 as indicated. The series for 
the p-function is concocted so as to make p periodic with respect to A, and 
to insure convergence. Lattice points go to the point at infinity. If we put 
x = p{z) and y = p'(z), then 

y2 = 4x3 — g2x — 03, 

where g-2,93 were already mentioned in §3. 



288 SERGE LANG 

We shall describe another type of projective coordinate. 
First, we want an entire function which has a zero of order 1 at each lattice 

point and no other zero. The simplest normalization is that of the sigma 
function of Weierstrass, 

^-»n(i-5)-»(5+Je)*> 
We then define the Weierstrass zeta function to be the logarithmic derivative 

ç(z,Â) = o'/a(z,A). 

This function has the property that for any period a; G A we have 

({z + w, A) — s{z, A) = r)(u, A), 

where r/(^,A) is a function which is R-linear in the variable z, and 
homogeneous of degree —1 in the pair (z, A), that is 

rj(cz, cA) = c~1rj(z1 A) for c G C, c 7^ 0. 

We then define the Klein form 

l(z,A) = e-*lM'AW2<T(ztA), 

which is homogeneous of degree 1 in (2, A). This function will be used to 
parametrize algebraic numbers analogous to the cyclotomic numbers e2nlz — 1 
when z ranges over division values of the lattice: rational multiples of 2ni in 
the cyclotomic case; rational multiples of elements in A in the elliptic case. 
Note that t (z, A) is not holomorphic in z. 

We recall that 

* = <&-27gl 

There is a natural 12th root, which is also denoted by r}(r), as a function of 
a variable in the upper half plane, and is called the Dedekind eta function 
(not to be confused with the Weierstrass eta function introduced above). The 
Dedekind eta function has a ç-expansion given by the product 

00 

*»(r) = « 1 / a 4 II ( 1 -« n ) 
n = l 

where as before, q = e27rtT. Let uj\, 0J2 be a basis for the lattice A over the 
integers Z. Then we can write any complex number z as a linear combination 

Z = d\U)\ 4" 02^2* 
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with real numbers oi, 02- We let a = (01,02) be a pair in Q2, and we suppose 
that a £ Z2. We define the function 

0a(r) = r;(r)2^a(r), 

where 
ïa(r) = ï (o i r + a2 ,[r,l]) 

and [r, 1] is the lattice generated by r and 1 over the integers. Then ga is a 
meromorphic function on X(2N2) if 

a G - - Z 2 but a g Z2. 
iV 

In [Ku-L 1] all the modular units are shown to be suitable power products of 
these functions ga, which have zeros and poles only at the points at infinity, 
and one can describe precisely which power products have exact level N, that 
is, are invariant under the group of automorphisms T(N) (or Ti(iV) for that 
matter). This precise determination leads to the structure of the cuspidal 
divisor class group Cf(N) mentioned in §3. 

(b) Fields of complex multiplication 

Ever since the last century, it has been realized that abelian extensions of an 
imaginary quadratic field behave in a manner analogous to that of cyclotomic 
fields over the rationals, and basic theorems of class field theory were known 
in this case before they were known over arbitrary number fields. The reason 
for this was that one has explicit algebraic and analytic parametrizations for 
such abelian extensions. I shall summarize some aspects and concentrate on 
a selection of problems fitting into the general pattern considered in these 
lectures. 

Suppose that K is an imaginary quadratic field, say K = Q(V—D) where 
D is a positive integer, assumed square free, and let 0 = ojç be the ring 
of algebraic integers in K. For example, if K = Q(V—1), then 
Û = Z[i\. If K = Q C v ^ ) , then JO = Z[/i3]. Take A = 0. Then C/o admits 
as endomorphisms multiplication by elements of 0. Indeed, if a Go, then 
aoG 0 so we get an induced map 

a : C/o - • C/o 

sending z •-• a^(modo). More generally, if a is any (non zero) ideal of 0, C/a 
again admits endomorphisms as above. We shall refer to the case when A is 
equal to such an ideal as the complex multiplication case. 

In the two special cases of Q(z) and Q(V—3) mentioned above, the ring of 
endomorphisms is generated by automorphisms of the curve. For instance, 

y2 = x3 + ax 

admits as automorphism (x, y) \-+ (—x, iy); while the curve 

y2 = x3 + b 

admits as automorphism (x, y) H+ (f x, y) where f3 = 1. 
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The values p(z) and p'(z) generate an abelian extension of K(g2, #3) when 
z is a point of finite period with respect to Û, or equivalently stated, when z 
is a torsion point in C/ct. However, the coordinates given by the Weierstrass 
functions are defined by means of "additive" expressions (just look at the 
series) and are inappropriate for the construction of units in abelian extensions 
of K. For that purpose, one has to use the Klein forms. 

We must summarize some facts about ramified abelian extensions of K. 
Let f be an ideal 7^ o. There is a unique abelian extension K(f) of K, 
characterized by the following property. A prime ideal \) of K, 
\) \ f, splits completely in K(f) if and only if )o is principal, ^ = (a), and a 
generator a (a priori determined only up to a unit of OK) exists which satisfies 
a = 1 mod f. This extension K(f ) is called the ray class field, of conductor f. 
"Split completely" in the present case means that if D is the ring of algebraic 
integers in ^C(f), then )p D decomposes into a product of [JFC(f) : K] distinct 
prime ideals: 

^D = Ç r . .Sp r where r ==[#(ƒ): ff]. 

We are going to define a group of units in K(f) analogous to the cyclotomic 
units in Q(/ijv)-

Although their origin lies in Kronecker's limit formula, the construction 
of such units was revived and extended in Siegel's Tata Institute Notes [Sie], 
and in the subsequent paper of Ramachandra [Ra]. A key step forward was 
made by Robert [Ro 1], who saw how to enlarge the known group by taking 
roots, so that the index of this unit group in the group of all units in the 
prime power case became essentially equal to the class number of If (f ), (up to 
relatively large powers of 2 and 3) in analogy to the formula relating h^~ and 
E/Ecyc in the cyclotomic case. Here we shall follow the procedure developed 
by Kersey, Kubert and myself. See [Ku-L], Chapters 12 and 13, as well as 
[Ke 2]. 

Let I be the free abelian group on the ideals, so an element a of I can be 
written as a formal linear combination 

with integer coefficients n(a), almost all of which are equal to 0. Given f, and 
such a so that if n(ct) 7^ 0 then f does not divide a, we define 

ïf(a) = II î(1 'f(ï_1)n(<>)-
a 

This is an analogue to the cyclotomic numbers I l ( e ( a / / ) — l)n^a^, but in order 
to obtain the "right" algebraic numbers, we have to impose some conditions. 
Let the degree of a be 

dega = ^ n ( û ) . 

We shall always require that dega = 0 mod w, where w is the number of roots 
of unity in K. Let N{\) be the smallest positive integer lying in f. The most 
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important condition that we require is that 

]Tn(û)Na = OmodN(f). 

As usual in number theory, No denotes the absolute norm of a, namely the 
index (o : a). In addition to that, we require additional technical conditions 
to take care of problems with the prime 2 which we do not make explicit 
here. The abelian group generated by elements a satisfying these conditions 
is denoted by 1^(1 ). 

In addition to a formal linear combination a as above, we require other 
similar elements as follows. Let: 

S = a finite set of primes $ relatively prime to 6, 

H(p) = a set of representatives for (o/£)*/o*; 

for each £ G S let a^ 6 Iu>(fc). 
If a E o and a^ = X)n^(°)a> we denote aa^ = ^2n^(a)(aa). Let 

0=«f«ii n ^aa»)-

If we assume that the total degree in this product is 0, that is 

dega + Y] —2 dega^ = 0, 
ces 

then the element /? above is an algebraic number, which can be shown to lie in 
jFC(f ). The group generated by all such numbers is called the group of modular 
numbers in JC(f), and denoted by $(f). The group generated by the roots of 
unity M/c(f ) and by the subgroup of units in S (f) is called the group of 
modular units in S (f). Thus 

^ m o d ( ^ ( f ) ) = M K ( f ) ( ^ ( f ) n n 

where E denotes the group of all units. 
If H denotes a subfield of K(f ) containing K, then essentially one defines 

the group of modular units Emod{H) in H to be the group generated by /L*H 
and by the norms down to Hp\K{o) of the modular units Emo<i(K(a)), for all 

si f-
The definition is somewhat elaborate and some aspects are fairly technical. 

The main point is that we define a rather large group of units in a canonical 
manner, expressed in terms of values of a single function t (2, A), and con­
taining all groups defined by other authors as mentioned above in a similar 
context. This latter inclusion property may be viewed as one possible reason 
for calling the group of modular units "large". Another is given more precisely 
by Kersey's index computation [Ke 2], the most precise result known today. 

Theorem 6.1. (E{K{$)) : Emod(Ktf))) = \hjc(f) where X is a power of 2 
depending on the number of prime factors of f ; X = 1 if f is a prime power, 
relatively prime to 6, in particular iff = (1). 
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Kersey's proof is based in part on the same group theoretical considerations 
as Sinnott [Si] in the cyclotomic case, but the situation he faces is much more 
complicated for a variety of reasons: more complicated analytic functions to 
express units; more complicated structure of the Galois group; etc. 

§7. The Coates-Wiles connection 

Instead of starting from the diophantine problem posed by the higher degree 
Fermât equations, let us start over again now with the diophantine problem 
arising from cubic equations, say 

y2 = x3 + ax -f- b, 

where a, b are integers. We assume that the discriminant of the right hand side 
is not equal to 0. Then the set of complex points of this equation, together 
with one point at infinity, form a Riemann surface of genus 1, isomorphic to 
a complex torus. The curve is equal to its own Jacobian, taking as origin 
the point at infinity. Let A denote the curve, and A(Q) its group of rational 
points. Classical questions concerning A(Q) ask: 

What is the structure of the group of torsion points A(Q)tor? 
Is there a rational point of infinite order? If so, what is the rank over 

Z of A(Q) (which is finitely generated according to a celebrated theorem of 
Mordell)? 

Again, I don't want to go into extensive terminology, and among an open 
ended choice of topics, I shall select one which establishes a relation between 
these diophantine questions and units in suitable number fields. 

I shall also limit myself to even more special curves of type 

y2 = x3 + b, 

where b is an integer. We have seen in the last section that these curves admit 
/L*3 as a group of automorphisms, and belong to the "complex multiplication" 
category. Over the complex numbers, any two such curves become isomorphic, 
but over the rational numbers, they may exhibit completely different behavior. 
For instance, one curve may have rational points other than oo, while another 
may not. We are interested to give a criterion when there is a rational point 
of infinite order, and we shall relate this question to the existence of certain 
(ramified) extensions of number fields. 

Let K = Q(V—3) = Q(M3)- Let p be a prime number relatively prime to 
66. We shall suppose in the sequel that p splits completely in K, that is 

Since oK has unique factorization, there is a generator 7r for jo, that is fc = no, 
and 7T is well-defined up to a root of unity. We have p = TTTT. Furthermore, 
Ksp = Qp, where K$ is the£>-adic completion of K. 

For an element a G o we let [a] = [a] A be the endomorphism of A induced 
by a. Let Q a denote the algebraic closure of Q. For any field F, Ap or A(F) 
denotes the group of points on A rational over F. 



UNITS AND CLASS GROUPS 293 

We assume that A has good reduction at £, and that the generator n is 
selected so that the reduction mod )p of [TT]A is the Probenius endomorphism 
Fr^. This means that for any point (x, y) G A(Qa) and any prime S|$ of Q a 

over jo, we have 
[7 r ] (x ,y ) s s (x^ )mod$ . 

Let Ar be the group of points t in A(Qa) such that 

[ir]t = 0. 

We could also write A^ = A[n] or A[jo], to be the set of points t such that 
[a]t = 0 for all a G £. Then A^ is a cyclic group of order p, and in fact, K(A^) 
is a cyclic extension of K, of degree p — 1 with Galois group G « (Z/pZ)* 
in analogy with the cyclotomic theory. The action of G is determined by the 
representation on A^, namely for a G o, 

aat = [a]t, 

analogous to the formula aaç = £a if £ G /AP. 
The theory of the extension ^(A^) over K can be carried out in analogy 

with the p-adic theory of Kummer for Q(/ip) over Q. As usual, we have to 
look at eigenspaces. We let x De the character such that for a G G we have 

<rt = *(*)*, with xip) € (Z/pZ)*. 

One may view x a s a character x • Gal(üCa/i;C) —• (Z/pZ)*, where ifa is the 
algebraic closure of K, and % factors through G = Gal(K(A^)/K). 

Suppose, as in Coates-Wiles, that A has a rational point P of infinite order, 
and take P not in [7r]A(if ). Then one may extract a 7r-th root of P, namely 
a point 

Q e ir-HP) 

such that [ir]Q = P. This is analogous to extracting a p-th root in the 
multiplicative group when dealing with the cyclotomic theory. Then we have 
another example of double-decked extensions: 

K{A,^~\P)) 

K(A«) 

K 

Let t be a generator for A« over Z/pZ. Then we obtain a 2-dimensional 
representation of Gal(üCa/ür) arising from the action: 

<TQ = b(cr)t + Q 
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with b(a) G Z/pZ, thus giving the matrix representation 

Conversely, one may consider Galois extensions of K cyclic of degree p 
over K(AK) whose Galois group admits such a matrix representation with 
character x, and ask if the existence of such extensions can arise only through 
the above construction with a point of infinite order. We shall say that p is 
special if n -f- 7f = 1. Otherwise, we call p non-special. 

Conjecture 7.1. Assume that for infinitely many non-special primes p, 
there exists a Galois extension ofK over K(AK) whose Galois group admits a 
representation in GL2(Z/pZ), with matrices as above, and character \. Then 
there exists a point P of infinite order VTIAK, and all but a finite number of these 
extensions and representations are obtained as described above, by extracting 
a ir-th root of some such P. 

The conjecture can be made somewhat more quantitative. For instance, 
extracting 7r-th roots of AK/[^]AK gives rise to r independent p-extensions 
of K(AÏÏ), where r is the rank of AK (for all but a finite number of primes 
p). We leave this aside, but we note that the conjecture essentially asserts 
that the existence of such extensions can only be explained as arising from a 
point of infinite order as described in the Coates-Wiles way, except in a finite 
number of cases. These "exceptional" cases are related to other more subtle 
invariants of the elliptic curve (something called the Tate-Shafarevitch group, 
which is beyond the level at which I wish to keep this exposition). 

We turn to the local considerations of Coates-Wiles. Let: 

K0 = K(A„y, 
F0 = completion of Ko at some prime ideal W> lying above £. 

Then F0 = K^A*) = Qp(Ar). 
Uo = group of £-adic units in F0. 
So = group of modular units in JFC0. 
To = closure of So in UQ. 

Since the (p — l)th roots of unity are contained in Zp, and a fortiori in Qp, 
it follows that the cyclic extension Fo of Qp, which is of degree p — 1, is a 
Kummer extension, that is 

^o = Qp(wo) where w g - 1 G QP. 

The lattice of fields is shown on the figure. 

tf (AT) I ( G 
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It might happen that Qp(A7r) = Qp(/wp). It is an easy technical matter to 
show that this happens if and only if n -\- 7f = 1, in other words, ir is special 
(provided p > 5). It can be shown that the set of special primes has density 
zero, so there are plenty of non-special primes. We assume p is non-special. 

In dealing with the local extension over Qp, we can now view the character 
X as the Kummer character of G, namely the character such that 

a w0 = xW^o» 

The double-decked extension can be viewed locally by extending the base field 
t o l ^ : 

I F0 

K o ^ ^ ^ I 

I ^ ^ ^ K v 
The extension Ko(iv~1(P)) of Ko is a cyclic extension of degree p, closely 
related by class field theory to the factor group of local units modulo the 
closure of the global units. 

If C is an abelian group on which G operates, we denote: 

C{p) = C/Cp (writing C multiplicatively); 
C(Pi X) = (C/CP)(x) = x-eigenspace of C(p). 

Kummer had already studied the p-adic properties of the cyclotomic units, 
which in modern language amounts to the factor group of local units in Q(/ip) 
by the closure of the cyclotomic units. A similar study can be made in the 
present context, but I shall limit myself to only one aspect. Motivated by 
the "Birch-Swinnerton-Dyer Conjecture", Coates-Wiles arrive at the following 
result. 

Theorem 7.2. Suppose that p is non-special and that there exists a rational 
point P of infinite order inA(K). Then 

(Uo/lo)(p,x)^0. 

The proof of that theorem is carried out by methods of class field theory, 
related to a p-adic "Kummer criterion", see [Co-W], [Co 2]. Robert [Ro 2] had 
also considered the analogue of Rummer's criterion in the context of elliptic 
curves. 

Conjecture 7.3. Conversely, assume that {Uofëo)(p, x) 7^ 0 for infinitely 
many non-special primes. Then there exists a rational point on A of infinite 
order. 
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This conjecture is a transformation of a special case of the Birch-Swinnerton 
Dyer conjecture. By class field theory, the hypothesis guarantees the existence 
of certain abelian extensions (subject to a certain eigenspace condition) of 
tf(Ar). 

In any case, we see here once more how (possibly conjecturally) abelian 
extensions of number fields can be parametrized by extracting "roots", ex­
cept that the roots occur on the group of an elliptic curve as well as the 
multiplicative group. 

Of course, everything we have stated for KQ can be extended by taking 
powers of 7r, and looking at the extensions 

Kn = K(A[7Tn+1]) and Qn = ^ ( T T - ^ + ^ P ) 

if P is a point of infinite order. Even to consider KQ and Qo as we have done 
above, it is necessary to pass to the limit in this tower of extensions to apply 
Iwasawa theory of Zp-extensions, which leads to the "right" statements con­
cerning the quantitative description of the extensions one obtains by dividing 
not only torsion points but points of infinite order. This is a massive under­
taking which goes beyond the scope of our discussion, but I want to emphasize 
that the formalism of the characteristic polynomial as in the appendix of §2, 
and the questions related to it, can be formulated in the present context also. 
For example, let Cn be the p-primary part of the ideal class group in Kn. We 
can form the same type of projective limit as in the cyclotomic Zp-extension. 
Is the projective limit of Jacobian type (analogue of the Ferrero-Washington 
theorem)? The answer is not known today. 

§8. Stark units 

Let us go back to cyclotomic fields, and to the cyclotomic units. Consider 
the real subfield K = Q^m)"1" where m is an integer > 3, odd or divisible by 
4. We have one archimedean absolute value vo on Q, the ordinary absolute 
value. The field K is totally real, meaning that any embedding of K into the 
complex numbers actually lies in the real numbers. We can find a cyclotomic 
number generating K, namely K = Q(e), where 

e^wxi-r-1) 
and ç = e27ri/m. The Galois group of K over Q is isomorphic to (Z/mZ)*/±l , 
under the map a »-• aa. 

We may define the partial zeta function relative to ÜT/Q: 

oo 

n.gg-t-tt(m) 

Classically, we have f(aa, 0) = 0 and 

^ K , 0 ) = --log|<7 ae| . 
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Of course, we could replace e by e" 1 to get rid of the minus sign in that 
equation. Stark [St IV] interprets these relations as defining analytically a 
"unit" which becomes the generator of an abelian (ramified) extension of the 
rationals. Indeed, if m is composite, then e is a unit, and if m = pu is a prime 
power, then e is divisible only by the prime lying above p (p-unit). 

Finally, Stark notes that K(e1^2) is abelian over Q. Indeed, if we write 
K = Km = Q(/im), then 

K(e1/2) = iK4m if m iS °d d ' 
\K2rn if m is even. 

Stark has conjectured the existence of a similar situation, involving units, 
which can be used to generate "class fields" (ramified abelian extensions) of 
a number field. He has given proofs only in those cases when we know how 
to parametrize units as values of classical analytic functions of "exponential" 
type (parametrizing the exponential map on algebraic Lie groups), namely the 
cyclotomic case as above, and the case of modular units over imaginary quad­
ratic fields, as mentioned in the last two sections. I shall briefly summarize 
the general situation envisioned by Stark. I base the exposition on lectures of 
Tate, and also on [Ta 1] and [Ta 2], 

Let A; be a number field and K an abelian extension with Galois group G. 
Denote by v an archimedean place of k. Then v denotes either an embedding of 
k in the real numbers, or in the complex numbers (up to complex conjugation). 
We let kv denote the completion of k at v, which is isomorphic to either R 
or C as the case may be. Let v' be an archimedean place of K lying above 
v. Then the completion Kvt is also equal to R or C, and Kv> is an extension 
of kv of degree 1 or 2. If Kvt is an extension of degree 2 of kv, then the 
local Galois group Gv is cyclic of order 2, generated by complex conjugation. 
These are the archimedean analogues of the p-adic places which correspond 
to embeddings in the field Cp, completion of the algebraic closure of Qp. Let 
[Kvf : kv] = nv be the local degree. We define 

IMI* = H? 
where \a\vt is the absolute value on K induced by the embedding 1/. 

As with prime ideals, we say that v splits completely in K if the number 
of distinct embeddings of K in C lying above v is equal to the degree [K : k], 
Equivalently, we could say that for any extension v' of v to K, v' is real if 
and only if v is real. If v is real and v' is complex, then we say that v ramifies 
in K, or that v' is ramified over v. 

Let R = set of primes of k ramified in K. Let 

S DRUS°°{k) 

be a finite set of places with at least two elements. 
Let \) be a prime of k unramified in K, and let $ be a prime ideal of K lying 

above £>. Let G§ be the decomposition group of ^5, meaning the subgroups of 
elements a G G such that a $ = ^ . Since we assumed that G is abelian, it 

file:///K2rn


298 SERGE LANG 

follows that G§ depends only on jo, not on the choice of Ĵ, and G<$ is therefore 
denoted by Gp. Furthermore, G$ acts on the residue class field o/c/^P over 
O/c/̂ o, and is cyclic, with a canonical generator, the Frobenius element a^ such 
that 

^ z = E £ N ^ m o d ^ . 

The partial zeta function associated with a given a E G is defined to be the 
partial sum 

fe(a,a)= J2 N a _ S-
(a ,S ) = i 

Remark: If S = R\jS°°(k), then we omit the subscript S, and we write 
^(cr, s) = £(<7,5). Let us assume: 

there is one archimedean place VQ of k which splits completely in K. 

Then basic analytic number theory shows that the partial zeta function 
vanishes of order > 1 at s = 0. We are interested in the derivative of Çs{&, s) 
at s = 0 following Stark, who observed that the formulas for this derivative 
at 5 = 0 are structurally more transparent than the analogous formulas for 
£s(cr, s) at s = 1, considered more classically. (These formulas can be obtained 
from the functional equation of Hurwitz zeta functions.) 

We shall say that we are in the special case if S has exactly two elements; 
then 

{S°°(k)-v0}uR 

has precisely one element (which may therefore be archimedean, or may be a 
single ramified prime) vi, called special. By a (vo, 5)-unit we shall mean an 
element e of K* such that in non-special cases: 

\\e\\v = 1 for any place v of K, v\VQ. 

In the special case, then the above condition should hold for V\VQ)V\VI, 
and then we require in addition that the values 

||€||v forv I v1 

are equal to *each other. 

In particular, if we are not in the special case, then such e are units; and in 
the special case, if the special element v\ corresponds to a prime ideal, then 
such e are 'p-adic units for all other primes £, i.e. they are what is usually 
called 5-units. Note that the special case is rare, but that the classical cases 
k = Q or k = imaginary quadratic field often give rise to special cases. 

Conjecture 8.1. Denote by v some extension of VQ to K. Let W = WK 
be the number of roots of unity in K. Then there exists a (vo, S)-unit e in K, 
well-determined up to a root of unity in \IK> such that 

(i) t>8{a,0) = -£ log \ \ae \ \ v for alio G G. 

(ii) K(e1^w) is abelian over k. 
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In the special case when k is an imaginary quadratic field, the case of 
complex multiplication, Stark proved his conjecture by using the classical 
theory of Z^series (Kronecker limit formula in this case), as well as the theory 
of modular units in a fairly precise form since we want e itself, not just some 
power of e, to fit the Stark formula giving the derivative of the partial zeta 
function at s = 0. At this point it becomes important to have as large a 
group of modular units as possible. Note that usually one expects to have 
K = fc(e), but one has to impose some conditions to insure this. 

Despite attempts by Stark and by Shintani [Sh], even the case when k is a 
real quadratic field is still unknown. Stark's paper [St IV] contains numerical 
computations which confirm the conjecture strikingly in special fields, and 
some cubic extensions. Shintani [Sh 2] proves the conjecture in special, and 
non-trivial cases. 

Gross [Gro 1] has formulated conjectures as above for p-adic L-functions. 
Also Tate pointed out that instead of taking an archimedean absolute value 
vo, one could take a prime !p0 of fc, also splitting completely in K, to obtain 
a new case for the complex zeta function, as follows [Ta 2]. 

Let \) | |oo hi K. For simplicity, we assume that the set 

5 = ^uS°°(fc)Ufr0} 

has > 3 elements, so R U S°°(k) has > 2 elements. This assumption amounts 
to omitting the special case, which is so degenerate as to be of no interest 
here. 

Conjecture 8.2. Let \)be a prime ofK lying abovep0. There exists a$0-unit 
e such that 

( i ) f (M) = £ord>(<7e)/ 

(ii) K(e1^w) is abelian over k. 

The absence of the derivative is due to a technical transformation as follows. 
Let 

be the zeta function from which the jo-Euler factor has been deleted. Then 

<:[L]Ko) = (iogN)ooM^,o) 

= — pĵ logl |cre| | ^ (conjecturally) 

= — ord^e)(logN)o), 

and N^o = Njo since we assumed that jo0 splits completely in K ao the 
formula for £(a, 0) drops out. 

Following Brumer, one defines the Stickelberger element associated with 
the extension K/k to be 

creG 
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Siegel has shown that 0 G Q[G], i.e. that £(a, 0) is a rational number. If there 
is more than one ramified prime, then one gets the formal factorization 

and if there is exactly one ramified prime, then a power of that prime may 
occur additonally in the factorization of e. 

As in the cyclotomic case, define the integralizing ideal I to be the ideal 
of Z[G] generated by W and elements of the form a0 — Nc for ideals c prime 
to W and to the ramified primes. This is the annihilator in Z[G] of n(K). 
It is known by Deligne-Ribet [De-R] or Barsky-Cassou-Nogues [CN] that 
10 C Z[G]. (This is a much more difficult result than in the cases we 
encountered previously.) 

Conjecture 8.3. The ideal 10 annihilates the class group Cl(K). If x G / 
and a is an ideal of K, then 

ax9 = (ax) 

where ax satisfies \\ax\\v = 1 for any archimedean absolute value v of K, and 
so ax is well-defined up to a root of unity. Furthermore, if awe = (e), then 
K(e1^w) is abelian over k. Finally, if (Wa,$) = 1, then 

a(c^-Nfc)0 = (a^) with c^ = i mod|o. 

The annihilation of the ideal class group by the Stickelberger ideal 10 has been 
conjectured for some time by Brumer. The rest was formulated by Stark and 
Tate, who pointed out that Conjecture 8.2 implies Conjecture 8.3, which is 
the analogue of the Stickelberger theorem for cyclotomic fields. For related 
questions, see Coates-Sinnott [Co-Si] and [Co 2]. 

§9. Higher regulators: number fields 

Stark [St H] has also formulated a non-abelian theory, with arbitrary 
representation of the Galois group G, starting from the Artin formalism of L-
functions. This leads into higher dimensional regulators (determinants formed 
with the logarithms of units). 

In this theory, we deal with two naturally defined Q-vector spaces which 
become isomorphic over the complex numbers. The Q-spaces give natural 
representations of a Galois group. After extending the scalar s to C, and 
choosing bases over Q, the isomorphism between the spaces can be represented 
by a square matrix, whose determinant is well defined modulo a non-zero 
rational number, because changing bases over Q introduces only changes by 
rational matrices. A representation of G then leads to a determinant which 
conjecturally can be expressed as a transcendental number, times an algebraic 
number which transforms in a "functorial" way under the action of the Galois 
group. This algebraic number is the analogue of the Stark unit mentioned in 
§8, where the "determinant" was a one by one determinant. 

The exposition in this section is based on lectures by Tate on Stark's 
conjectures, especially [Ta 1], [Ta 2]. 

Let K/k be a finite Galois extension of a number field, with 
Gal(K/k) = G. Let V denote a C-linear representation of G, or the finite 
dimensional vector space associated with it. Let: 
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S°°(K) = set of archimedean places of K; elements v range 

oveTS°°{K). 

U(K) = free abelian group on S°°(K). 

UQ{K) = elements of U(K) of degree 0 (the augmentation module). 

E(K) = group of units of K = o^. 

The groups U(K), UQ{K), E{K) are G-modules. A theorem of Herbrand 
asserts that the units E{K) contain a subgroup of finite index which is G-
isomorphic to Uo(K). Then the Q-vector spaces are isomorphic: 

Q ® £ / o ( J O « Q ® £(tf) . 

To begin with some algebraic considerations, we first look at CUQ(K). We 
shall deal with the units afterward. 

Let U0 = U0(K), and let 

6:CUo^ CUo 

be an automorphism (of C-vector spaces). Then 6 induces an endomorphism 

0* : HomG(V*, CU0) -> HomG(y*, CU0), 

where V* is the dual space of V. We define 

6(y, 0) = det(0*, HomG(y*, CU0)). 

Then V «-• 6(V, 6) satisfies the formalism of Artin, which we recall. Let H be 
a subgroup of G. Let IndG denote the induced representation, characterized 
by the formula 

HomG(IndgOO, W) = HomG(V,Resg(WO), 

for any G-space W and ijT-space V, so induction is the adjoint of restriction. 
Let Inf denote inflation from G/H to G iî H is normal. We have: 

(1) *(Vi 0 Va, 0) = S(Vu0)ö(V2y 9); 

(2) £(IndG V, 0) = 6(V, 0) if V is a representation of a subgroup H; 

(3) «(Inf g / H V, (9) = <5(V, 0 | (C£/0)
H) if V is a representation of G/H; 

(4) *(y,öiÖ2) = *(^,fli)«(^>fl2); 

(5) 6(V, Of = 6(Va, 6°) for any a £ Aut(C). 
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The first four are easily proved. The fifth also once we make the following 
remarks. The number 6(V, 0) depends only on the isomorphism class of V. An 
automorphism a operates on V, say after a choice of basis so that a operates 
on the coordinates of Cd im v . Thus V° is well defined up to an isomorphism. 
With this explanation, (5) is also easy. 

Next, we need the regulator map 

X : CE{K) - • CU0{K) 

defined on units by 
X(e) = £ l o g i n s H 

V 

and extended by C-linearity to a C-isomorphism. If 

<p : CUo -> CE{K) 

is an isomorphism, then 

0 = X o <p : CU0 -+ C[/0 

is a possible automorphism. 
If (p is the C-linear extension of a G-embedding 

U0 -+ E{K\ 

then one has the special value 

(6) *(lfc,Xo^) = ±{E{K) : ip{Uç>{k)))Rklwk 

where Rk is the regulator of k and wk the number of roots of unity in k. 
Finally, we need to recall the definition of the Artin L-function associated 

with the representation V of G = Gal(K/k). For each prime £ of k the 
conjugacy class of a Frobenius element o^ in G is well defined modulo the 
inertia group /(^), defined up to conjugacy. The Artin L-function is defined 
for Re(s) > 1 by the product 

n*> v ) = n d e t ( ! - *> N^~5 i ^ } ) > 
where V1^) is the part of V fixed by 7()o). We let c(V) be the coefficient of 
the leading term at s = 0, that is 

L{s,V) ~ c{Vy(y\ for3->0, 

where r(V) is the order of the zero of L(s, V) at s = 0. 
Define 

Then A(V, <p) depends only on the isomorphism class of the complex repre­
sentation V1 for fixed <p, and so may be written A(x, <p). We may now state 
Stark's conjecture. 
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Conjecture 9.1. For any a E Aut(C), we have 

A(V,<py=A(V°,<p°). 

By (4) and (5), if the conjecture is true for some <p, then it is true for every 

Property (6) shows that the conjecture is true for trivial V. Stark in 
[St H] has shown that if the character of V is rational valued, then there is 
some positive integer m such that the conjecture is true for m.V, in other 
words, 

(A(v,vrY = (A(v°,<p°)r-
The proof is obtained by using the induction property, and the fact that 
any representation with rational character has an integral multiple which is a 
sum of induced representations of trivial characters on some subgroups of G. 
Then one uses the theorem for trivial representations, together with the Artin 
formalism (2) and (3). Tate has proved Conjecture 9.1 when the character of 
V is rational valued. 

It is then possible to obtain units (conjecturally) in a manner similar to 
that of the preceding section, as follows. 

Assume that V is irreducible and non-trivial, and that r(V) = 1, 
so the Lrfunction vanishes of order 1 at the origin. 
Then KoitioiV, CUo) is 1-dimensional, and there is an embedding 

V-^CUo 

unique up to a scalar multiple. 

Let <p satisfy Conjecture 9.1, and assume in addition that <p is the C-linear 
extension of a G-embedding 

U0 -+ E{K). 

If x is in the image of V under this embedding, then we have 

X o (p(x) = 6(V, X o <p)x. 

Let F be the field generated over the rationals by the character values of G. 
Then A(V, (p) lies in F. 

By Frobenius reciprocity and the functional equation for the L-function, 
one sees that there is one archimedean place v of k such that 

dim VGv = 1, but VG*' = 0 for v' G S°°{k), v' ^ v. 

We denote by this same letter v an extension of the place to K. Let x — Xv 
be the character of V. Then an element x can be taken to be 

CTGG 

Let 

e*,<p = <p{v[v] — M). 

If y is any subset of G, let xQO = X) x(y)> where the sum is taken for y £ Y. 
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Theorem 9.2. Assume Conjecture 9.1. Suppose thatV is irreducible, non-
trivial; that r(V) = 1; and <p is the C-linear extension of a G-embedding 
U0->E{K). Then 

1/(0,10 = (AFivMGJ)-1 £ x ^ l o g H c ^ H . 

The above theorem gives an expression in the non-abelian case analogous to 
that of the preceding section in the abelian case. Stark gives proofs of such 
a formula in special cases in [St H] and [St B]. The theorem is proved by 
juggling with the orthogonality relations of characters. It then gives rise to: 

Theorem 9.3. Assume in addition that V gives a faithful representation of 
G. Let 

c(a) = Tr ir /Qx(^)M(y,^) , 

and let m be a positive integer such that mc(a) G Z for alia EG. Let 

em= n e r ( C T _ 1 ) -

Then K is the smallest Galois extension ofk which contains em. 

These two statements summarize Stark's insight into the possibility of generat­
ing non-abelian extensions by units appearing in Artin L-functions derivatives 
at s = 0. Stark has proved special cases which could be reduced to the 
complex multiplication situation by induced characters. Chinburg (Thesis, 
Harvard, 1980) has made computations confirming the existence of the ex­
pected units to 13 decimal places in tetrahedral cases over the rationals. 

§10. Higher regulators: curves (da capo) 

We shall now describe results of Anderson [An 1], [An 2] giving a geometric 
context for the same formalism as in the preceding section. 

Let X be a projective non-singular curve defined over a number field A:. 
Then we have the De Rham cohomology group 

of differential forms of second kind modulo exact forms. For every embedding 
r : k —• C of k into the complex numbers, the curve Xr is defined over kr, 
and we have the corresponding space H\)R(XT,kT)) as well as H\>R(XT,C) 
obtained by extension of scalars from kT to C. There is a natural isomorphism 

X = XT : HDR(XT, C) -+ # t 0 p ( X T , C) 

which to each differential form w associates the functional 

7 i—• / uj 
J1 
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for every cycle 7. This will play a role analogous to the regulator map of §9. 
Now suppose G is a finite group of automorphisms of X, also defined over 

k. Then G gives rise to a finite covering 

•X/G, 

and G operates on if ^ H (X, k). 
For each r we let 

pT:i4oppr,fcT)^tfi>fi(*T,fcT) 

be an isomorphism of fcr-vector spaces. Then X o <pT is an automorphism of 
HJ0p(Xr, C), after extending (pT by C-linearity. 

Let V b e a representation of G over fc, so VT is a representation of V 
over kT, whence over C. Let 0T be any automorphism of H£0p(Xr, C). Then 

0T induces an automorphism 0* of HomG(V*,ifJ0p(Xr,C)), where V* is the 
dual space. Define 

6{X\ V\ 0T) = det($; : HomG(V*, Hl
iop(X

T, C))). 

This symbol satisfies the Artin formalism, as listed in the preceding section. 
Cf. [L 6]. In practice, we shall take 0T = X o <pT. 

On the other hand, Anderson defines a constant c(X, V) with the gamma 
function as follows. Let x G X be a point of X in a fixed algebraic closure of 
k, and let G(x) be the isotropy group of x in G; let e(x) be the order of G(x), 
namely the ramification index of x. Let T(x) be the tangent space of x, as 
one-dimensional G(x)-module. Define 

e(x) , . ^d(i,x,V) 

where 

and 

Also define 

c(x,y)=(2^^nnr(i] 
d(X, V) = (ff(X/G) - 1) dim V + dim VG 

d{i, x, V) = dimHomG(l)(T(a;)(8>i, V). 

c(X,V) 

Then Anderson proves: 

Theorem 10.1. For any automorphism a G Aut(C), we have 

MX\ V\ VTY = A*™, VTa, Vro)oi{a, r), 

with some element ot{a,r) € kT<T. [Notation: kra = (kT)".] Furthermore, if 
w = w(k) is the number of roots of unity in k, then 

A(XT,VT,<pT)wekT. 
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This last assertion shows that the number A(XT,VT, (pr) in fact generates 
a Kummer extension of /cT, and by appropriate choice of <pT, Anderson can 
make the factor a(cr, r) equal to a root of unity. For this and further aspects 
of a{a,T), cf. [An 2]. 

The expressions for the "periods" in Anderson's theory form a geometric 
counterpart to the arithmetic conjectures of Stark. Ultimately, these two 
extremes will be covered by the general theory of schemes of finite type over 
Z. 

Say R is a finitely generated subring of a finitely generated extension of the 
rational numbers. Assume that R is regular (all its local rings are regular) for 
simplicity. The prime ideals of R constitute the spectrum X = spec R, and 
the maximal ideals P are called the closed points. Let NP denote the number 
of elements in the residue class field R/P, necessarily finite. One defines the 
Hasse-Weil zeta function 

f(x,s)=n(i-NP-3). 
p 

Such a function provides a way to reflect many arithmetic and geometric 
properties of X . if ƒ? is the ring of integers of a number field, then this 
function is the Dedekind zeta function. It can be defined for a scheme, covered 
by a finite number of such affine pieces. 

Both in §9 and §10 the theorems or conjectures were formulated for number 
fields. Ultimately, they will be generalized to schemes of finite type. At the 
present time, only very special cases have been handled, mostly concerning 
elliptic curves with complex multiplication, modular curves, and Fermât type 
curves. However, one has already a good view of conjectural statements which 
started from the Birch-Swinnerton Dyer conjecture for elliptic curves, as given 
by Tate in two very valuable papers [Ta 3] and [Ta 4]. See also [Ta 5]. Just to 
make the link with these papers, I reproduce one of his conjectures as follows: 

Conjecture 10.2. If X is a regular ring R of finite type over 1, then the 
order of £(X, s) at the point s = dimX — 1 is equal to 

rank R* — rank C\{R), 

where R* is the group of units ofR, and Cl(R) is the group of divisor classes. 

One needs to go further and give a description of the coefficient of 
(s — d -\- l ) r in the expansion 

ç(X, s) = c(X)(s — d + l ) r -+- lower order terms 

at 5 = d — 1, where d = dimX. Deligne [De] gives the value of the zeta func­
tion suitably normalized at the "critical point" in the context of "motives", 
when the zeta function does not vanish. To cover the cases considered by 
Birch-Swinnerton-Dyer-Stark-Tate with r > 0, there still remains to fit the 
considerations of §9, and the period considerations of §10 into this pattern, 
for regular schemes of finite type over Z, especially the modular scheme (cf. 
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Beilenson [Be]). But I hope I have fulfilled my objective to lead the reader 
(who has come this far) into the unknown, concerning units and class groups 
in number theory and algebraic geometry. 

Appendix: Distributions 

Because of special interest shown in this topic, and some questions asking 
"why the Bernoulli polynomials and not others" in the theory described in §2 
and §3,1 have extracted here some general remarks from my AMS talk at the 
summer meeting. 

Let 
<p : Q/Z - • A 

be a mapping into some abelian group which satisfies the relation for every 
positive integer N: 

N V — 1 , . v 

7 = 1 v y 3 = 1 ^ ' 

Here A; is some positive integer. Then <p is said to be a distribution of degree 
k. Relations as above are satisfied by many functions in classical analysis and 
number theory, and I shall list a series of examples. 

Note that if -0 • Q/Z —• B is another distribution, then a homomorphism 
of <p to if) is defined to be a homomorphism h : A —• B making the following 
diagram commutative: 

A 

Some of the examples which we shall give will be homomorphic images of each 
other, but appearing under different disguises. 

A distribution is called odd or even according as the function is odd or even. 
If multiplication by 2 is invertible on A, then any A-valued distribution can 
be uniquely decomposed as a direct sum of an even and an odd distribution. 
In the subsequent examples, each distribution is naturally equipped with a 
parity. 

Bernoulli distribution. For each positive integer k, there exists a unique 
polynomial Bfc with complex coefficients, leading coefficient 1, of degree k, 
such that the map 

x »-• -B f c ( (x ) ) 

is a distribution of degree k — 1. This polynomial is the Bernoulli polynomial, 
which has rational coefficients, and can be given by the generating series 

+etx ™ tk 

fc=E„B'(x4 
fc=0 
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If you check back to §2 or §3, you note that we discussed the Stickelberger 
element only at first level p, although we alluded to the necessity of considering 
all levels p n . Let 

G n «(Z /p n Z)* . 

Then there is a natural homomorphism of group rings 

Z[Gn+i] - Z[Gn]. 

If one writes down the Stickelberger element at level n + 1> then one expects 
its image under this homomorphism to be the Stickelberger element at level 
n. It is immediately seen that this compatibility condition amounts to the 
distribution relations for powers of p. This explains "why" the Bernoulli 
polynomials were forced in the context of the p-towers. Note that the Bernoulli 
distribution has parity (—l)fc. 

The Fourier-Bernoulli distribution. Let 
0 0

 e2irinx 

Then it is immediately verified that fk defines a distribution of degree k—1. In 
fact, the variable x can be taken to be in R/Z rather than Q/Z. Furthermore, 
we have the following lemma of Rohrlich. 

Lemma. Let ƒ be in L2(R/Z), and assume that ƒ satisfies the distribution 
relations of degree k — 1. Let 

2iïinx f(x) = ] L
 Cne 

be the Fourier series of f. Then: c0 = 0; cn = c\jnk for n > 0; c_ n 

c_i/n fc forn > 0. 

Proof. By definition, and using simple transformations, we have: 

)e-2 7 r i n* dx 

rl N—l 

Cn = / f(x)e 
Jo 

N-l , . v 

= N* 12 f ( u + jj )e-27rinNu du 

= Nk [ f(u)e~2 

Jo 
= N«cnN. 

For n = 0, pick AT ^ 0 to conclude CQ = 0. Then take n = 1 or n = — l t o 
conclude the proof. 
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In view of the uniqueness theorem, the Fourier series for the Bernoulli 
distribution must be a linear combination of the above Fourier series and its 
conjugate. In fact, one knows classically that 

h.\ p2irinx 

•«<•»—S?? 5 ^ -

The Hurwitz zeta function. For 0 < u < 1 let 

oo 1 

<<S'", = „5(^F-
This expression defines an analytic function of the complex variable s for 
Re(s) > 1, and can be analytically continued into the whole plane, except for 
a simple pole at s = 1. For each real number t, let {t} be the unique number 
congruent to tmodZ, and such that 

0 < {t} < 1. 

Then one verifies at once that the map into the additive group of meromorphic 
functions given by 

x K-» £(s, {x}) 

is a distribution of degree —5. Here we can take s to be any complex number 
by analytic continuation. The Bernoulli distribution is a homomorphic image 
of the Hurwitz distribution, via the homomorphism evaluation at s = 1 — k, 
because of the classical Hurwitz relation: 

£(1 — k,u) = — -Bk{u). 

The gamma distribution. Define 

We view G as defined on Q/Z with the origin deleted, but then with values 
in the factor group 

G : Q/Z - C*/<£ 

of the multiplicative group of complex numbers modulo the group of nonzero 
algebraic numbers. The classical identity 

TT —T(Z +4;) = -L.T(Nz)N^2-N' 

shows that G defines a distribution. 
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Furthermore, this distribution also depends on the Hurwitz distribution. 
If we take the power series expansion of the Hurwitz zeta function at any 
complex number so, then the value defines a distribution. But we may also 
take the coefficients of higher powers (s — 5o)m for m > 1. Then we get the 
distribution relations, and in addition other terms coming from the overflow 
from lower terms. In particular, we have the classical expansion at $ = 0, 
namely 

S(B, u) = I - u + log ( — T(u))s + 0(s2). 

The distribution relations for log - ^ = r follows from the distribution relations 
V 27T 

for the Hurwitz zeta function. The extra term J V 1 / 2 - 7 ^ is explainable 
structurally from the constant term in the expansion, which is none other 
than —Bi(iz), itself the first Bernoulli distribution. The next coefficient (that 
of s2) would also satisfy the distribution relations, modulo the expressions 
due to the preceding terms. 

We note that the gamma distribution is odd, because of the classical relation 

J _ i X , ) J - r ( i - . ) - ^ - . 

Here of course we take z rational, so sin -KZ is algebraic. 

Cyclotomic numbers. The function 

x _ e2™ — 1 

defines a distribution into the multiplicative group of complex numbers 
(except at x = 0). This is immediate from the relation 

n [i-sx)=i-xN. 
If x ranges over rational numbers, then e2™x — 1 is just the numerator of the 
cyclotomic units, and may be called the cyclotomic numbers distribution. If 
the values are viewed as in C*/M> ^ n e n ^ne distribution is even. 

Modular units. In §6 we had defined the functions ga with a 6 Q2, a £ Z2. 
It can easily be shown that if one changes a by a pair in Z2, then ga changes 
by multiplication with a root of unity. We view the association 

a*-+ ga 

as a map of Q2/Z2 into the multiplicative group of meromorphic functions, 
modulo constants. Then this map satisfies the analogue of the distribution 
relations on Q2/Z2 . It is an even distribution. 
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The Lobatchevski distribution. Define the Lobatchevski function 

left. \{x) = -f log|e2™<-l|< 

Then X is a distribution, being composed of the cyclotomic numbers distribu­
tion, the absolute value, the logarithm (which are homomorphisms), and the 
integral which is easily seen to preserve the distribution relations. Milnor 
has investigated this distribution in connection with hyperbolic geometry as 
follows. Let H be hyperbolic 3-space. This is the set of points 

( x i , x 2 , y ) G R X R X R + 

so (xi,X2) is an ordinary point in the plane, and y > 0. We endow H with 
the metric 

dx\ -f dx\ + dy2 

? ' 
Select four distinct points in the plane, and let T be the tetrahedron in H 
whose vertices are at these points. Then it can be shown that opposite dihedral 
angles are equal. (The dihedral angles are the angles between the faces of the 
tetrahedron.) Let a, /J, 7 be the dihedral angles. Then 

« + P + 1 = 7T, 

and the volume of the tetrahedron is precisely given in terms of the 
Lobatchevski function, by 

voi(T) = JU d-^y=x(«)+m+x(7). 
T 

The search for relations among such volumes had led Milnor to consider 
the Lobatchevski function and its relations, now known as the distribution 
relations, and to show that it had the maximum rank (its values being viewed 
as generated a vector space over the rationals). We discuss this systematically 
below. 

The Stickelberger distribution. Let h : Q/Z —> C be a distribution. Let 
G(N) œ (Z/7VZ)* under an association a \-> oa, as in cyclotomic theory. 
Define 

9N^= JrnvSi X) M^K"1» 
l 0 7 ^ ! ae(2/NZy 

for x G —Z/Z. Then g M takes values in the group algebra C[G(N)], and 
if M I AT, then the image of <7AT(X) under the canonical homomorphism 
G(N) —• G(M) is equal to 0M(Z)- Thus we may define 

Stfc(z) = limgN(x) 

in the injective limit of the group algebras (as vector spaces over C), ordered 
by divisibility, with the injection from one level to the next given by sending 
one group element to the sum of all the group elements lying above it under 
the canonical homomorphism. Then one sees that x \-> St^(a;) is a distribution, 
called the Stickelberger distribution St^ associated with h. 
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The universal distribution. Fix an integer N > 1, and consider the 
subgroup of Q/Z consisting of those elements with order N, that is 

—;Z/Z = (Q/Z)N = ZN (by definition). 

One can then form the universal distribution (restricted to ZM) in the obvious 
way. We start with the free abelian group FV(ZN), and factor out the 
distribution relations (say of degree 0 for simplicity) with level M dividing N. 
If we denote the subgroup of these relations by DR(N), then the universal 
distribution is simply the factor group V(N) = Fr(ZM)/DR(N), with the 
natural map of Zjy into this factor group. A theorem of Kubert [Ku 2] (see 
[Ku-L 1] or [L 1], Chapter 2 and Yamamoto [Ya]) asserts: 

The universal distribution U(N) is a free abelian group on </>(N) 

generators. Let 

be the factorization of N into prime powers. A free basis for V(N) 

is given by the elements 

with ai G (Z/p^Z)* (so ai prime to pi) and ai ^ 1, or ai = 0. 

The general philosophy is that if a distribution arises naturally, and is not 
"obviously" special, then it is in fact universal, possibly with the parity odd or 
even. For example, the Bernoulli distribution is obviously not universal since 
it is rational valued, but it can be shown that its associated Stickelberger 
distribution is universal of the appropriate parity (for values into abelian 
groups where 2 is invertible). The cyclotomic number distribution is universal 
even (with values as above). This is a reformulation of a theorem of H. 
Bass. The modular units give a universal even distribution, cf. [Ku-L 1]. 
Rohrlich conjectured that the gamma distribution is universal odd. Since the 
values are in the group C* modulo non-zero algebraic numbers, this would 
amount to a theorem in the theory of transcendental numbers. Similarly, 
Milnor conjectured that the Lobatchevski distribution is universal odd (values 
in the additive group of complex numbers). For a general discussion of 
distributions, cf. Chapter 1 of [Ku-L 1], and the bibliography contained in 
that book, as well as [L 1], Chapter 2, containing proofs for all the theorems 
mentioned here. Distributions on projective systems arose in number theory 
through the work of Iwasawa, reformulated by Mazur. The point of view on 
injective systems taken here stems from the Kubert-Lang series of papers. The 
subtleties involving 2-torsion in the universal distribution have been dealt with 
systematically by Kubert, cf. [Ku 3] and the bibliography at the end of [Ku-L 
1]. They involve the cohomology of i l in the universal distribution, and have 
applications to modular functions, and possibly to algebraic topology. 

In this Appendix, I did not want to go systematically into the study of 
distributions. I merely wanted to point out the general pattern underlying 
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much of the formalism which arises in connection with §2, §3, §4, §8 and in 
other parts of mathematics. 

Note: The author wishes to point out to the reader that some errors may-
have been introduced in this paper during the corrections process, after the 
material had been proofread. 
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